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Caveolae and caveolin are key players in a number of disease processes. Current research
indicates that caveolins play a significant role in cardiovascular disease and dysfunction.
The far-reaching roles of caveolins in disease and dysfunction make them particularly
notable therapeutic targets. In particular, caveolin-1 (Cav-1) and caveolin-3 (Cav-3) have
been identified as potential regulators of vascular dysfunction and heart disease and might
even confer cardiac protection in certain settings. Such a central role in vascular health
therefore makes manipulation of Cav-1/3 function or expression levels clear therapeutic
targets in a variety of cardiovascular related disease states. Here, we highlight the role
of Cav-1 and Cav-3 in cardiovascular health and explore the potential of Cav-1 and Cav-3
derived experimental therapeutics.
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INTRODUCTION
Caveolae, less commonly termed plasmalemmal vesicles, were
first discovered by Yamada (Yamada, 1955) and Palade (Palade,
1953). They are defined as a specialized type of lipid raft that typ-
ically take on the appearance of 50–100 nm flask-shaped invagi-
nations in the plasma membrane. While present in most tissues,
the presence of caveolae is most notable in adipocytes, endothe-
lial cells, fibroblasts, muscle tissue, and epithelial cells. The main
physiological roles of caveolae are in regulating and facilitating
cell signaling, specific types of vesicular transport such as endo-
cytosis, and lipid content of the plasma membrane. Caveolin, the
coat protein of caveolae, are a family of 22–24 kDa proteins with
cytosolic N and C termini with three known isoforms: caveolin-1
(Cav-1), caveolin-2 (Cav-2), and caveolin-3 (Cav-3) (Krajewska
and Masłowska, 2004; Chidlow and Sessa, 2010; Hansen and
Nichols, 2010).

Cav-1 and Cav-2 are predominant in the cardiovascular sys-
tem. Cav-1 is required for caveolae formation and maintenance
in non-muscle-based cell types and has prominent expression in
endothelial cells. In the cardiovascular endothelium, Cav-1 is a
key regulator of nitric oxide (NO) by endothelial nitric oxide
synthase (eNOS), calcium, and vascular growth and remodel-
ing. Notably, although the expression pattern of Cav-1 is similar
to that of Cav-2, Cav-2 is not required for caveolae formation.
However, Cav-2 is thought to influence caveolae formation as
a result of hetero-oligomerization with Cav-1 (Galbiati et al.,
1998; Drab et al., 2001; Razani et al., 2002; Sowa et al., 2003;
Bauer et al., 2005; Bernatchez et al., 2005; Yu et al., 2006;
Lay et al., 2009). Meanwhile, unlike Cav-1 and Cav-2, Cav-3

is expressed predominately in muscle. This includes in vascular
smooth muscle as well as cardiac and skeletal muscle tissue
where it is essential for caveolae formation (Song et al., 1996;
García-Cardeña et al., 1997).

Caveolae, and/or its components including caveolins are
linked to disease including atherosclerosis (Frank et al., 2009),
cancer (Goetz et al., 2008), bowel disease (Andoh et al., 2001),
lipid disorders (Lay et al., 2009; Rahman and Swärd, 2009), car-
diac disorders (Xu et al., 2008), and respiratory disease (Gosens
et al., 2008). Despite being associated with so many patholo-
gies, caveolins also appear to have a role in cardiac protection.
This presents caveolins as both a therapeutic target for fight-
ing disease by understanding their role in disease pathogenesis
and protecting health by elucidating their contribution to vascu-
lar protection. Herein, we aim to bring focus to the therapeutic
potential of caveolins by first highlighting the role of caveolins in
cardiovascular disease and cardiac protection, and then review-
ing the current state of development of caveolae or caveolin-based
cardiovascular therapeutics. To do so and to appreciate the diverse
role of caveolin, the therapeutic implications of both Cav-1 and
Cav-3 are explored. In both cases, we provide an overview of the
noted roles both caveolin isoforms play in cardiovascular disease
and protection. Subsequently, we look at the potential therapeu-
tic benefits of targeting caveolin, how such targeting is being
achieved, and the potential clinical outcomes.

CAV-1, NITRIC OXIDE AND VASCULAR DISEASE
Cav-1 is the predominant caveolin isoform in the cardiovascular
system, with a particularly notable role in endothelial cells as
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Cav-1 drives the formation of caveolae and is also required for
maintenance within the plasma membrane (Gratton et al., 2004;
Sowa, 2012). The requirement of Cav-1 for caveolae formation
was first indicated by studies in which Cav-1 was expressed in
lymphocytes, which do not normally exhibit caveolae, and sub-
sequently resulted in caveolae genesis (Fra et al., 1995). The
requirement of Cav-1 for caveolae maintenance is evidenced by
studies depleting Cav-1 wherein loss of Cav-1 results in loss of
caveolae (Galbiati et al., 1998). Furthermore, the importance of
Cav-1 in vascular function has been elucidated by the develop-
ment of murine models. For example, the homozygous deletion
of the Cav-1 gene in mice was shown to produce viable offspring.
However, a variety of cardiovascular phenotypes were observed
including elevated NO levels, impaired angiogenesis, cardiomy-
opathy, and pulmonary hypertension (Lay and Kurzchalia, 2005).
Additionally, Cav-1-null animals were also found to be protected
against atherosclerosis (Frank et al., 2004), while overexpression
of Cav-1 in the endothelial layer was found to accelerate the
progression of atherosclerosis (Fernández-Hernando et al., 2010).

The above examples demonstrate a notable role for Cav-1 in
a number of vascular diseases phenotypes, and expose Cav-1 as a
notable therapeutic target for protection from vascular disease.
However, the first step to developing Cav-1 targeted therapeu-
tics is to understand the means by which caveolin is involved in
cellular processes leading to disease states. One of the main ways
Cav-1 regulates cellular signaling is through a sequence known as
the caveolin scaffold domain (CSD). The CSD consists of residues
82–101 of Cav-1 (82DGIWKASFTTFTVTKYWFYR101) and con-
trols cellular signaling by binding and sequestering proteins via
a motif known as the caveolin binding sequence. This sequence
is φxφxxxxφxxφ, where “φ” is an aromatic amino acid, and “x”
is any amino acid and binds a number of proteins. Caveolae-
related proteins are diverse in nature, ranging from G-protein
coupled receptors to tyrosine kinases and signaling enzymes, and
hence mediate a host of cellular effects as reviewed previously
(Okamoto et al., 1998; Roth and Patel, 2011). One of the key
enzymes bound by Cav-1 that is a major target of caveolin-based
therapeutics is nitric oxide synthase (NOS). NOS is a regulator
of vascular health and disease through the production of the
vasodilatory gas NO. Constitutive NO within the vasculature is
produced by eNOS, which catalyzes the conversion of L-arginine
to L-citrulline and NO (Albrecht et al., 2003; Minshall et al., 2003;
Sessa, 2004, 2005). However, when bound to the CSD, eNOS is
held in an inactive state, thereby limiting NO production. The
proposed site of binding of eNOS to Cav-1 is within the catalytic
domain of eNOS where there is a conserved caveolin-binding
motif (FSAAAPFSGW). This motif is the proposed on/off switch
for eNOS due to the finding that calmodulin, an activator of
eNOS, has been shown to compete with Cav-1 for this binding
site and thereby regulate NOS activity. Indeed, site-directed muta-
genesis within eNOS prevents binding of Cav-1 and mutation
within the CSD of Cav-1 mitigates its control of eNOS activity
in vivo. Furthermore, in addition to competing with calmodulin
for the caveolin-biding motif, Cav-1 also dynamically regulates
the ability of the serine/threonine amino acid kinase Akt to access
eNOS. This effectively allows Cav-1 to further govern eNOS
activity, as Akt is essential for regulating eNOS phosphorylation

at Ser1179 and Thr497, which dictate the level of eNOS activity
(Couet et al., 1997; García-Cardeña et al., 1997; Michel et al.,
1997).

Though complex, the regulatory setup of Cav-1/eNOS is
important. This is because NO is central to normal physiologi-
cal processes and altered regulation of NO is commonplace in the
setting of vascular diseases. Changes in NO regulation contribut-
ing to pathophysiological processes, termed endothelial dysfunc-
tion, is clinically characterized by reduced NO bioavailability
and is associated with worse cardiovascular outcomes (Widlansky
et al., 2003). For example, impaired flow-dependent endothelium
mediated dilation of the radial artery has been reported to be
an independent predictor of cardiac-related mortalities in human
studies (Fischer et al., 2005). Additionally, the importance of NO
in endothelial function has also been suggested in animal studies.
Felines that underwent left anterior descending coronary artery
occlusion and subsequent reperfusion had reduced endothe-
lial function that progressively declined with greater reperfusion
times. Furthermore, necrotic areas and at risk areas increased with
reperfusion times (Tsao et al., 1990). Interestingly, the use of NO
donors SIN-1 or C87-3754, in the same feline model, led to reduc-
tion of both necrotic area and endothelial dysfunction following
reperfusion (Siegfried et al., 1992). Similarly, in a canine model
of bypass surgery, the use of vardenafil, a phophodiesterase-5
inhibitor, which prevents the breakdown of NO-mediated cGMP
accumulation, showed increased cardiac and endothelial func-
tion (Szabó et al., 2009). Beyond endothelial dysfunction, the
pathophysiological role NO is also seen in the setting of pul-
monary hypertension. Both humans and Cav-1 deficient mice are
noted to develop pulmonary hypertension as a result of uncon-
trolled eNOS activation due to a lack of Cav-1 (Zhao et al., 2009).
Similar constitutive hyper-activation of eNOS is also known
to drive cardiomyopathy seen in Cav-1 deficiency (Wunderlick
et al., 2008). Overall, the studies considered above demonstrate
that in vivo Cav-1 plays a vital role in NO-based pathophys-
iology and thereby support the use of NO-based therapies to
improve cardioprotection by targeting Cav-1. Therefore, to fur-
ther examine therapeutic potential and applications, therapies
regulating NO in vascular disease and cardioprotection are con-
sidered below as well as how this may be best achieved through
Cav-1-based therapeutics and other clinical benefits of targeting
Cav-1.

NITRIC OXIDE AND CAVEOLIN-1 THERAPEUTICS
A variety of pharmacological substances have been utilized
clinically to promote cardiac protection during ischemia.
These include betablockers, glucose-insulin-potassium infusion,
sodium-hydrogen exchange inhibitors, adenosine, calcium chan-
nel blockers, and KATP channel openers. However, the level
of success has been mixed and the search for improved ther-
apies has continued (Kloner and Rezkalla, 2004). Therapies
involving NO targeting may be one such “bigger and better”
approach. Generally, therapeutics employed to increase NO typi-
cally consists of delivering pre-cursors (e.g., L-arginine), mimet-
ics, donors (e.g., glycerol trinitrate and NONOates), or hybrid
compounds (e.g., NO-linked compounds) systemically (Megson
and Webb, 2001). Unfortunately, the clinical outcomes of such
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therapeutics are varied. A meta-analysis of the use of nitro-
glycerin and nitroprusside (NO donors) in acute myocardial
infarct suggested that nitrates reduced mortality be around a
third (Yusuf et al., 1988). Conversely, more recent studies failed
to identify any benefits or improved clinical outcome asso-
ciated with long-term nitrite usage (Group, 1994; Yamauchi
et al., 2008), whilst another study suggested that nitrate ther-
apy subsequent to acute coronary events increased mortality
(Nakamura et al., 1999). However, while the effect on mortal-
ity have varied significantly, NO targeted therapeutics appear to
be cardioprotective. It was found that when patients with acute
myocardial infarction were treated with nitroglycerin within four
hours of developing chest pain, infarct size was reduced and
the left ventricular function was better in comparison to con-
trol (Jugdutt and Warnica, 1988). Also, the use of isosorbide
mononitrite had a greater protective effect on patients that pre-
sented with no Q wave or ST-segment elevation (Morris et al.,
1995). Another study found that early usage of nitroglycerin,
in conjunction with verapamil, led to smaller infarct sizes in
a third of the patients that presented with ST-segment eleva-
tion (Beltrame et al., 2002). Furthermore, in the context of
coronary artery bypass surgeries, the addition of L-arginine, an
NO pre-cursor, into the cardioplegia solution (Carrier et al.,
2002) or inhalation of NO was found to reduce biomarkers
associated with cardiac damage, such as troponin, indicating
that supplementation with NO-based therapies was cardiopro-
tective (Gianetti et al., 2004). Therefore, study results support
further development and exploration of NO-based therapeutics
overall.

One aspect of NO-based therapeutics that may contribute to
variability in results of NO therapeutics is the limitations and
side effects associated with exogenous sources of NO. Clinical use
of nitrates have demonstrated a variety of side effects including
dizziness, headaches, and hypotension, all of which are linked to
the vasodilatory effects of nitrates (Thadani and Ripley, 2007).
Furthermore, long-term use of organic nitrates, such as nitro-
glycerin, can promote tolerance. This means that subsequent and
continued treatment requires greater doses, which subsequently
promotes eNOS uncoupling. Detrimentally, this in turn leads to
greater levels of superoxide production and has clear implica-
tions on the long term clinical usage of such compounds (Gori
and Parker, 2002; Parker, 2004). Therefore, the development of
compounds capable of chronically elevating endogenous NO lev-
els via eNOS or relevant enzymes may prove to be of a greater
therapeutic benefit, as current therapeutics deliver high boluses of
NO that may be harder to regulate and produce more side effects.

A promising approach to increase basal levels of NO via Cav-1
targeting would be to directly disrupt the inhibitor interaction
between eNOS and Cav-1. This interaction has been validated
in in vitro and in vivo models as direct interaction between
eNOS and Cav-1 and documented through a variety of techniques
including yeast two-hybrid, glutathione-S-transferase pulldown
and co-immunoprecipitation (Ju et al., 1997; Gratton et al., 2000).
As a result of characterizing the interaction of eNOS and Cav-1, a
cell permeable peptide containing the Cav-1 CSD was developed
and was successful in decreasing eNOS activity and subsequently
reducing vascular leak (Bucci et al., 2000; Fulton et al., 2001;

Minshall et al., 2003). Furthermore, peptides based on residues
82–101 of the Cav-1 CSD were found to be able to inhibit eNOS
activity (Ju et al., 1997). Moreover, use of cell-peptide fragments
based off of the Cav-1 CSD have allowed for further probing
of the inhibitory mechanism of the CSD on eNOS activity and
refinement of Cav-1 therapeutic targets. Specifically, it was found
that residues 90Thr, 91Thr, and 92Phe in particular played essen-
tial roles in Cav-1/eNOS interaction. In fact, use of a full-length
Cav-1 mutant with a single alanine substitution in lieu of 92Phe
entirely abolished Cav-1’s inhibitory effects on eNOS (Bernatchez
et al., 2005). Furthermore, not only does the substitution of 92Phe
with alanine in Cav-1 prevent eNOS inhibition, it also promotes
NO and reduces superoxide release. Notably, this was accom-
plished without disrupting the basic biochemical properties of
Cav-1 and eNOS. These findings then lead to the development of
a cell-permeable Cav-1 CSD with alanine substitution of residues
90–92 that was able to induce vasorelaxation of aortic rings and
the reduce blood pressure of mice in an eNOS-dependent man-
ner (Bernatchez et al., 2011). Notably, this was the first study to
highlight the potential of modified Cav-1 CSD-derived peptides
as antagonists to promote NO release and is an important step
forward in advancing Cav-1 targeted therapeutic for regulating
NO for cardioprotective purposes (Figure 1). However, as with
all therapeutics, there may be inherent limitations which are the
focus of future studies. A final approach to consider for regulating
NO through interrupting Cav-1 binding of eNOS is through other
pharmacological compounds. One such compound is amlodip-
ine, a calcium channel blocker. Amlodipine is noted to increase
production of NO in endothelial cells and this was subsequently
found to be capable of increasing NO release by inhibiting Cav-1
binding of eNOS in cultured endothelial cells (Batova et al., 2006;
Sharma et al., 2011).

OTHER TARGETS OF CAV-1 AND CARDIOVASCULAR
THERAPEUTICS
Although targeting of the Cav-1 CSD has the most potential
for impact on eNOS regulation, as evidenced by studies which
showed no effects of a Cav-1 CSD peptide in eNOS knockout
mice, the scaffold nature of Cav-1 also presents the potential
for Cav-1 CSD peptides to regulate vascular disease and cardio-
protection through other proteins which bind the CSD (Gratton
et al., 2003; Roth and Patel, 2011). For example, injection of Cav-1
peptides into isolated perfused rat hearts led to the preservation of
left ventricular function post-ischemic reperfusion (Young et al.,
2001). The authors noted reduced immune cell adherence and
increased NO production, which they had attributed to the inhi-
bition of PKC, a Cav-1 regulated protein that inhibits eNOS activ-
ity and promotes superoxide release (Hirata et al., 1995; Zulueta
et al., 1995). Furthermore, other mediators of vascular disease
that interact with the Cav-1 CSD present alternative therapeutic
avenues. Notably, Cav-1 deficient mice have demonstrated cardiac
hypertrophy owing to hyperactivation of ERK 1/2 signaling under
basal conditions (Cohen et al., 2003). Similarly, another study
found that Cav-1 deficient mice displayed dilated left ventricles
and right ventricular hypertrophy (Zhao et al., 2002), and in mice
that had undergone left anterior descending coronary artery liga-
tion, those lacking Cav-1 failed to increase β-adrenergic receptor
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FIGURE 1 | Under basal conditions, endothelial nitric oxide synthase

(eNOS) is the main producer of nitric oxide (NO) in the cardiovascular

system. Interaction between eNOS and Caveolin Scaffolding Domain (CSD)
of Caveolin-1 leads to inhibition of eNOS activity. Compounds that can mimic

the Cav-1 CSD may potentially disrupt the inhibitory interaction, thereby
leading to increased NO production. This may have potential benefits
in the context of cardiac protection, which seemingly is, in part,
mediated by NO.

density, leading to reduced cAMP production, PKA phosphoryla-
tion and survival (Jasmin et al., 2011). Additionally, many cardiac
ion channels (e.g., Kv1.5, Nav 1.5, and HCN4) responsible for
normal cardiac function are targeted to caveolae (Maguy et al.,
2006). However, with regards to cardioprotection, mitochondrial
ion channels play a more significant role in the determination of
cell fate (O’Rourke et al., 2005; Nishida et al., 2010). Disruption
of caveolae with methyl-beta-cyclodextrin led to decreased eNOS-
dependent signaling and nitrosylation of mitochondrial proteins,
which was associated with the lost of ischemic preconditioning
(Sun et al., 2012).

Notably, however, Cav-1 does not always act independently
of other caveolin isoforms. Cav-1 has also been suggested to be
able to form heteromeric complexes with Cav-3 in atrial car-
diac myocytes, which was responsible for apoptosis in response
to doxorubicin, a chemotherapeutic agent (Volonte et al., 2008).
Overall, Cav-1 in cardiac myocytes is not as well characterized as
Cav-3; however, taken together, the facts suggest that Cav-1 plays
a functionally important role in cardic function and protection

as a mediator of cellular signaling. Hence, CSD-derived pep-
tides from Cav-1 may elicit interesting responses in the context
of cardioprotection, but more studies are required to confirm
such speculation. Furthermore, while all of findings highlighted
regarding the potential for targeting Cav-1 are promising, it is
important to consider the potential pitfalls of targeting Cav-1
given the complex and diverse role of Cav-1 in vivo. These
potential consequences include off-target effects such as non-
specifically inhibiting many of the possible Cav-1 signaling events
instead of a single key event as intended. This is turn may have
detrimental outcomes on normal cell physiology and speaks to
the need to consider the widespread effects of Cav-1 targeted
therapeutics and importance of developing highly specific targets
within Cav-1.

CAVEOLIN-3 IN CARDIOVASCULAR DISEASE AND
PROTECTION
Cav-3 is essential for formation of caveolae in cardiac and skeletal
muscle and is the dominant caveolin isoform in cardiomyocytes
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(Song et al., 1996). Given the critical role of caveolins in cell
physiology and the localization of Cav-3 in cardiac muscle,
it is of little surprise that Cav-3 is a player in both cardiac
disease and protection. The major pathological cardiovascular
features associated with change in Cav-3 function are those
leading to hypertrophy and myopathy, which are hallmarks of
cardiovascular disease. Notably, while Cav-3 is also a key player
in types of muscular dystrophy, which can have cardiovas-
cular components (Catteruccia et al., 2009), this pathological
role of Cav-3 is outside of the scope of this review and will
not be considered further. However, the vital role of Cav-3 in
ischemia preconditioning will be explored. Ischemic precondi-
tioning, which imbibes cardiomyocytes with the ability to resist
damage and injury during subsequent ischemic injury events has
strong therapeutic potential. Such Cav-3 dependent precondi-
tioning involves complicated and often controversial signaling
cascades. In fact, signaling cascades mediating Cav-3 involvement
in cardiovascular pathogenesis and cardioprotection, have been
reviewed elsewhere recently (Roth and Patel, 2011). Therefore,
in order to bring new perspective, focus, and insight to Cav-3
in vascular health, we subsequently examine the relevance and
development of Cav-3-based therapeutics. In doing so, the cur-
rent understanding of and potential of Cav-3 therapeutics in
offering cardioprotection in the classic sense, from ischemia,
and protection from development of cardiovascular disease is
presented.

PROTECTION FROM ISCHEMIA
Beyond contributing to the pathophysiology of a number of
diseases, caveolins are notable in facilitating cardiac protec-
tion in myocardial ischemia-reperfusion injury. Protection from
ischemia-reperfusion injury is often provided experimentally
via ischemia preconditioning and was first noted in the 1980’s
(Murray et al., 1986). This involves induces brief periods of
ischemia repeatedly, which induces an intrinsic protection from
subsequent ischemia-reperfusion. Interestingly, cardioprotection
from ischemic events can also be achieved through exposure
to a number of already known compounds. These include opi-
oids such as morphine (Schultz et al., 1996), and anesthetics
including isoflurane (Cason et al., 1997; Kersten et al., 1997).
In all cases of induced ischemia precondition (ischemia, opiods,
and anthesthics) the process has been found to be depen-
dent upon Cav-3. This is highlighted in mice lacking Cav-3,
which have an inability to be preconditioned to ischemic injury
through ischemia preconditioning, or preconditioning treatment
with isofluorane, or opiods (Horikawa et al., 2008; Tsutsumi
et al., 2010). Therefore, given the central role of Cav-3 in
ischemic preconditioning, Cav-3 presents itself as an inter-
esting therapeutic target for inducing cardioprotection from
ischemia.

Unfortunately, targeting of the Cav-3 dependent precondi-
tioning using the methods of ischemia, opiods, or anesthetics
exposure does not appear to be a viable therapeutic option
for translation from bench to beside. This is due to the per-
ceived difficulties in implementing such treatments and the risk
of severe adverse complications. Fortunately, a number of alter-
native approaches taking advantage of the direct link between

Cav-3 and cardioprotection from ischemia are being developed
and identified. For example, while previously in the article we
considered the use of peptides in targeting Cav-1 regulation of
eNOS, thereby altering basal NO levels to aid cardioprotection,
peptides are also being used to target Cav-3. Recently, Shen
and colleges (2011), utilized a Cav-3 CSD peptide to induce
protection against apoptosis in cardiomyocytes. Following the
finding that hypoxic cardiomyocytes from rats that were sub-
sequently reoxygenated had oxidative damage and decreased
Cav-3 levels, the authors demonstrated that use of a Cav-3
peptide of the scaffold domain was able to eliminate oxida-
tive damage. In this case, protection from oxidative damage was
attributed to inhibiting production of O−

2 , increased superox-
ide dismutase activity (SOD), and inhibition of the caspase-3.
Interestingly, this is also an example of successful use of a
Cav-1 peptide for cardioprotection as Shen and colleges also
found Cav-1 peptides to be protective. However, Cav-1 peptides
were less effective than Cav-3 peptides in preventing oxidative
damage.

Although the use of Cav-3 peptide does show potential, other
therapeutic interventions to allow for overexpression of Cav-3 are
being perused. Adenovirus is one such intervention. Indeed, the
cardioprotective effect of overexpression of Cav-3 via adenovirus
has been noted by Tsutsumi and colleges (2008). Transfection
of cardiac myocytes increased caveolae number, and Akt and
GSK3β levels, which was previously been noted to be important in
mediating preconditioning to ischemia (Hausenloy et al., 2005).
Additionally, the protective effects against ischemia/reperfusion
injury seen in Cav-3 adenovirus treated myocytes were also
seen in transgenic mice that had myocyte-specific overexpres-
sion of Cav-3. These mice had decreased infarct size following
injury attributable to enhanced Akt and GSK3β phosphorylation.
Subsequently, this allowed the mice to respond to injury similar
to wild-type mice which had been preconditioned. Clearly, these
findings are a promising beginning for use of adenovirus to alter
Cav-3 levels, and although there will undoubtedly be a number
of obstacles in moving them forward to therapeutic applications,
the use of adenoviruses is also being pursued in a number of
other fields including treatment of cancer, diabetes, and periph-
eral artery disease as highlighted in recent publications (Creager
et al., 2011; Tang et al., 2011; You et al., 2011), which will serve to
expedite the process of moving adenovirus-based treatment from
bench to bedside.

Despite the exciting advances in beginning to develop thera-
peutics targeted at Cav-3 as discussed above, perhaps the answer
is in pharmaceuticals and/or other compounds that already exist,
but have not been considered in the light of a potential Cav-3
modulator. One an example of these is tocotrienols. Members
of the vitamin E family, tocotrienols, have antioxidant proper-
ties and have been studied for use in cancer and have noted
benefits in cardioprotection (Qureshi et al., 1991; Srivastava
and Gupta, 2006) . However, it is only recently that evidence
demonstrating that tocotrienols mediate cardioprotection by dif-
ferentially regulating Cav-1 and Cav-3 binding partners such
as MAP kinases, HO-1 and eNOS, leading to elevated pro-
survival signaling (Das et al., 2008). Ceramide has also been noted
in preconditioning to ischemic injury in relation to caveolin.
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During preconditioning there is a notable increase in ceramide
and sphingosine (Cui et al., 2004). Furthermore, increased
p38MAPKα/Cav-1 interaction and decreased p38MAPKβ/Cav-3
interaction was observed following ischemia reperfusion of pre-
conditioned hearts, helping to promote pro-survival signals and
preserve heart function (Das et al., 2007). Clearly, the two exam-
ples above are far from therapeutic use and would most likely
(1) have notable systemic and off target effects and (2) require
more work to make their effects more specific. While these
points on need for further development and refinement are true
for all caveolin targeted therapeutics, these examples are repre-
sentative of the concept that compounds and drugs that have
already been developed may hold untapped potential in mod-
ulating caveolin-mediated activities and therefore, be useful in
cardioprotection.

PROTECTION FROM CARDIOVASCULAR DISEASE
Normal heart physiology and vascular function is frequently dis-
rupted and thereby gives rise to a multitude of pathological states.
What is interesting about this from a caveolin research point of
view is that Cav-3 is a significant player in a number of these
diseased states. For example, changes in Cav-3 expression levels
are noted in chronic hypoxia, hypertension, and models of heart
failure including those characterized by cardiomyocytes hyper-
trophy and ventricular dysfunction (Shi et al., 2000; Woodman
et al., 2002; Ohsawa et al., 2004; Lee et al., 2006; Feiner et al.,
2011). Furthermore, given the grave burden of cardiovascular dis-
ease on the global population today and the role of Cav-3 in
heart physiology, considering how Cav-3 targeted therapeutics
may enable cardioprotection in the non-classical sense of prevent-
ing or reducing pathogenic changes in the heart and vasculature
is important.

In pursuit of the goal of enabling protection from pathologi-
cal events by targeting Cav-3 a number of therapeutic approaches
have been used. Interestingly, many of the approaches overlap
with those used to regulate Cav-3 for induction of cardiopro-
tection as reviewed above. One such example is the use of
adenovirus. Cardiomyocytes transfected with adenovirus encod-
ing Cav-3 were protected from hypertrophy induced through
phenylephrine and endothelin-1 exposure as a result of prevent-
ing ERK 1/2 phosporylation. Furthermore, adenovirus encoding
a mutant form of caveolin seen in limb-girdle muscular dys-
trophy had the opposite effect: increased hypertrophy of car-
diomyocytes. Therefore, this study not only shows that using
adenovirus to alter Cav-3 expression in cardiac myocytes may
be a promising avenue of therapeutics, it is also a useful tool
in studying deleterious mutations in Cav-3 (Koga et al., 2003).
Moreover, regulation of Cav-3 via adenovirus in myocytes was
also recently successfully used to increase Cav-3 levels and reg-
ulate atrial natriuretic peptides, which are known to be key
mediators of cardiac hypertrophy (Horikawa et al., 2011). In
addition, a recent study found that inhibition of Cav-3 localized
L-type Ca2+ channels reduced Ca2+ transients and hypertrophic
NFAT translocation without reducing contractility, highlighting
the potential of targeting caveolae specific signaling responses
(Makarewich et al., 2012). Notably, similarity in therapeutic
approaches is also seen between Cav-1 and Cav-3. This is because,

like the role of Cav-1 in pathogenesis, Cav-3 is also noted to
mediate changes in NO (Roth and Patel, 2011). Therefore, alter-
ing NO levels to combat cardiac hypertrophy and heart fail-
ure has also been explored. Although not directly targeted at
Cav-3, LA419, a novel NO donor, was able to prevent cardiac
hypertrophy caused by pressure overload in rats by success-
fully increasing endogenous NO levels. This was the result of
increasing interaction between eNOS and heat shock protein
90 (Hsp90) and return of Cav-3 to levels seen during home-
ostasis (Ruiz-Hurtado et al., 2007). Furthermore, the significant
role of Cav-3 in regulating NO within vascular disease extends
to muscular dystrophy. Mice with overexpression of a P104L
mutant of Cav-3, a model of autosomal dominant limb-girdle
musclar dystrophy, showed mislocalization of Cav-3 and devel-
opment of hypertrophic cardiomyopathy. Upon investigation, it
was determined that this was associated with increased eNOS
activity and showed that deregulation of Cav-3 within the heart
can result in hypertrophic cardiomyopathy (Ohsawa et al., 2004).
Alternatively, exploring compounds, that were previous explored

Table 1 | Recent caveolin-based therapeutics.

Therapeutic Target Outcomes

Peptide Caveolin-1
scaffold
domain

• Prevents eNOS inhibition
• Promotes NO Release
• Reduces Superoxide
• Preserves left ventricular function

post-ischemic reperfusion

Caveolin-3
scaffold
domain

• Protects cardiomyocytes from
oxidative damage

• Increase SOD activity
• Inhibition of caspase-3
• Decreased O−

2

Adenovirus Overexpression
of Cav-3 in car-
diomyocytes

• Protection from ischemic injury
• Increased caveolae number
• Increased Akt and GSK3β

levels
• Decreased infarct size

• Protection from induced
cardiomyocytes hypertrophy

• Prevention of ERK
phosphorylation

• Increased atrial natriuretic
peptides

Pharmaceutical
compound

Tocotrienols • Cardioprotection via regulation of
cav-1/3 interaction with MAPK,
HO-1, and eNOS

17β-estradiol • Prevents induced cardiomyocytes
hypertrophy

• Increased cav-3
• Decreased ERK

phosphorylation
• Prevents Ang II mediated

hypertrophy

LA419 • Prevents pressure-overload
induced hypertrophy

• Increased endogenous NO
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for use in therapeutic in contexts other than Cav-3 regulation,
is a new point of interest. A recent example of this is estro-
gen as 17beta-estradiol was found to prevent cardiomyocyte
hypertrophy in ovariectomized rats exposed to abdominal aor-
tic contraction by upregulating Cav-3 expression and reducing
phospho-ERK1/2. Furthermore, in the same study, the authors
found that angiotensin II (Ang II) mediated cardiac hypertro-
phy could be mitigated by 17beta-estradiol, but the effect was
abolished following administration of methyl-beta-cyclodextrin,
which disrupts caveolae (Cui et al., 2011). However, while these
are promising means of targeting Cav-3 and caveolae, exploring
their risks and possible complications will be important for future
studies.

CONCLUSION
Caveolins are important regulators of a multitude of cardiovas-
cular related events. Specifically, Cav-1 is a key player in cardio-
vascular health. Of its roles, the regulation of eNOS and thereby
of basal NO levels is a vital component of vascular health. The
importance of this is illustrated by that fact that a reduction in sys-
temic NO levels has been associated with cardiovascular mortal-
ities and NO levels play important roles in vascular dysfunction.
However, it should be noted that findings on mortality following
administration of NO have varied. In contrast, studies using NO
to promote cardioprotection in events such as bypass surgery and

cardiovascular events generally indicate a therapeutic advantage
to NO. However, there are limitations with the current method-
ologies of increasing systemic NO in a bolus manner. Therefore,
increasing basal NO appears to be a more attractive solution as it
may circumvent current problems associated with nitrates such as
tolerance and hypotension. One method of doing so is to develop
compounds to directly target the interaction between eNOS and
Cav-1 and thereby prevent or limit inhibition eNOS by Cav-1.
In this pursuit, peptides of Cav-1 CSD show promise in being
able to regulate NO production. Furthermore, targeting of Cav-1
to regulate cellular signaling outside of eNOS is also a front of
intense research. Similar to Cav-1, Cav-3 plays many important
roles in cardiomyocyte signaling and cardiac function. Peptides
generated from Cav-3 are thought to contribute to protective pre-
conditioning of the heart while mutations in endogenous Cav-3
have been associated with cardiac myopathies. Furthermore, sev-
eral pro-cardiac survival compounds have been demonstrated
to have their effects associated with Cav-3 regulations (Table 1).
Overall, compounds capable of regulating either Cav-1 and/or
Cav-3 possess potentially important therapeutic implications in
the context of cardiac health and disease. However, while cave-
olin targeted therapeutics have great potential, due to complex
signaling pathways associated with caveolins they require fur-
ther development to ensure specificity in order to reach clinical
applicability.
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