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One of the goals in the field of synthetic biology is the construction of cellular compu-
tation devices that could function in a manner similar to electronic circuits. To this end,
attempts are made to create biological systems that function as logic gates. In this work
we present a theoretical quantitative analysis of a synthetic cellular logic-gates system,
which has been implemented in cells of the yeast Saccharomyces cerevisiae (Regot et al.,
2011). It exploits endogenous MAP kinase signaling pathways. The novelty of the system
lies in the compartmentalization of the circuit where all basic logic gates are implemented
in independent single cells that can then be cultured together to perform complex logic
functions. We have constructed kinetic models of the multicellular IDENTITY, NOT, OR, and
IMPLIES logic gates, using both deterministic and stochastic frameworks. All necessary
model parameters are taken from literature or estimated based on published kinetic data,
in such a way that the resulting models correctly capture important dynamic features of
the included mitogen-activated protein kinase pathways. We analyze the models in terms
of parameter sensitivity and we discuss possible ways of optimizing the system, e.g., by
tuning the culture density. We apply a stochastic modeling approach, which simulates the
behavior of whole populations of cells and allows us to investigate the noise generated in
the system; we find that the gene expression units are the major sources of noise. Finally,
the model is used for the design of system modifications: we show how the current system
could be transformed to operate on three discrete values.
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INTRODUCTION
Mathematical modeling in cellular biology aims to predict the
behavior of biological systems. This aspect is particularly impor-
tant in synthetic biology, where novel biological entities are being
designed and implemented. Often, only an intuitive, qualitative
prediction is available of how the planned device will function –
while quantitative characterization is performed after experimen-
tal implementation. Ideally, mathematical modeling should offer
the advantage of predicting the quantitative behavior of the sys-
tem, minimizing the necessity for experimental optimization and
fine-tuning. In this work, we present a kinetic model of an experi-
mentally implemented, functioning synthetic system and we show
that our model allows for analysis and prediction of the tim-
ing of events in the system and facilitates system optimization.
Finally, we demonstrate how the model aids the design of system
modifications.

For our analysis we used the synthetic cellular logic-gates sys-
tem developed by Regot et al. (2011), who implemented their
system in cells of the yeast Saccharomyces cerevisiae, exploiting
endogenous Mitogen-Activated Protein Kinase (MAPK) signaling
pathways. Such logic-gate units are intended as a first step on the
way to the construction of a biological computation device. The
novelty of this system lies in the concept of using communicating
populations of cells: in each cell type, only a single logic oper-
ation is implemented, but the different cell types communicate

with each other by secreting diffusible signaling molecules, such
that more complicated functions can be achieved by mixing of
cells that perform different basic operations. The advantage of
this kind of implementation is that the chemical output synthe-
sized by a population of engineered cells – the concentration of
the signaling molecule that “wires” the different cell types into a
functional circuit – is robust to noise arising in single cells, since
it is averaged over the whole population (Li and You, 2011). It
also enables the construction of many different functions from a
limited number of engineered cells, by just mixing them in differ-
ent combinations. The attractiveness of this system prompted us
to analyze it deeper and to explore the possibilities of its further
development.

In the system studied in this work, cell-to-cell communica-
tion is based on one of the best studied cell communication
systems, i.e., the mating response of haploid yeast cells (Elion,
2000). In the mating process, MATα cells produce the α-factor
mating pheromone and express an alpha-factor receptor while
MAT alpha cells produce alpha-factor and an α-factor recep-
tor. Binding of the cognate pheromone to its receptor stimulates
a G-protein-coupled sensing device including a MAPK cascade,
which in turn initiates a cascade of events that lead to mating
and cell fusion (Dohlman and Thorner, 2001; Hohmann, 2002).
Another extensively studied signaling pathway used here is the
High Osmolarity Glycerol (HOG) MAPK signaling network (de
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Nadal et al., 2002; Hohmann, 2002). Several mathematical mod-
els of the pheromone-response pathway and the HOG signaling
pathway have been already published (Kofahl and Klipp, 2004;
Klipp et al., 2005; Schaber et al., 2006; Zi et al., 2010), providing
approaches on which we can now build further. Both pathways
have previously been used in synthetic biology to demonstrate the
feasibility of redirecting signal transduction (Park et al., 2003) as
well as building artificial cell communication systems (Chen and
Weiss, 2005).

In their work, Regot et al. (2011) have constructed and
described 16 different types of engineered cells. In this study, we
present kinetic models of four of these cells, which can be arranged
in various combinations to perform five different logic opera-
tions (IDENTITY, NOT, OR, IMPLIES, NAND). All data necessary
for model construction and parameterization have been obtained
from previously published literature. The results from the work of
Regot et al. are used only for model validation. The verified model
is then employed for the identification of individual processes with
highest impact on the functioning of the logic gates, for analyzing
how culture density influences the system output and for deter-
mining the major sources of noise in the system. Finally it serves to
propose how the current system could be transformed to operate
on three discrete values.

MATERIALS AND METHODS
MODELING SENDER AND RECEIVER CELLS
The sender cells respond to specific chemical input signals (salt,
doxycycline, galactose) by producing the yeast pheromone alpha-
factor, which is secreted into the culture medium and serves
there as a signal for the receivers (reporter cells). The reporter
cells contain the alpha-pheromone receptor, which activates the
pheromone signaling pathway; the pathway is engineered to induce
the expression of GFP (system output). Signaling and gene expres-
sion in all cells are described in our models with sets of ordinary
differential equations (ODE). These are kept as simple as possible
to prevent parameter overfitting and to reduce complexity of the
final models. Table 1 contains an overview of the used data and
references and presents the obtained parameter values. Initial con-
centrations for proteins are listed in Table 2. All species not listed
in the table were initially set to 0. Yeast cell volume size has been set
to 58 fL1 (Tyson et al., 1979; Jorgensen et al., 2002; Sherman, 2002;
Tamaki et al., 2005), of which we assume the cytoplasm occupies
50% of volume (29 fL) and the nucleus 7% (4.06 fL; Biswas et al.,
2003). Below, we explain the four different cell types used in this
study.

Salt-cell
This cell (Cell#1 in Regot et al., 2011) responds to the presence
of salt in the medium by producing the yeast pheromone alpha-
factor; this is achieved by placing the alpha-factor encoding gene
MFα1 under the control of the STL1 promoter, which is acti-
vated by the HOG MAPK signaling pathway. Additionally, the cells
carry an fps1-∆1 mutation, to prolong the response to osmostress
(Tamás et al., 1999). We model the dynamics of this cell with a set of

1http://yeastpheromonemodel.org/wiki/Cell_volume

12 equations, presented below. The first eight equations represent
a highly simplified model of the HOG signaling pathway, inspired
by the work of Zi et al. (2010). The model includes the following
components: osmostress, the MAP kinase kinase (MAPKK) Pbs2,
the MAP kinase Hog1, and internal osmolytes.

Osmostress depends on the presence of salt in the medium and
internal osmolytes in the cytoplasm:

[osmostress]

=

{
w [Salt]− [Int _osmo] , w [Salt]− [Int _osmo] > 0

0, else

(1)

The signaling cascade is represented by Pbs2 and Hog1:

d [Pbs2]

dt
= −k20 [Pbs2] [osmostress]+ k21 [Pbs2pp] (2)

d [Pbs2pp]

dt
= k20 [Pbs2] [osmostress]− k21 [Pbs2pp] (3)

The Hog1 MAPK is phosphorylated by active Pbs2 in the
cytoplasm and dephosphorylated by phosphatases both in the
cytoplasm and in the nucleus, to which it can be translocated with
a rate that depends on its phosphorylation state:

d
[
Hog1c

]
dt

= −k22
[
Hog1c

]
[Pbs2pp]+ k23

[
Hog1ppc

]
− k27

[
Hog1c

]
+ k28

[
Hog1n

] Vnucleus

Vcytoplasm
(4)

d
[
Hog1ppc

]
dt

= k22
[
Hog1c

]
[Pbs2pp]− k23

[
Hog1ppc

]
− k26

[
Hog1ppc

]
+ k25

[
Hog1ppn

] Vnucleus

Vcytoplasm

(5)

d
[
Hog1n

]
dt

= k24
[
Hog1ppn

]
+ k27

[
Hog1c

] Vcytoplasm

Vnucleus

− k28
[
Hog1n

]
(6)

d
[
Hog1ppn

]
dt

= −k24
[
Hog1ppn

]
+ k26

[
Hog1ppc

] Vcytoplasm

Vnucleus

− k25
[
Hog1ppn

]
(7)

Internal osmolytes are synthesized when active Hog1 is present
in the cytoplasm but also leak from the cell with a rate dependent
on osmostress (which represents regulation of the Fps1 glycerol
channel by osmostress; Tamás et al., 1999):

d [Int_osmo]

dt
= k29

[
Hog1ppc

]
−

k30 [Int_osmo]

1+ K i30 [osmostress]
(8)

Alpha-factor expression is described by three ODEs repre-
senting mRNA synthesis and degradation, protein synthesis and
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Table 1 | Data used for model fitting and obtained parameter values.

Cell Reaction

number

Parameter description Parameter

name

Estimated value Experimental data Reference

Salt-cell – Influence of NaCl

concentration on osmostress

strength

w 2.39 Fitted to time-course data (2 h) for

Hog1 phosphorylation after stimulation

of wild-type yeast cells with 0.4 and

0.8 M NaCl and to time-course data for

internal glycerol after stimulation with

0.5 M NaCl

Macia et al.

(2009), Klipp

et al. (2005)

r20 Activation of Pbs2 k20 758 ml/(mmol/s)

r21 Deactivation of Pbs2 k21 235 1/s

r22 Phosphorylation of Hog1 k22 113543 ml/(mmol/s)

r23 Cytoplasmic

dephosphorylation of Hog1

k23 8.84×10−5 1/s

r24 Nuclear dephosphorylation of

Hog1

k24 0.0148 1/s

r25 Nuclear export of Hog1-PP k25 34.5 1/s

WT model verified with data for Hog1

phosphorylation after stimulation of

wild-type yeast cells with 0.07, 0.1, 0.2,

and 0.6 M NaCl

r26 Nuclear import of Hog1-PP k26 87.8 1/s

r27 Nuclear import of Hog1 k27 5.76 1/s

r28 Nuclear export of Hog1 k28 45.2 1/s

r29 Synthesis of internal

osmolytes

k29 8170 1/s

r30 Leakage of internal osmolytes k30 0.0035 1/s Fitted to time-course data (50 min) for

Hog1 phosphorylation after stimulation

of fps1-∆1 cells with 0.4 M NaCl1

Sergi Regot,

personal com-

munication
– Inhibition of internal osmolyte

leakage by osmostress

(through Fps1)

Ki30 100 ml/mmol

r31 Transcription from PSTL1 k31 1.5×10−6 1/s Fitted to time-course data for

STL1-mRNA abundance after

stimulation of wild-type yeast cells

with 0.4 M NaCl2

Elzbieta

Petelenz-

Kurdziel, under

review

Dox-cell r38 Transcription from PTet-Off k38 2×10−12 ml/

(mmol*s)

Fitted to time-course data for the

induction of a Tet-Off promoter in cells

moved to medium without

doxycycline, monitored by lacZ activity

(compared to analogous data for

GAL1-lacZ activity)

Gari et al.

(1997)

Johnston et al.

(1994)

r38 Ki38 1×107 ml/mmol Fitted to time-course data for

CLN1-mRNA produced from a Tet-Off

promoter after the addition of 1 µg/ml

doxycycline

Gari et al.

(1997)

(Half-life for CLN1-mRNA ≈5 min) Schneider

et al. (2004)

Gal-cell r37 Transcription from PGAL1 k37 1.2×10−11 1/s Fitted to time-course data for

GAL1-mRNA abundance after shift of

cells from glucose-to-galactose

medium

Kundu et al.

(2007)

(Half-life for GAL1-mRNA ≈ 6 min) Anderson and

Parker (1998)

All sender

cells

r31_deg Degradation of

MFalpha1-mRNA

k31_deg 0.00231 1/s Half-life=5 min Herrick et al.

(1990)

r32 Pre-protein synthesis k32 3 1/s Average translation rate for yeast

growing in rich medium, for an mRNA

of 165 aa

von der Haar

(2008)

r33 Processing and export of

alpha

k33 0.00315 1/s Half-time=3.67 min Caplan et al.

(1991)

(Continued)
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Table 1 | Continued

Cell Reaction

number

Parameter description Parameter

name

Estimated value Experimental data Reference

Reporter

cell

r1 Ste2-Alpha binding k1 8×1011 ml/(mmol*s) Fitted to dose-response curve for Fus3

phosphorylation and to dose-response

curve for Ste2 receptor occupancy,

both measured 15 min after stimulation

of bar1∆ yeast cells with alpha-factor

ranging from 0.01 to 100 nM

Yu et al. (2008)

r2 Release of alpha from Ste2 k2 3250 1/s

r3 Ste2 synthesis3 vSte2_production 6.95×10−12 mmol/

(ml s)

r4 Ste2 degradation k4 1.84×10−5 1/s

r5 Ste2-Alpha degradation k5 2.1×10−5 1/s

r6 Activation of Ste5 complex k6 18000 ml/(mmol*s)

r7 Inactivation of Ste5 complex k7 0.0042 1/s

r8 Phosphorylation of Fus3 k8 3.2×1010 ml/(mmol*s)

r9 Cytoplasmic

dephosphorylation of Fus3

k9 680 1/s

r10 Nuclear dephosphorylation of

Fus3

k10 0.28 1/s

r12, r13 Nuclear import of Fus3 and

Fus3PP4

knuc_imp 16.8 1/s

r11, r14 Nuclear export of Fus3 knuc_exp 85.7 1/s

r11 Relation of nuclear export of

Fus3PP to export of Fus35

ksmall 0.5

r34 Transcription from PFUS1 k34 4×10−6 1/s Fitted to time-course data for

FUS1-mRNA abundance after

stimulation of cells with 100 nM

alpha-factor

Yu et al. (2008)

(Half-life for FUS1-mRNA ≈3 min) Herrick et al.

(1990)

r34_deg Degradation of GFP-mRNA k34_deg 0.00214 1/s Half-life=5.4 min Hyde et al.

(2002)

r35 GFP synthesis k35 2 1/s Average translation rate for yeast

growing in rich medium, for an mRNA

of 238 aa

von der Haar

(2008)

r36 GFP folding and maturation k36 9.625×10−5 1/s Maturation half-time=120 min Heim et al.

(1995)

1After fitting of the whole HOG module to data for wild-type cells, only parameters k30 and Ki30 were adjusted to fit data for the fps1−∆ 1 mutant.
2Maximal transcriptional induction was set to 10–15 mRNA molecules per cell for all modeled transcription reactions (von der Haar, 2008).
3Parameter set in such a way that Vste2_production = [ste20]·k4, so if [Alpha_in_culture]= 0, then [Ste2_0] is the steady-state value.
4Parameters knuc_imp and knuc_exp are set in such a way that steady-state distribution of Fus3 between nucleus and cytoplasm is Fus3nuc

Fus3cyt
= 1.4 (Blackwell et al., 2003).

5Parameter for nuclear export of Fus3PP is set at ksmall ·knuc_exp to reflect more efficient nuclear retention of the phosphorylated species (van Drogen et al., 2001;

Blackwell et al., 2003, 2007).

degradation as well as protein processing and peptide export:

d [MFalpha1_mRNA]

dt
= k31

[
Hog1ppn

]
− k31deg [MFalpha1_mRNA] (9)

d [prepro_Alpha]

dt
= k32 [MFalpha1_mRNA]

− k33 [prepro_Alpha] (10)

d [Alpha_in_medium]

dt
=

k33 [prepro_Alpha]

dilution
(11)

where dilution is the factor by which the alpha-pheromone is
diluted when exported from the cell cytoplasm to the culture

medium; this factor decreases with time, as the cells in the cul-
ture divide and increase in number (assumed division time is 4 h,
initial culture density is 5× 106 cells/ml for each cell type). We
assume the following relation:

dilution = 13, 800 · e−0.173·Time[h] (12)

Dox-cell
The dox-cell (Cell#3; Regot et al., 2011) produces alpha-factor con-
stitutively, from a Tet-Off promoter, and responds to the presence
of doxycycline in the medium by turning off the expression of the
MFα1 gene. Since doxycycline enters the nucleus of yeast cells, no
signal transduction is involved in this process and it is presented
in the model by direct influence of the drug on the transcription
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Table 2 | Initial concentrations used in the model (from

Ghaemmaghami et al., 2003, except for Ste2 which is an average of

published measurements taken from

http://yeastpheromonemodel.org/wiki/Ste2_num).

Species Initial concentration

(nM)

Molecule number

per cell

Pbs2 123.7 2160

Hog1n 340.5 832

Hog1c 340.5 5948

Ste2 378 6600

Inactive_Ste5complex1 38.5 672

Fus3n 568.4 1390

Fus3c 406 7090

1Limiting factor is Ste7.

reaction:

d [MFalpha1_mRNA]

dt
=

k38

1+ K i38 [DOX]

− k31deg [MFalpha1_mRNA] (13)

The two remaining equations of the alpha-factor expression
module (Eqs 10 and 11) are the same as described above for the
salt-cell model.

Gal-cell
This cell (Cell#5; Regot et al., 2011) carries the MFα1 gene
under the control of the GAL1 promoter, such that it produces
pheromone in response to the presence of galactose in the cul-
ture medium. Transcriptional induction is described by a single
reaction:

d [MFalpha1_mRNA]

dt
= kGal [Gal]− k31deg [MFalpha1_mRNA]

(14)

where

kGal =

{
0, Time < 3h

k37, else
(15)

Here, we include a delay of 3 h in initiating the transcription
of GAL genes after a shift from glucose- to galactose-containing
medium (Li et al., 2000). For simulations where the cells are pre-
cultured in galactose, no delay in GAL gene induction is included.

The two remaining equations of the alpha-factor expression
module (Eqs 10 and 11) are the same as described above for the
salt-cell model.

Reporter cell
The reporter cell (Cell#6 in Regot et al., 2011) is an alpha-factor
responsive MAT a cell, which here carries additionally a bar1∆
deletion to enhance its pheromone sensitivity. The presence of
pheromone causes activation of the Fus3 MAPK signaling pathway
which leads to the induction of many genes, among them FUS1.
In this cell, a GFP-encoding gene has been placed under the

control of the FUS1 promoter, causing the cell to produce GFP
upon pheromone stimulation. GFP production by reporter cells is
considered the output of the whole system.

Our highly simplified model of the pheromone pathway
includes the Ste2 pheromone receptor, the Ste5 complex, which
represents the kinase cascade, and the Fus3 MAPK which can
be translocated to and from the nucleus in a manner dependent
on its phosphorylation state. The pathway model consists of the
following eight equations:

d [Ste2]

dt
= vSte2_production − k1 [Ste2] [Alpha_in_medium]

+ k2 [Ste2_Ph]− k4 [Ste2] (16)

d [Ste2_Ph]

dt
= k1 [Ste2] [Alpha_in_medium]− k2 [Ste2_Ph]

− k5 [Ste2_Ph] (17)

d [active_Ste5complex]

dt
= k6 [inactive_Ste5complex] [Ste2_Ph]

− k7 [active_Ste5complex] (18)

d [inactive_Ste5complex]

dt
= −k6 [inactive_Ste5complex]

× [Ste2_Ph]+ k7 [active_Ste5complex] (19)

d [Fus3c]

dt
= −knuc_imp [Fus3c]+ knuc_exp [Fus3n]

Vnucleus

Vcytoplasm

− k8 [Fus3c] [active_Ste5complex]+ k9 [Fus3ppc] (20)

d [Fus3ppc]

dt
= ksmall · knuc_exp [Fus3ppn]

Vnucleus

Vcytoplasm

− knuc_imp [Fus3ppc]+ k8 [Fus3c] [active_Ste5complex]

− k9 [Fus3ppc] (21)

d [Fus3n]

dt
= knuc_imp [Fus3c]

Vcytoplasm

Vnucleus
− knuc_ exp [Fus3n]

+ k10 [Fus3ppn] (22)

d [Fus3ppn]

dt
= −ksmall · knuc_exp [Fus3ppn]

+ knuc_imp [Fus3ppc]
Vcytoplasm

Vnucleus
− k10 [Fus3ppn] (23)

Expression of GFP from the Fus3-responsive promoter is
described by three ODEs representing mRNA synthesis and degra-
dation, protein synthesis and degradation, and protein folding and
maturation:

d [GFP_mRNA]

dt
= k34 [Fus3ppn]− k34deg [GFP_mRNA] (24)

d [nascent_GFP]

dt
= k35 [GFP_mRNA]− k36 [nascent_GFP]

(25)

d [mature_GFP]

dt
= k36 [nascent_GFP] (26)
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DETERMINISTIC SIMULATIONS OF LOGIC GATES
Parameter estimation and deterministic simulations were per-
formed with the COPASI software (Hoops et al., 2006). Data used
for parameter estimation is listed in Table 1.

STOCHASTIC SIMULATIONS OF REPORTER CELLS
For the analysis of noise in the system, the reporter cell model
was simulated in a stochastic framework using CAIN2. All respec-
tive parameters were re-calculated from the deterministic model
parameters and are listed in Table 3. For the initial assessment of
noise generation by the reporter cell, we simulated the full sto-
chastic model using the direct method of Gillespie (1976) and a
quasi-steady-state-assumption (QSSA; Rao and Arkin, 2003) for
the Ste2 receptor. The QSSA may be used for highly reactive species
that follow a fast dynamics – these are rarely of interest and can
be eliminated from the model, which leads to a shortening of the
execution time. We generated 100 cell trajectories for different
constant concentrations of alpha-factor (0.5, 2.5, 5 nM). For fur-
ther stochastic simulations we modeled only the GFP expression
module (transcription, translation, maturation). Here, we gener-
ated 1000 cell trajectories, also using the direct method, and using
as input the time-dependent concentration of Fus3ppn obtained
from deterministic simulations in Copasi. The deterministic result
was first approximated by a polynomial function using the Curve
Fitting Tool in Matlab 7.10.0 (Mathworks, Inc.). The derivative of
this polynomial was then introduced into the CAIN model as the
propensity of the synthesis of Fus3ppn. For the IDENTITY gate,
where the first molecules of Fus3ppn appear in the deterministic
model only after 400 s, the stochastic simulation was initiated at
this time point.

PARAMETER SENSITIVITY ANALYSIS
Parameter sensitivity analysis was conducted with Copasi (Hoops
et al., 2006). The concentration of mature GFP was considered
the relevant system output, and time-dependent sensitivity coef-
ficients were calculated for the deterministic versions of the logic
gates for nine time points selected from the 15- to 240-min range
(every 15 or 30 min). The sensitivity coefficients are calculated by
numerical differentiation using finite differences, with the delta
parameter equal 10−3 and the minimal delta parameter equal
10−12. We analyzed in this manner all kinetic parameters, non-zero
initial concentrations, the dilution factor, and the cell doubling
time.

QUANTIFICATION OF NOISE
Noise was quantified using CAIN. We calculated the variation
coefficient from all 1000 generated trajectories for three selected
time points: 1, 2, and 4 h. The variation coefficient was defined
as the standard deviation normalized by the amount of molecules
present at the analyzed time point.

RESULTS
MODELING ENGINEERED LOGIC-GATE CELLS
For simulating the behavior of the logic gates, we have first selected
four different cell types from among the cells designed and engi-
neered by Regot et al. (2011; schemes presenting the individual

2http://cain.sourceforge.net/

Table 3 | Parameters for the CAIN model.

Parameter Value (1/s)

k1 45.82

k2 3250

k3 0.12144

k4 0.0000184

k5 0.000021

k6 0.000001031

k7 0.0042

k8 1.833

k9 680

k10 0.28

knuc_imp 21.423

knuc_exp 8.4

k34 0.0000286

k34_deg 0.00214

k35 2

k36 0.00009625

cells and corresponding wiring graphs are shown in Figure 1).
These four cells can be combined in various ways, realizing as
many as five different logic functions (Figure 2). We have then
implemented mathematical models of these cells. By searching the
available literature, we managed to assign approximate values to
six of the total 37 kinetic parameters; the remaining parameters
were fitted to published experimental time-course data collected
from literature (see Table 1). Initial concentrations for all compo-
nents were also taken from literature (Table 2). All the data used
for logic-gate construction are related to original yeast molecules
and pathways, not to the synthetically engineered cells. Data pre-
sented by Regot et al. were only used for comparison with the final
models and for their validation (see below).

We consider in our analysis three different types of sender
cells and one kind of reporter cell. The salt-cell uses the osmotic-
stress-activated HOG signaling system to activate expression of
alpha-factor upon stimulation with NaCl (Figure 1A). In the dox-
cell, addition of doxycycline inhibits the Tet-Off promoter thereby
switching off the expression of alpha-factor (Figure 1B). Finally, in
the gal-cell, galactose activates the GAL1 promoter to induce alpha-
factor expression (Figure 1C). The reporter cell is in all cases an
alpha-factor responsive MAT a cell, which has been engineered in
such a way that the pheromone pathway activates expression of
GFP (Figure 1D).

In order to represent the sender cells, we constructed mini-
malistic models of the HOG signaling system as well as of the
GAL and DOX gene regulatory systems, showing only selected
features. Transcription, translation, and export of alpha-factor are
described by single reactions, respectively. The reporter cell model
is composed of a simple model of the pheromone-response path-
way and a GFP expression module, where transcription, transla-
tion, and GFP folding/maturation are also modeled by single reac-
tions (for modeling details see Materials and Methods). Figure 3
presents simulations of characteristic input/output relations for
all the individual cell models. The profiles of the phosphorylated
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FIGURE 1 | Schematic representations and wiring graphs of the modeled cells. (A) Salt-cell, (B) dox-cell, (C) gal-cell, (D) reporter cell.

(active) MAP kinases Hog1 and Fus3 represent the results of the
parameter fitting procedures of the respective MAPK pathway
modules. The profiles of alpha-factor generated by the sender

cells and of GFP produced by the reporter cell represent model
predictions. These species show a constant increase in concentra-
tion due to the fact that no degradation has been included into
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FIGURE 2 | Schemes of the logic gates and corresponding truth tables.
(A) IDENTITY gate, (B) NOT gate, (C) OR gate, (D) IMPLIES gate. The same
cells can yield different logic functions by means of gate “reprogramming”

(Regot et al., 2011): if glucose instead of galactose is viewed as one of the
inputs for the gates in (C,D), they perform the IMPLIES and NAND functions,
respectively.

the models: we consider both spontaneous chemical degradation
of alpha-factor in the culture medium and the degradation and
bleaching of mature GFP to be slow processes, negligible on the
time scale involved here (4–6 h of simulation).

DETERMINISTIC SIMULATIONS OF LOGIC FUNCTIONS
Having implemented and parameterized the cell models, we con-
nected them into logic gates (Figure 2) and tested whether
they faithfully represent the observed biological behavior. We
performed deterministic simulations corresponding to the truth
tables of four different logic functions: IDENTITY, NOT, OR, and
IMPLIES (Figure 4). All four gates proved to function properly,
generating biologically feasible cytoplasmic concentrations of GFP
in the reporter cells and allowing us to define a common thresh-
old for counting of a particular cell as GFP-positive, at the level
of 4.5 µM cytoplasmic GFP. In all subsequent simulations, both
deterministic and stochastic, we apply the 4.5-µM threshold for
the interpretation of the logic results. We also postulate that in the
in vivo implementation of Regot et al. (2011) the threshold must
have been at a similar level.

In order to avoid the long induction times of the GAL genes that
occur after a glucose-to-galactose shift (Li et al., 2000), Regot et al.
(2011) pre-cultured the gal-cells overnight in galactose-containing
medium. To reflect this for the simulations shown in Figure 4, we
set the initial conditions of the gal-cell models to values obtained
from a 16-h pre-simulation. These values are listed in Table 4. The
pre-culturing leads to intracellular accumulation of mRNA for the
MFα1 gene and of unprocessed or partly processed alpha-factor
polypeptides. At the time of mixing of the sender and receiver cells,
the culture is put into fresh medium (containing appropriate input
signals), so any alpha-factor that has been synthesized and excreted
by the sender cells during the pre-culturing period is removed, but
the intracellular species remain. A similar situation takes place
for the dox-cells, which are pre-cultured in standard rich medium,
without an addition of doxycycline, also resulting in an accumu-
lation of alpha-factor mRNA and unprocessed polypeptide chains
(values also listed in Table 4).

These pre-accumulated species are the source of alpha-factor
synthesis and export even under conditions that block new tran-
scription of the MFα1 gene (glucose shift of gal-cells, addition of
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FIGURE 3 | Deterministic simulations of characteristic
input/output relations for all model cells. (A) Changes in Hog1ppn
concentration after stimulation of the salt-cell with various
concentrations of NaCl. (B) Alpha-factor secreted by the salt-cell after
stimulation with various concentrations of NaCl. (C) Alpha-factor
secreted by the gal-cell after stimulation with various concentrations

of galactose. (D) Alpha-factor secreted by the dox-cell after treatment
with various concentrations of doxycycline. (E) Changes in Fus3ppn
concentration after stimulation of the reporter cell with various
concentrations of alpha-factor. (F) Changes in the intracellular
concentration of GFP in the reporter cell after stimulation with various
concentrations of alpha-factor.

doxycycline for dox-cells). This effect is clearly visible on the graphs
presented in Figure 4. In gates involving the gal- and dox-cells
(NOT, OR, IMPLIES; Figures 4B–D, respectively) even unstimu-
lated cells still produce significant amounts of alpha-factor and,
consequently, GFP: in the NOT gate, even a large dose of doxycy-
cline does not prevent the accumulation of over 2 µM GFP. In the
OR and IMPLIES gates this effect leads to the extremely narrow
ranges of concentrations that ensure a negative output (see pink
threshold line).

The half-lives of MFalpha1-mRNA and prepro-Alpha are short
in our model (5 and 3.67 min, respectively; Table 1), so if any delay
in the handling of the cells occurred – if the spinning down, mixing
with reporter cells in fresh medium and adding of input signals
took, e.g., 15 min – the amount of pre-accumulated mRNA and
polypeptides would decrease significantly. To test how strong the
influence of these pre-accumulated species on the functioning of
the gates is, we performed simulations where we set the initial con-
centrations for these species back to zero. The graphs presented in
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FIGURE 4 | Logic-gate output (GFP production) as a function of
input concentration. (A) GFP produced by the IDENTITY gate upon
treatment with various concentrations of NaCl. (B) GFP produced by
the NOT gate upon treatment with various concentrations of
doxycycline. (C) Production of GFP by the OR gate upon treatment

with various concentrations of NaCl and galactose. (D) Production
of GFP by the IMPLIES gate upon treatment with various
concentrations of doxycycline and galactose. On all graphs, the pink
line depicts the threshold above which cells are scored as
GFP-positive (4.5 µM GFP).

Table 4 | Initial conditions for gal -cells pre-cultured in the presence of

2% galactose and for dox -cells pre-cultured without doxycycline.

Cell type and pre-culture

conditions

Species Initial concentration

(nM)

Gal-cells pre-cultured overnight

in medium with 2% galactose

MFalpha1-mRNA 0.571
Prepro-alpha 544

Dox-cells pre-cultured overnight

in medium without doxycycline

MFalpha1-mRNA 0.866
Prepro-alpha 825

Figure 5 show that the modified gates are indeed prevented from
generating any GFP when not stimulated.

PARAMETER SENSITIVITY ANALYSIS
To determine the influence of individual parameters on the output
of the system – the amount of GFP produced by the reporter cells
during 4 h of incubation of the IDENTITY gate with 0.4 M NaCl –
we performed a parameter sensitivity analysis. We calculated time-
dependent sensitivity coefficients for selected time points in the 15-
to 240-min range (see Materials and Methods). Sensitivity coef-
ficients are a measure of the influence of an infinitesimally small
change in the analyzed parameter on the concentration of mature
GFP at a given time point. We calculated sensitivity coefficients in

respect to all kinetic parameters, non-zero initial concentrations,
the dilution factor, and cell doubling time.

The results, presented in Figure 6, show that the HOG module
parameters have very little influence on the final output – only
the initial amount of cytoplasmic Hog1 and the rate of its phos-
phorylation have an effect. In the pheromone pathway, there are
three key reactions – the binding of alpha-factor to its receptor, the
activation of the Ste5 complex and of Fus3 itself, and the nuclear
shuttling of Fus3 – where the kinetic parameters and the initial
concentrations of the substrates have significant impact on the
output. The initial amount of non-phosphorylated MAP kinases
in the nucleus has very little influence, for both Hog1 and Fus3.
This is likely due to the fact that the number of MAPK molecules
in the nuclei is initially low and their transport to the cytoplasm –
where MAPK activation takes place – has a relatively small impact
on cytoplasmic kinase concentration. Most interesting, however,
are the results for the two protein production modules: the para-
meters for transcription and translation of the alpha-factor gene
are the key parameters in the sender cell, and the module for tran-
scription and synthesis of GFP by the reporter cell seems to be the
crucial part of the system.

The sensitivity analysis also revealed that the initial density
of the cell cultures – described by the dilution factor – has strong
influence on gate behavior (Figure 6A). This is because the amount
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FIGURE 5 | Influence of pre-accumulation of alpha-factor mRNA and
precursors in gal- and dox-cells on gate functioning. Initial
concentrations of MFalpha1-mRNA and prepro-Alpha in gal - and dox-cells
were set to 0 and simulations were performed as in Figure 4. (A) GFP
produced by the NOT gate. (B) GFP production in the OR gate. (C) GFP
production in the IMPLIES gate. The pink line depicts the GFP threshold of
4.5 µM.

of alpha-factor released into a volume unit is directly proportional
to the number of sender cells per volume unit, and alpha-factor
concentration influences the rate of its own binding to the Ste2

receptor – one of the key reactions in the reporter cell (see above).
On the other hand, the cell doubling time, which we have arbitrar-
ily set to 4 h, turned out to have little impact on system output,
despite the obvious connection between doubling time and culture
density. We thus investigated this phenomenon further.

INFLUENCE OF CULTURE DENSITY AND DOUBLING TIME ON GATE
FUNCTIONING
The parameter sensitivity analysis identified the dilution factor,but
not the cell division rate, as one of the key parameters that deter-
mine the outcome of the system. To better understand this result,
we analyzed the influence of culture density on gate functioning
in more detail. We first simulated the behavior of the IDEN-
TITY gate assuming that the initial culture concentration were
five times lower (106 cells/ml) or two times higher (107 cells/ml)
than the standard concentration used in our previous simula-
tions (5× 106 cells/ml). Next, we changed only the doubling time:
from the previously used 4–2 or 6 h. On the graphs presented
in Figure 7 we see that if the initial culture density is modified,
the curves for secreted alpha-factor immediately acquire differ-
ent slopes (Figure 7A), whereas manipulating cell growth rate
differentiates the slopes only after about 120 min of incubation
(Figure 7C). In the first case, differences in alpha-factor concen-
tration lead to large differences in GFP production (Figure 7B).
In the second case, although the final alpha-factor concentrations
are also far apart (e.g., compare curves for doubling times of 2 and
4 h at the 240-min time point in Figure 7C), the 4-h incubation
period of the experiment is too short for these differences to result
in large differences on the GFP-production level (Figure 7D). If
the gates were incubated for significantly longer time periods, the
cell doubling time would gain high impact on GFP levels, but if
the 4-h incubation period is kept, changing the initial number of
cells is a much more efficient way of influencing system output.

STOCHASTIC SIMULATIONS OF LOGIC FUNCTIONS
Since Regot et al. (2011) have presented in their paper single-cell
data for the logic-gate system, the deterministic model simulations
presented above were not fully appropriate for the comparison of
our results with their data. Thus, in order to verify our models, we
decided to conduct stochastic simulations that would predict the
behavior of whole populations of cells.

We needed predictions showing the behavior of the reporter
cells in each culture, i.e., showing how many GFP-positive cells
are present in the culture at given time. Since the alpha-factor
produced by the sender cells is secreted into the culture medium
and cultures are well mixed (kept in shaking flasks), at this stage
there was no need for simulating single-cell data: only the global
concentration of alpha-factor in the whole culture was impor-
tant. For this reason, we only implemented the reporter cell model
in a stochastic framework, using CAIN (see text footnote 2 for
modeling details see Materials and Methods). We then analyzed
its behavior in response to stimulation with constant concentra-
tions of alpha-factor. In order to reduce model complexity, we
used a steady-state approximation for the number of ligand-bound
Ste2 receptor molecules. We generated 100 individual cell trajec-
tories for alpha-factor inputs of 0.5, 2.5, and 5 nM. This allowed
us to estimate the amount of noise associated with various parts
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FIGURE 6 | Parameter sensitivity analysis for the IDENTITY gate
stimulated with 0.4 M salt. All kinetic parameters, dilution factor, and
cell doubling time (A) as well as all non-zero initial concentrations (B)

were varied and their relative influence on system output at the
indicated time points was determined (for details, see Materials and
Methods).

of the model. The results indicate that the pathway module gen-
erates cell-to-cell variation of about 3–8% at the level of active
Fus3 MAP kinase concentration, while the whole model reaches

variation of 7–23% at the level of GFP production (Table 5).
After 1 h of simulation, the GFP module is responsible for 70–
80% of total variation, but after 4 h for only 25–30%. This is
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FIGURE 7 | Influence of dilution factor and cell doubling time on gate
functioning. Changes in concentration of alpha-factor in the culture
medium (A,C) and of mature GFP in the reporter cells (B,D) for three
different initial culture densities: 106 cells/ml (red line), 5×106 cells/ml

(black line), 107 cells/ml [blue line (A,B)] and three different cell doubling
times: 6 h (red line), 4 h (black line), 2 h (blue line; C,D). All simulations
represent the IDENTITY gate treated with 0.4 M NaCl. The pink line
depicts the GFP-concentration threshold.

due to the fact that – for constant alpha-factor inputs – the rel-
ative variation of GFP decreases with time because the number
of GFP molecules increases. On the contrary, for Fus3ppn this is
not the case, because at the 1-h time point its molecule number
has already reached a stable value (Figure 3E) and so also cell-to-
cell variation remains stable throughout the analyzed time range.
Consistent with the larger number of molecules involved in all
reactions after stimulation with higher pheromone, the amount
of noise at both levels decreases with increasing alpha-factor
concentration.

The initial simulations of the stochastic reporter cell model have
made it clear that the model requires too much computational
power to be used in logic-gate simulations, where the alpha-
factor concentration changes during the simulation time and no
steady-state approximation can be applied. We decided therefore
to modify our approach. We used the deterministic reporter cell
model to generate curves describing how the mean concentra-
tion of Fus3ppn changes over time, and we used these curves to
derive reaction propensities that were used as input for the sto-
chastic model, which now encompassed only Fus3ppn and the
GFP-production module (for details see Materials and Methods).
The amount of noise associated with cell-to-cell variation on the
Fus3ppn level that has been obtained from this procedure was in

the same range of values as that produced by the full model (3–5%
for alpha-factor concentrations rising from 0 to 2.5 nM during
the simulation; Table 5 and Figure 8, compare with alpha-factor
concentrations in Figure 3B) and was thus considered a satisfying
approximation. We applied this procedure in all further stochastic
simulations.

Having established the stochastic model, we first verified
whether our models reproduce the experimental results of Regot
et al. (2011), obtained by fluorescence activated cell sorting
(FACS). We performed simulations corresponding to experiments
with various concentrations of inputs for the single-input gates
(IDENTITY and NOT) and with four concentration combinations
for the double-input gates (OR and IMPLIES). All cells reaching a
GFP concentration of 4.5 µM or more were scored as positive. For
each simulation, we generated 1000 individual cell trajectories. In
all cases, our models proved slightly more digital than the experi-
mental gates (Figure 9). For most concentrations these differences
are minor. The largest discrepancies are visible for the OR gate,
where the model predicts either 0 or 100% of positive cells, while
the experiment yielded ca. 7% positive cells for the negative gate
output and 75–80% positive cells for positive gate output, and for
the negative output of the IMPLIES gate, where the model predicts
more than 10% positive cells, while the experiment yielded none.
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Table 5 | Quantification of cell-to-cell variation in the logic-gate cultures.

Model Input Input concentration Coefficient of variation

for Fus3PPn (%)

Coefficient of variation

for mature GFP (%)

1 h 2 h 4 h 1 h 2 h 4 h

Full model of reporter cell Alpha-factor (nM) 0.5 7.64 7.72 7.65 22.88 16.32 10.33

2.5 4.25 4.37 3.58 14.71 10.99 7.87

5 3.35 3.73 3.68 15.99 11.62 7.17

IDENTITY gate NaCl (M) 0.0 0.00 0.00 0.00 0.00 0.00 0.00

0.1 6.34 4.62 3.55 47.50 24.00 12.56

0.2 5.36 4.13 3.27 41.16 20.08 11.19

0.3 4.90 3.79 3.14 38.90 19.47 10.64

0.4 4.82 3.79 3.10 37.66 19.06 10.62

0.5 4.52 3.60 3.15 34.68 17.92 10.27

0.6 4.38 3.56 3.09 34.35 18.15 9.93

NOT gate DOX (µg/ml) 0.0 3.63 3.20 2.86 26.39 14.59 8.51

0.05 4.29 3.52 3.05 28.91 16.51 9.78

0.1 4.58 3.84 3.19 28.86 16.85 10.27

0.5 5.49 4.79 3.94 32.89 20.72 12.89

1.0 5.93 5.23 4.24 34.34 21.65 13.30

5.0 5.81 5.37 4.85 34.05 22.45 14.35

10.0 6.05 5.61 4.89 35.20 22.52 14.83

OR gate NaCl (M) GAL (%) 0.0 0 7.16 6.69 5.92 41.45 26.83 17.78

0.4 0 4.15 3.41 2.99 30.01 16.37 9.58

0.0 2 4.20 3.40 2.99 30.12 16.09 9.54

0.4 2 3.68 3.10 2.83 25.15 14.16 8.56

IMPLIES gate DOX (µg/ml) GAL (%) 0.0 0 3.54 3.18 2.87 23.20 14.55 9.21

0.0 2 3.29 2.98 2.77 21.64 13.37 8.76

10.0 0 4.74 4.56 3.94 27.60 18.51 12.45

10.0 2 3.88 3.36 2.94 23.87 14.05 8.91

These minor deviations are likely due to a cumulative effect of sev-
eral issues: (i) some ambiguity in our setting of the GFP threshold
at 4.5 µM (Figure 4); (ii) potential decline of pre-accumulated
mRNA and precursors during the slightly variable period nec-
essary for moving cells from pre-cultures to fresh medium, an
effect that has been already discussed for the deterministic gates
(Figures 4 and 5); (iii) inaccuracy resulting from our method of
approximating cell-to-cell variation at the Fus3ppn level (Table 5).
Still, taking into account that the models were built from literature
data, without the use of any quantitative data about the engineered
cells, we consider that the model predictions fit the experimental
data well.

We also quantified the noise generated by the stochastic mod-
els of all four logic gates (Table 5). Again, as mentioned above
for the reporter cell model, system noise decreases with increasing
alpha-factor production by sender cells due to higher numbers of
molecules involved in the reactions. But, in contrast to the results
obtained for constant alpha-factor inputs, here both Fus3ppn and
GFP molecule numbers rise throughout the simulation time and,
therefore, the corresponding variation coefficients decrease. In
these models, the GFP-production module is consistently respon-
sible for approximately 65–70% of total system noise at the end
of the simulations and it is clearly the main source of noise in the
system.

SYSTEM MODIFICATION: THREE-VALUE LOGIC FUNCTIONS
One of the advantages of the logic-gates system developed by
Regot et al. (2011) is its plasticity. This includes, e.g., logic repro-
gramming, described by the authors of the discussed paper (see
also legend for Figure 2). However, many other ways of modify-
ing the system could be suggested. Adding one new cell type to
the cultures can change the output with relatively little experi-
mental effort. As an example of a novel system modification, we
present in this section a means of transforming the classic 0–1
identity gate into a three-value identity function, with three pos-
sible inputs: 0, 0.1, 0.4 M NaCl, and three respective outputs: no
GFP-positive cells, one fluorescence-positive population, or two
fluorescent populations.

Adding a new reporter cell population to the original IDEN-
TITY gate could realize the implementation of such a function. In
our theoretical example, we create a new type of reporter cells by
substituting in these cells the wild-type Ste2-alpha-factor receptor
protein with a mutated version, Ste2F262A. This mutant protein
has two times lower ligand affinity than its wild-type counter-
part, but it leaves the signaling competence of the cells unaffected
(Lee et al., 2002). We added to our models of the IDENTITY
gate this third population of cells, differing from the original
reporter cells only by the value of parameter k1 which is here
equal to 4× 1011 ml/(mmol s). We simulated the behavior of this
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FIGURE 8 | Stochastic simulations of the IDENTITY gate stimulated with
0.4 M salt. Hundred individual cell trajectories are shown for each selected

species: (A) number of Fus3ppn molecules per cell, (B) GFP-mRNA
molecules, (C) nascent GFP polypeptides, (D) mature GFP molecules.

modified gate in response to treatment with 0, 0.1, or 0.4 M salt
(Figure 10). The deterministic simulations in Figure 10A show
that the responses of the mutant reporter cells are significantly
slower than that of the original reporter cells. This allows for dif-
ferentiation between the response to low (0.1 M) and high (0.4 M)
salt. We find that good differentiation between these two situa-
tions is achieved after 5 h of incubation. At this stage, the original
reporter cells exceed the threshold both after low- and high-salt
treatment, whereas the Ste2-mutant cells score as GFP-positive
only in high salt. Figure 10B shows the results of stochastic sim-
ulations: if no salt is added, no GFP-positive cells appear in the
culture, if 0.1 M salt is added, 50% of the reporter cells (1/3 of
all cells in the culture) become fluorescent, but if 0.4 M salt is
added, almost 100% of the reporter cells (2/3 of all cells) respond.
These last two situations can be discriminated in a FACS analy-
sis either simply by the relative number of cells shifting to higher
GFP-fluorescence or by the appearance of fluorescent populations
in two color channels if a different fluorophore is used for one
of the reporter cell types. This simple example demonstrates how
easily the multicellular gate system can be modified to perform
novel tasks.

DISCUSSION
Predicting the behavior of an artificial biological device is one
of the challenges of synthetic biology. In this work we set out to

show that a kinetic mathematical model built from dispersed lit-
erature data can yield useful predictions about the functioning of
a synthetic biological system. We present here kinetic models of a
published logic-gates system (Regot et al., 2011) and we show that
the model simulations provide good predictions when compared
to published experimental data.

Our models perform well despite a number of simplifying
assumptions. In order to reduce model complexity, many known
components and some regulatory interactions were left out of the
model structures – this applies to all modeled parts: the MAP
kinase pathways, the galactose-, and doxycycline-regulated tran-
scriptional modules, as well as the synthesis and transport of
pheromone and GFP in the cells. It is important to note here
that this was facilitated by the fact that these subsystems have been
extensively characterized in the literature, not only experimentally
but also through previous modeling attempts. This provided us
both with experimental data for validation of the individual mod-
ules (Table 1) and with tested, simple models that could serve
as starting points for modification according to our needs (e.g.,
Li et al., 2000; Kofahl and Klipp, 2004; Klipp et al., 2005; Sch-
aber et al., 2006; Zi et al., 2010). It is commonly postulated that
a library of standardized, experimentally characterized, genetic
parts is necessary for full development of the synthetic biology
field (Canton et al., 2008). Here, we argue – along with others
(Marchisio and Stelling, 2009; Matsuoka et al., 2009; Cooling et al.,
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FIGURE 9 | Comparison of stochastic simulation results with
experimental data of Regot et al. (2011). Percentage of GFP-positive
cells (green line) is plotted for a range of input concentrations for the
IDENTITY (A) and NOT (B) gates and compared with experimental

results (black diamonds). For the OR (C) and IMPLIES (D) gates four
input concentration combinations were tested and the simulation
results are plotted as green bars, whereas black bars correspond to the
experimental data.

FIGURE 10 |Three-value IDENTITY gate. (A) Deterministic
simulation showing the amount of GFP produced by each of the two
reporter cell populations, for stimulation with 0, 0.1, or 0.4 M NaCl.
Black lines – reporter cells with wild-type Ste2, green dotted
lines – reporters carrying Ste2F262A. The pink line depicts the 4.5-µM

GFP threshold. (B) Results of stochastic simulation showing
percentage of reporter cells of each type that score
fluorescence-positive after stimulation with 0, 0.1, or 0.4 M NaCl.
Black bars – reporter cells with wild-type Ste2, green bars – reporters
carrying Ste2F262A.

2010) – that standard parts should be accompanied by a set of pub-
lished kinetic models that would facilitate model-guided biological
design.

We applied more simplifications in our modeling approach.
We used a global translation rate – calculated for logarithmi-
cally growing yeast cells in rich glucose medium (von der Haar,
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2008) – for all translation events, neglecting differences both
between individual transcripts and between different growth con-
ditions, such as carbon source (glucose or galactose) or applied
stress (high salt). Cell doubling time is also assumed to be the
same for all simulated cells, independent of growth conditions.
Since all the available kinetic transcription rate data is relative,
we needed to make assumptions about the number of mRNA
molecules corresponding to maximal induction of the modeled
transcripts, and again we used a common value for all tran-
scripts, based on general information about yeast cells (von der
Haar, 2008). Similarly, the available kinetic data for MAP kinase
activation is also relative and requires assumptions concerning
maximal activity – here, we assumed that full activation under
standard stimulation conditions (100 nM alpha-factor and 0.4 M
NaCl, respectively) means that 50% of all available Fus3 and Hog1
molecules become phosphorylated. All these assumptions need to
be kept in mind when the models are used and interpreted – e.g.,
the generalized cell doubling time remains an acceptable sim-
plification as long as the simulation times do not exceed a few
hours.

The presented models have given us much additional insight
into the analyzed system. Parameter sensitivity analysis allowed us
to determine which parameters should be manipulated to most
efficiently influence system output. The best way to increase the
amount of GFP produced during 4 h of incubation is by increasing
the rate of GFP transcription or translation or by increasing the
half-life of the GFP-mRNA (Figure 6). Experimentally, this infor-
mation could be very useful to define feasible scenarios, such as
(i) selection of a different Fus3-dependent promoter for expres-
sion of the fluorescent protein, (ii) introduction of a second copy
of the expression construct, or (iii) artificial stabilization of the
corresponding mRNA. Choosing a fluorescent protein with faster
maturation properties – an intuitive way of increasing fluores-
cence production – turns out to be less efficient. Our analysis also
points to another, even more simple way of manipulating system
output: by changing the number of cells used for the experiment
(Figure 7). Although this method is less efficient than changes in

the GFP-production module (Figure 6), it is by far the easiest and
it could prove useful.

Finally, in the last section we show how the system could be
modified to perform new functions. We present a modification
that transforms the classic IDENTITY gate into a three-value (0-
1-2) logic function. We would like to stress here how easy it is to
test a novel design concept when a mathematical model is avail-
able. We were able to quickly and cheaply analyze the effects of
several different STE2 mutations that are described in the litera-
ture (results not shown) and to identify a mutant that allowed us
to obtain the desired effect. Obviously, experimental testing of this
concept would have cost much more time and money.

ACKNOWLEDGMENTS
We are grateful to Sean Mauch, author of the CAIN software, for
his contribution to the development of our stochastic models, and
to Sergi Regot and Francesc Posas for sharing unpublished results.
This work was supported by grants from the European Commis-
sion 7th Framework Programme: UNICELLSYS (Contract No.
201142, to Edda Klipp), CELLCOMPUT (Contract No. 043310,
to Edda Klipp), and by an Exchange Grant from the European
Science Foundation Research Networking Programme Functional
Genomics (grant no. 2180, to Marta Hoffman-Sommer).

SUPPLEMENTAL MATERIAL
The Supplementary Material for this article can be found online at:
http://www.frontiersin.org/Systems_Physiology/10.3389/fphys.
2012.00287/abstract

File S1 | Copasi file (.cps) of IDENTITY gate model.

File S2 | Copasi file (.cps) of NOT gate model.

File S3 | Copasi file (.cps) of OR gate model.

File S4 | Copasi file (.cps) of IMPLIES gate model.

File S5 | CAIN model (.xml) of reporter cell.

REFERENCES
Anderson, J. S., and Parker, R. (1998).

The 3′ to 5′ degradation of
yeast mRNAs is a general mech-
anism for mRNA turnover that
requires the SKI2 DEVH box pro-
tein and 3′ to 5′ exonucleases of
the exosome complex. EMBO J. 17,
1497–1506.

Biswas, S. K., Yamaguchi, M., Naoe, N.,
Takashima, T., and Takeo, K. (2003).
Quantitative three-dimensional
structural analysis of Exophiala
dermatitidis yeast cells by freeze-
substitution and serial ultrathin
sectioning. J. Electron Microsc.
(Tokyo) 52, 133–143.

Blackwell, E., Halatek, I. M., Kim,
H. J., Ellicott, A. T., Obukhov,
A. A., and Stone, D. E. (2003).
Effect of the pheromone-responsive
Gα and phosphatase proteins of

Saccharomyces cerevisiae on the sub-
cellular localization of the Fus3
mitogen-activated protein kinase.
Mol. Cell. Biol. 23, 1135–1150.

Blackwell, E., Kim, H. J., and Stone, D.
E. (2007). The pheromone-induced
nuclear accumulation of the Fus3
MAPK in yeast depends on its
phosphorylation state and on Dig1
and Dig2. BMC Cell Biol. 8, 44.
doi:10.1186/1471-2121-8-44

Canton, B., Labno, A., and Endy, D.
(2008). Refinement and standard-
ization of synthetic biological parts
and devices. Nat. Biotechnol. 26,
787–793.

Caplan, S., Green, R., Rocco, J., and
Kurjan, J. (1991). Glycosylation and
structure of the yeast MFα1 α-factor
precursor is important for efficient
transport through the secretory
pathway. J. Bacteriol. 173, 627–635.

Chen, M. T., and Weiss, R. (2005).
Artificial cell-cell communication in
yeast Saccharomyces cerevisiae using
signaling elements from Arabidop-
sis thaliana. Nat. Biotechnol. 23,
1551–1555.

Cooling, M. T., Rouilly, V., Misirli,
G., Lawson, J., Yu, T., Hallinan, J.,
and Wipat, A. (2010). Standard vir-
tual biological parts: a repository of
modular modeling components for
synthetic biology. Bioinformatics 26,
925–931.

de Nadal, E., Alepuz, P. M., and Posas,
F. (2002). Dealing with osmostress
through MAP kinase activation.
EMBO Rep. 3, 735–740.

Dohlman, H. G., and Thorner, J. W.
(2001). Regulation of G protein-
initiated signal transduction in yeast:
paradigms and principles. Annu.
Rev. Biochem. 70, 703–754.

Elion, E. A. (2000). Pheromone
response, mating, and cell biol-
ogy. Curr. Opin. Microbiol. 3,
573–581.

Gari, E., Piedrafita, L., Aldea, M., and
Herrero, E. (1997). A set of vec-
tors with a tetracycline-regulatable
promoter system for modulate gene
expression in Saccharomyces cere-
visiae. Yeast 13, 837–848.

Ghaemmaghami, S., Huh, W. K.,
Bower, K., Howson, R. W., Belle,
A., Dephoure, N., O’Shea, E.
K., and Weissman, J. S. (2003).
Global analysis of protein
expression in yeast. Nature 425,
737–741.

Gillespie, D. T. (1976). A general
method for numerically simulating
the stochastic time evolution of cou-
pled chemical reactions. J. Comput.
Phys. 22, 403–434.

www.frontiersin.org July 2012 | Volume 3 | Article 287 | 17

http://www.frontiersin.org/Systems_Physiology/10.3389/fphys.2012.00287/abstract
http://www.frontiersin.org/Systems_Physiology/10.3389/fphys.2012.00287/abstract
http://dx.doi.org/10.1186/1471-2121-8-44
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Biology/archive


Research Topic: 
From structural to molecular systems biology: experimental and 
computational approaches to unravel mechanisms of kinase activity 
regulation in cancer and neurodegeneration

Topic Editor:
Matteo Barberis, 
Humboldt University Berlin, Germany; 
Max Planck Institute for Molecular Genetics, Berlin, Germany

Hoffman-Sommer et al. Quantitative cell-to-cell communication model

Heim, R., Cubitt, A. B., and Tsien,
R. (1995). Improved green fluores-
cence. Nature 373, 663–664.

Herrick, D., Parker, R., and Jacob-
son, A. (1990). Identification
and comparison of stable and
unstable mRNAs in Saccharomyces
cerevisiae. Mol. Cell. Biol. 10,
2269–2284.

Hohmann, S. (2002). Osmotic stress
signaling and osmoadaptation in
yeasts. Microbiol. Mol. Biol. Rev. 66,
300–372.

Hoops, S., Sahle, S., Gauges, R., Lee,
C., Pahle, J., Simus, N., Singhal, M.,
Xu, L., Mendes, P., and Kummer,
U. (2006). COPASI – a COmplex
PAthway SImulator. Bioinformatics
22, 3067–3074.

Hyde, M., Block-Alper, L., Felix, J., Web-
ster, P., and Meyer, D. I. (2002).
Induction of secretory pathway
components in yeast is associated
with increased stability of their
mRNA. J. Cell Biol. 156, 993–1001.

Johnston, M., Flick, J. S., and Pex-
ton, T. (1994). Multiple mechanisms
provide rapid and stringent glucose
repression of GAL gene expression in
Saccharomyces cerevisiae. Mol. Cell.
Biol. 14, 3834–3841.

Jorgensen, P., Nishikawa, J. L., Bre-
itkreutz, B. J., and Tyers, M.
(2002). Systematic identification of
pathways that couple cell growth
and division in yeast. Science 297,
395–400.

Klipp, E., Nordlander, B., Krüger, R.,
Gennemark, P., and Hohmann, S.
(2005). Integrative model of the
response of yeast to osmotic shock.
Nat. Biotechnol. 23, 975–982.

Kofahl, B., and Klipp, E. (2004).
Modelling the dynamics of the
yeast pheromone pathway. Yeast 21,
831–850.

Kundu, S., Horn, P. J., and Peterson,
C. L. (2007). SWI/SNF is required

for transcriptional memory at the
yeast GAL gene cluster. Genes Dev.
21, 997–1004.

Lee, B.-K., Lee, Y.-H., Hauser, M., Son,
C. D., Khare, S., Naider, F., and
Becker, J. M. (2002). Tyr266 in
the sixth transmembrane domain
of the yeast α-factor receptor plays
key roles in receptor activation and
ligand specificity. Biochemistry 41,
13681–13689.

Li, B., and You, L. (2011). Division of
logic labour. Nature 469, 171–172.

Li, J., Wang, S., van Dusen, W. J.,
Schultz, L. D., George, H. A., Her-
ber, W. K., Chae, H. J., Bentley, W.
E., and Rao, G. (2000). Green flu-
orescent protein in Saccharomyces
cerevisiae: real-time studies of the
GAL1 promoter. Biotechnol. Bioeng.
70, 187–196.

Macia, J., Regot, S., Peeters, T., Conde,
N., Solé, R., and Posas, F. (2009).
Dynamic signaling in the Hog1
MAPK pathway relies on high basal
signal transduction. Sci. Signal. 2,
ra13.

Marchisio, M. A., and Stelling, J. (2009).
Computational design tools for syn-
thetic biology. Curr. Opin. Biotech-
nol. 20, 479–485.

Matsuoka, Y., Ghosh, S., and Kitano, H.
(2009). Consistent design schemat-
ics for biological systems: standard-
ization of representation in biolog-
ical engineering. J. R. Soc. Interface
6(Suppl. 4), S393–S404.

Park, S. H., Zarrinpar, A., and Lim,
W. A. (2003). Rewiring MAP kinase
pathways using alternative scaffold
assembly mechanisms. Science 299,
1061–1064.

Rao, C. V., and Arkin, A. P. (2003).
Stochastic chemical kinetics and
the quasi-steady-state assump-
tion: application to the Gillespie
algorithm. J. Chem. Phys. 118,
4999–5010.

Regot, S., Macia, J., Conde, N.,
Furukawa, K., Kjellén, J., Peeters, T.,
Hohmann, S., de Nadal, E., Posas,
F., and Solé, R. (2011). Distributed
biological computation with multi-
cellular engineered networks. Nature
469, 207–211.

Schaber, J., Kofahl, B., Kowald, A.,
and Klipp, E. (2006). A model-
ling approach to quantify dynamic
crosstalk between the pheromone
and the starvation pathway in baker’s
yeast. FEBS J. 273, 3520–3533.

Schneider, B. L., Zhang, J., Markwardt,
J., Tokiwa, G., Volpe, T., Honey, S.,
and Futcher, B. (2004). Growth rate
and cell size modulate the synthesis
of, and requirement for, G1-phase
cyclins at Start. Mol. Cell. Biol. 24,
10802–10813.

Sherman, F. (2002). Getting started with
yeast. Meth. Enzymol. 350, 3–41.

Tamaki, H., Yun, C.-W., Mizutani, T.,
Tsuzuki, T., Takagi, Y., Shinozaki, M.,
Kodama,Y., Shirahge, K., and Kuma-
gai, H. (2005). Glucose-dependent
cell size is regulated by a G protein-
coupled receptor system in yeast Sac-
charomyces cerevisiae. Genes Cells 10,
193–206.

Tamás, M. J., Luyten, K., Suther-
land, F. C., Hernandez, A., Alber-
tyn, J., Valadi, H., Li, H., Prior,
B. A., Kilian, S. G., Ramos, J.,
Gustafsson, L., Thevelein, J. M., and
Hohmann, S. (1999). Fps1p controls
the accumulation and release of the
compatible solute glycerol in yeast
osmoregulation. Mol. Microbiol. 31,
1087–1104.

Tyson, C. B., Lord, P. G., and Wheals,
A. E. (1979). Dependency of size
of Saccharomyces cerevisiae cells
on growth rate. J. Bacteriol. 138,
92–98.

van Drogen, F., Stucke, V. M., Jor-
ritsma, G., and Peter, M. (2001).
MAP kinase dynamics in response to

pheromones in budding yeast. Nat.
Cell Biol. 3, 1051–1059.

von der Haar, T. (2008). A quantitative
estimation of the global translational
activity in logarithmically growing
yeast cells. BMC Syst. Biol. 2, 87.
doi:10.1186/1752-0509-2-87

Yu, R., Pesce, C. G., Colman-Lerner, A.,
Lok, L., Pincus, D., Serra, E., Holl, M.,
Benjamin, K., Gordon, A., and Brent,
R. (2008). Negative feedback that
improves information transmission
in yeast signalling. Nature 456,
755–761.

Zi, Z., Liebermeister, W., and Klipp, E.
(2010). A quantitative study of the
Hog1 MAPK response to fluctuat-
ing osmotic stress in Saccharomyces
cerevisiae. PLoS ONE 5, e9522.
doi:10.1371/journal.pone.0009522

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 03 May 2012; accepted: 02 July
2012; published online: 25 July 2012.
Citation: Hoffman-Sommer M, Supady
A and Klipp E (2012) Cell-to-cell com-
munication circuits: quantitative analy-
sis of synthetic logic gates. Front. Physio.
3:287. doi: 10.3389/fphys.2012.00287
This article was submitted to Frontiers in
Systems Biology, a specialty of Frontiers
in Physiology.
Copyright © 2012 Hoffman-Sommer,
Supady and Klipp. This is an open-
access article distributed under the terms
of the Creative Commons Attribution
License, which permits use, distribution
and reproduction in other forums, pro-
vided the original authors and source
are credited and subject to any copy-
right notices concerning any third-party
graphics etc.

Frontiers in Physiology | Systems Biology July 2012 | Volume 3 | Article 287 | 18

http://dx.doi.org/10.1186/1752-0509-2-87
http://dx.doi.org/10.1371/journal.pone.0009522
http://dx.doi.org/10.3389/fphys.2012.00287
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology/archive
http://www.frontiersin.org/Systems_Biology/researchtopics/From_structural_to_molecular_s/513
http://www.frontiersin.org/Systems_Biology/researchtopics/From_structural_to_molecular_s/513
http://www.frontiersin.org/Systems_Biology/researchtopics/From_structural_to_molecular_s/513
http://community.frontiersin.org/people/MatteoBarberis/30688

	Cell-to-cell communication circuits: quantitative analysis of synthetic logic gates
	Introduction
	Materials and methods
	Modeling sender and receiver cells
	Salt-cell
	Dox-cell
	Gal-cell
	Reporter cell

	Deterministic simulations of logic gates
	Stochastic simulations of reporter cells
	Parameter sensitivity analysis
	Quantification of noise

	Results
	Modeling engineered logic-gate cells
	Deterministic simulations of logic functions
	Parameter sensitivity analysis
	Influence of culture density and doubling time on gate functioning
	Stochastic simulations of logic functions
	System modification: three-value logic functions

	Discussion
	Acknowledgments
	Supplemental material
	References


