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Self-organized critical states are found in many natural systems, from earthquakes to forest
fires, they have also been observed in neural systems, particularly, in neuronal cultures.
However, the presence of critical states in the awake brain remains controversial. Here,
we compared avalanche analyses performed on different in vivo preparations during wake-
fulness, slow-wave sleep, and REM sleep, using high density electrode arrays in cat motor
cortex (96 electrodes), monkey motor cortex and premotor cortex and human temporal
cortex (96 electrodes) in epileptic patients. In neuronal avalanches defined from units (up
to 160 single units), the size of avalanches never clearly scaled as power-law, but rather
scaled exponentially or displayed intermediate scaling. We also analyzed the dynamics of
local field potentials (LFPs) and in particular LFP negative peaks (nLFPs) among the differ-
ent electrodes (up to 96 sites in temporal cortex or up to 128 sites in adjacent motor and
premotor cortices). In this case, the avalanches defined from nLFPs displayed power-law
scaling in double logarithmic representations, as reported previously in monkey. However,
avalanche defined as positive LFP (pLFP) peaks, which are less directly related to neuronal
firing, also displayed apparent power-law scaling. Closer examination of this scaling using
the more reliable cumulative distribution function (CDF) and other rigorous statistical mea-
sures, did not confirm power-law scaling.The same pattern was seen for cats, monkey, and
human, as well as for different brain states of wakefulness and sleep. We also tested other
alternative distributions. Multiple exponential fitting yielded optimal fits of the avalanche
dynamics with bi-exponential distributions. Collectively, these results show no clear evi-
dence for power-law scaling or self-organized critical states in the awake and sleeping brain
of mammals, from cat to man.
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INTRODUCTION
Self-organized criticality (SOC) is a dynamical state of a system
which maintains itself at (or close to) a phase transition point. This
family of systems were initially described by Bak et al. (1987), and
have been found in many natural systems (reviewed in Bak, 1996;
Jensen, 1998). SOC systems are characterized by scale invariance,
which is usually identified as a power-law distribution of charac-
teristics of the system’s dynamics such as event size or the waiting
time between events. The temporal fingerprint of SOC systems is
often 1/f or 1/f 2 noise. These features are interesting because they
show the presence of long-lasting or long-range correlations in the
system.

The dynamics of SOC systems are structured as “avalanches” of
activity, separated by silent periods. Avalanche sizes are typically
distributed as a power-law, where the probability of occurrence
p(x) of a given avalanche size x scales as:

p (x) ∼ x−α ,

where α is the scaling exponent of the distribution.
SOC systems have been observed in many different natural

phenomena, from sandpiles, to rice piles, in forest fires, and earth-
quakes (Bak and Paczuski, 1995; Bak, 1996; Frette et al., 1996;
Jensen, 1998; Malamud et al., 1998; Peters and Neelin, 2006).
Evidence of SOC was also demonstrated in circuits of neurons
in vitro (Beggs and Plenz, 2003), where network activity was
found to alternate between active and quiescent periods, form-
ing “neuronal avalanches.” The presence of avalanches, although
clear in vitro, is more controversial in vivo. Since power-laws fit
neuronal avalanches better than other alternative probability dis-
tributions (Klaus et al., 2011), their presence has been taken as
evidence for neuronal avalanches in vivo. In anesthetized cats
(Hahn et al., 2010) and awake monkeys (Petermann et al., 2009),
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power-law distributed avalanches have been found in the peaks of
local field potentials (LFP). However, LFP peaks are only statisti-
cally related to neuronal firing. In a study on awake and naturally
sleeping cats, no sign of avalanches were found in neuronal fir-
ing (Bedard et al., 2006), and the apparent power-law scaling of
LFP peaks could be explained as an artifact induced by the thresh-
olding procedure used to detect LFP peaks. Previous studies have
shown that even purely stochastic processes can display power-
law scaling when subjected to similar thresholding procedures
(Touboul and Destexhe, 2010). It was also stressed that power-
law statistics can be generated by stochastic mechanisms other
than SOC (Giesinger, 2001; Chialvo, 2010; Touboul and Destexhe,
2010). Similarly, if exponentially growing processes are suddenly
killed (or “observed”), a power-law at the tail ends will emerge
(Reed and Hughes, 2002). This case, would be similar to a non-
stationary Poisson processes, or combining Poisson processes at
different rates, a situation that is likely to happen in the nervous
system. Such scenarios can give rise to spurious power-laws.

These contrasting results correspond to different preparations
and recording techniques, single units or LFPs, or different species,
so that it is difficult to compare them. In the present paper, we
attempt to overcome these shortcomings by providing a systematic
analysis of both units and LFPs for different species and different
brain states.

MATERIALS AND METHODS
RECORDINGS
Cat
Recordings of local field potentials (LFPs) and action poten-
tials (APs) were obtained from motor cortex in 2 felines (M1
and approximately hindlimb region). Commercially obtained 96
electrode sputtered iridium oxide film arrays (Blackrock Microsys-
tems, Inc., Salt Lake City, UT, USA) were chronically implanted
and recordings were performed in the awake, unrestrained feline
(as described in Parker et al., 2011). Electrodes on the array were
arranged in a square with 400 micron spacing and 1 mm shank
length. LFPs and APs were recorded using a Cerebus data acqui-
sition system (Blackrock Microsystems). Spike sorting on AP data
was performed using the t-dist EM algorithm built into Offline
Sorter (Plexon, Inc.). All animal procedures were performed in
accordance with University of Utah Institutional Animal Care and
Use Committee guidelines.

We also compared these data with previously published mul-
tielectrode data on cat parietal cortex (Destexhe et al., 1999).
In this case, a linear array of 8 bipolar electrodes (sepa-
rated by 1 mm) was chronically implanted in cortical area 5–7,
together with myographic and oculographic recordings, to insure
that brain states were correctly discriminated (quiet wakeful-
ness with eyes-open, slow-wave sleep, REM sleep). Through-
out the text, this cat will be referred to as “cat iii” LFP sig-
nals were digitized offline at 250 Hz using the Igor software
package (Wavemetrics, OR, USA; A/D board from GW Instru-
ments, MA, USA; low-pass filter of 100 Hz). Units were dig-
itized offline at 10 kHz, and spike sorting and discrimination
was performed with the DataWave software package (DataWave
Technologies, CO, USA; filters were 300 Hz high-pass and 5 kHz
low-pass).

Monkey
Recordings from three monkeys were used in this study. Each
monkey was chronically implanted with 100-electrode Utah arrays
(400 m inter-electrode separation, 1.0 mm electrode length; Black-
Rock Microsystems, Inc., Salt Lake City, UT, USA). In two monkeys
(i) and (ii), we used recordings made during the performance of
motor tasks. The motor tasks involved moving a cursor to visually
presented targets in the horizontal plane by flexing and extending
the shoulder and elbow of the arm contralateral to the cerebral
hemisphere that was implanted. In monkey (iii), sleep recordings
were used to test avalanche dynamics. Monkey i was implanted
with one 96 electrode array in primary motor cortex (MI) and a
second 96 electrode array in dorsal premotor cortex (PMd) from
which recordings were made on 64 electrodes in each cortical area.
Monkey ii had an array implanted in MI from which 96 electrodes
were recorded and monkey iii had two arrays in MI and PMd from
which 96 electrodes were recorded in PMd cortex and 32 electrodes
were recorded in MI area. During a recording session, local field
potential (LFP) signals were amplified (gain, 5000), band-pass fil-
tered (0.3–250 or 0.3–500 Hz), and recorded digitally (14-bit) at
1 kHz per channel To acquire extracellular action potentials, sig-
nals were amplified (gain, 5000), band-pass filtered (250–7.5 kHz)
and sampled at 30 kHz per channel. For each channel, a threshold
was set above the noise band: if the signal crossed the threshold, a
1.6-ms duration of the signal – as to yield 48 samples given a sam-
pling frequency of 30 kHz – was sampled around the occurrence
of the threshold crossing and spike-sorted using Offline Sorter
(Plexon, Inc., Dallas, TX, USA). All of the surgical and behavioral
procedures performed on the non-human primates were approved
by the University of Chicagos IACUC and conform to the prin-
ciples outlined in the Guide for the Care and Use of Laboratory
Animals (NIH publication no. 86–23, revised 1985).

Human
Recordings were obtained from two patients with medically
intractable focal epilepsy using NeuroPort electrode array as dis-
cussed previously (Truccolo et al., 2010; Peyrache et al., 2012).
The array, 1 mm in length, was placed in layers II/III of the mid-
dle temporal gyrus with informed consent of the patient and with
approval of the local Institutional Review Board in accordance
with the ethical standards of the Declaration of Helsinki. This
array is silicon-based, made up of 96 microelectrodes with 400-
µm spacing, covering an area of 4 mm× 4 mm. Since the corners
are omitted from the array, the furthest separated contacts are
4.6 mm apart. Data were sampled at 30 kHz (Blackrock Microsys-
tems, Salt Lake City, UT, USA). The continuous recording was
downsampled to 1250 Hz to obtain LFPs. The dataset we analyzed
was devoid of any form of identifiable epileptic activity (such as
interictal spikes), and there was no seizure in the analyzed dataset.
The implantation site was included in the therapeutic resection
in both patients. For details on spike sorting, see Peyrache et al.
(2012).

AVALANCHE DETECTION
Avalanches are defined by temporally contiguous clusters of activ-
ity among the different electrodes, separated by periods of silence.
Either trains of neuronal action potentials (spikes) or LFP peaks
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can be analyzed for the occurrence of avalanches. There are two
empirical limits on bin duration. The smallest bin size is set by the
duration of the action potential. The upper boundary, is limited by
how many unique values of the aggregate ensemble activity occur
in a window. When the number of unique values approaches 1,
avalanche loses its definition, because there is no silent period left.
In the cat data, where there are 160 cells, we reach this limit at
a bin-width of 16 ms. So, we have stayed within the 1- to 15-ms
regime in which an avalanche could be well defined.

Spike avalanche
In each set of recordings, regardless of the spatial location of a
given electrode in the multielectrode array, its spiking activity was
put in the same pool with all other spikes recorded from other
electrodes of the same array. This ensemble trace was then binned
and coarse grained for different δt ranging from 1 to 16 ms in
2 ms steps. This created a series of bins containing the ensemble of
activity across all neurons for that δt. The sum of spiking in that
bin represents the total bin activity. The sum of all bin activities
between two quiescent bins, represents the avalanche size, which
was later used for statistical analyses. Notice that in the case of
the minimum δt= 1, avalanche size would range between 0 and
maximum number of neurons present as this bin approximates
the size unity of spiking period. Figure 1A shows the definition of
avalanche in spike series from human recordings.

LFP avalanche
Each LFP trace was first detrended through a least-squares fit
of a straight line to the data and subsequent subtraction of the
resulting function from all the sample points. After this detrend-
ing removed the mean value or linear trend from a LFP vector, it
was then normalized (Z score) to have a common reference frame
for discretization across channels, recordings, states, and species.
The z-scored LFP, was then discretized through a local maxima
peak detection. An optimizing small running average filter was
designed and 3 passes of the filter were applied to the data in order
to remove small spurious peaks in each LFP deflection. Next, by
comparing each element of data to its neighboring values, if that
sample of data was larger than both of its adjacent ones, that ele-
ment was considered as a local peak. Next, all the peaks were sorted
in descending order, beginning with the largest peak, and all iden-
tified peaks not separated by more than minimum peak distance
(of 3 samples) from the next local peak were discarded.

The threshold was fixed and defined as a multiple of the stan-
dard deviation (STD) of the LFP signal. Different thresholds were
tested, starting at 1.25× STD and increasing in 0.25 steps up to
5× STD for both negative and positive maxima. This procedure
was realized on each LFP channel, state, species (Figure 1B). Such
matrix of discrete events (for a given polarity and a given thresh-
old), was then treated the same way the spike matrix was used to
create avalanche vectors of quiescent and active periods.

LFP PEAK AND SPIKING RELATIONSHIP
Wave-triggered-average (WTA)
We used wave-triggered averaging (WTA) to analyze the differ-
ences in the relationships of spikes to nLFP vs. pLFP. In WTA,
the individual negative LFP peaks (nLFP) were used to epoch the

FIGURE 1 | Definition of avalanches. (A) Comparison of avalanche
definition for 8 vs. 16 ms binning; green vertical lines define the boundaries
of 16 ms binning; naturally, each 16 ms bin is composed of 2 independent
8 ms bin (depicted with red dotted lines). Accolades point to the avalanches,
separated by quiescent periods. Top, 8 ms avalanches and their sizes,
bottom, 16 ms avalanches and their corresponding size. Please note that
last avalanche continues after of the limits in this figure. (B) Negative local
maxima obtained from the grid of electrodes for a period of 10 s. Each row
represents negative maxima of a single LFP channel of a selected threshold
level ≥1.75×STD of the normalized LFP. The red dots in the bottom refer to
ensemble presence of nLFP maxima.

ensemble spike series. The epoched ensemble spike series were
normalized by the number of epochs (triggered by nLFPs). This
procedure was performed for the three different thresholds (low,
medium, and high) and the results were averaged across these
thresholds to obtain cross-threshold WTA percentage firing to
quantify the spike-nLFP relationship. An identical procedure was
applied to pLFPs. The red and blue solid lines in Figure 6 refer to
nLFP-spike and pLFP-spike WTA percentage firing, respectively.

Controls and randomization Methods
We used 4 methods of surrogate/randomization in order to evalu-
ate the statistical robustness of the comparative relation of spike-
nLFP vs. spike-pLFP. Each of the following 4 methods, was first
performed on all 3 chosen thresholds and then the results were
averaged to obtain the overall randomization effect.
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Poisson surrogate data. At the first step, we wanted to test
whether the observed nLFP and pLFP differences could be repro-
duced by surrogate spike series. For this type of control, first,
each individual channel’s spike rate was calculated. Then, using
a renewal process, a surrogate Poisson spike series for that channel
was created (matching the firing rate and duration of the exper-
imental data from that channel). Then, all Poisson spike series
(across all channels) were aggregated together to create the ensem-
ble spike series (similar to the experimental data). Next, for each
pLFP (or nLFP), the WTA of this Poisson aggregate series was cre-
ated. This procedure was repeated 1000 times and then averaged
across the 1000 trials. The results were close to a constant WTA
percent firing and did not fluctuate according to the timing of
the peak LFP that was used to epoch each individual WTA event.
This control test showed that the simple aggregate of surrogate
Poisson spikes can not reproduce the observed relation between
nLFP and spikes in the WTA or mimic the behavior of natural
peak(positive or negative)-induced percentage firing. This proce-
dure was also repeated with Poisson spikes without a refractory
period and provided similar results.

Random permutation. In a follow up test, we wanted to ver-
ify that randomizing the aggregate spike series by itself can not
mimic the observed the LFP-spike relation. For this procedure, we
performed a random permutation on the aggregate spike series
and then calculated the nLFP(and pLFP)-based WTA. This pro-
cedure was repeated 1000 times. The observations are similar to
the Poisson randomization, verifying that the nLFP peak is not
reproducible by randomization of spikes and the fluctuations of
WTA percentage firing are not results of random events.

Local jitter randomization of LFP peaks. Next, we wanted to
evaluate the effects of randomization based on the statistics of the
individual channel’s LFP peak times (before aggregating them into
the ensemble LFP peak train). First, each channel’s nLFP IPI (inter-
peak-interval) were calculated. Then these IPIs from all channels
were put in the same pool and the, 0.25, 0.5, and 0.75 quantiles
IPI for the aggregate nLFPs were extracted. Next, we created a nor-
mal distribution with 0.5 percentile as the mean, the interquartile
range (0.75− 0.25 quantile) as the standard deviation of the pdf,
and N events matching the number of aggregate nLFPs. This set
of values, were used to jitter nLFPs in the following manner. Each
sample from the aggregates nLFP peak series was shifted accord-
ing to one drawn sample (without replacement) from the nLFP
jitter pool. The direction of the shift was to the right if the drawn
jitter value was negative (and to the left for the positive value).
The magnitude of the shift was defined by the value of the jitter
itself. The same procedure was repeated for pLFPs. The results of
this randomization are shown in Figure 6A. As can be appreci-
ated, with this tightly regulated data-driven local randomization,
the structure of the WTA is preserved except for the peak curve
around 0 for the nLFP case.

Fixed-ISI circular shift of spikes. In this procedure, we kept the
ISI (inter-spike interval) of the aggregate spike series as well as
the IPI (inter-peak intervals) of the nLFP and pLFP intact but
randomized the relation between the aggregate spike and aggre-
gate peak series. In each of the 1000 trials, a circular shift with

the magnitude chosen randomly between 1 and the range of the
ISI, was performed. The results, shown in Figure 6B, show that
by destroying the relation between ensemble spikes and ensemble
peaks while preserving their internal structure, the observed fluc-
tuations and most importantly, the tightly bound relation of nLFP
and spikes, is lost.

TESTING POWER-LAW DISTRIBUTION IN EMPIRICAL DATA
For testing the power-law behavior, usually a simple least square
method is applied to fit a power-law on the data. If such fit in a log-
log scale, follows a straight line, the slope of the probability density
function (PDF) line is taken as the scaling exponent. Such method
is widely practiced but is highly inaccurate in its estimation of true
existence of power-law in a given dataset. It has been argued that,
for obtaining statistically sound results in estimating power-law in
empirical data, one has to rely on rigorous statistical methods. In
a detailed analysis of the problem (Newman, 2005; Clauset et al.,
2009), it was proposed that the cumulative distribution function
(CDF) is much more accurate to fit the power-law exponent, as
well as to identify if the system obeys a power-law.

If the initial distribution of the PDF is power-law, i.e.,

p (x) = Cx−α ,

then CDF is defined as

Pr (X > x) = C

∫ inf

x
x ′−αdx ′ =

C

α− 1
x−(α−1) .

Thus, the corresponding CDF also behaves as a power-law, but
with a smaller exponent

α− 1

being 1 unit smaller than the original exponent (Newman, 2005).
Generally, in fitting the power-law to the empirical data, all the

initial values (left hand of the distribution histogram, i.e., smallest
sizes of avalanches) are included in the used decades to obtain the
slope of the fit (scaling exponent α). The inclusion of these initial
parts may cause significant errors, and should be removed (Gold-
stein et al., 2004; Bauke, 2007; Clauset et al., 2009). Thus, before
calculating the scaling exponent, it is essential to discard the values
below the lower bound (Xmin). It is only above this lower bound
that, a linear PDF or CDF can be reliably used for estimation of
the scaling exponent. There are different methods for proper esti-
mation of the Xmin. We used a Kolmogorov-Smirnov (KS test)
optimization approach that searches for the minimum “distance”
(D) between the power-law model and the empirical, where for
Xi>Xmin, “D” is defined as

D = max|S (x)− P (x) |,

S(x) the CDF of the empirical data and P(x) the CDF of the
best matching power-law model. The Xmin value that yields the
minimum D, is the optimal Xmin. The Xmin is used in a maxi-
mum likelihood estimate (MLE) of power-law fit to the CDF of
the avalanches in order to obtain the scaling exponent. This fitting,
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however, does not provide any statistical significance on whether
the power-law is a plausible fit to the data or not. After the esti-
mation of Xmin and the exponent, we generated N (N= 1000)
power-law distributed surrogate data with the exact same features
of Xmin and exponent. Each of these surrogate series are then fitted
with power-law and KS-statistics of distance D (to the surrogate
power-law), is performed. The fraction of N that the resultant sta-
tistics was bigger than the one obtained from the empirical data,
comprises the p-value. If p-value 60.1, the power-law is ruled out.
However, even if p-value is larger than this threshold, the data is
not necessarily guaranteed to be generated by a power-law process
unless no better distribution is found to estimate the properties of
the data. For this, the alternative test was adapted as following.

Generating power-law distributed random numbers with high
precision
It is essential to use high precision and reliable algorithms to
generate random numbers from a given probability distribution;
otherwise the statistical tests based on such distributions may be
erroneous. For initializing the generator with an “Integer Seed,”
we adapted the reliable Mersenne Twister algorithm (known as
MT19937AR) with full precision of Mersenne prime (219937

− 1)
(Matsumoto and Nishimura, 1998). This algorithm provides a
proper method for running Monte Carlo simulations. After ini-
tialization, “Transformation algorithm” was used to generate the
desired distribution (Press et al., 2007a; Clauset et al., 2009). All
the random number generations and analyses were performed on
a 16-core Intel 48 GB Linux platform equipped with 448 core
Tesla C2050 GPU with double precision of 515 Gflop and single
precision of 1.03 Tflops. The custom code was based on Matlab
(Mathworks) and CUDA (NVIDIA) wrapper Jacket (Accelreyes)
for parallel computing on GPU.

ALTERNATIVE FITS
The power-law fit was compared with alternative hypotheses to
test which distribution best fits the data. The alternatives included
exponential distribution (as predicted by a Poisson type stochastic
process), “Discretized log-normal distribution” (which is repre-
sented as a linear fit in log-normal scale), as well as fit of “Discrete
exponential distribution” nature. These fits had two general types
of simple exponential, defined as: f(x)= aexp(bx) as well as sum
of exponential set as: f(x)= aexp(bx)+ cexp(dx) In each case,
residual analyses, goodness of fit as well as confidence and pre-
diction bounds were used to evaluate the properties of each fit vs.
power-law. In case of a good fit model, Residual, defined as the
difference between data and fit, should approximate random error
and behave randomly.

Goodness of fit comparison of exponential models
A measure of “goodness of fit,” R-square, is the ratio of the sum of
squares of the regression (SSR) and the total sum of squares (SST).
This measure, represents the square of the correlation between the
observed and predicted response values, and indicates what per-
centage of the variance of the data is explained by the chosen fit
(values of R-square range from 0, worst fit, to 1, the best pos-
sible fit). If we have SSR as: SSreg =

∑
i (ŷi − ȳ)2, and SSE as:

SSerr =
∑

i (yi − ŷ)2, and SST as: SStot =
∑

i (yi − ȳ)2, where,

yi , ȳ , ŷ are the original data values, their mean and modeled values
respectively. Then, it follows that:

R2
= SSreg/SStot = 1−

SSerr

SStot
.

Correction by “total degree of freedom” and “error degree of
freedom,” defines adjusted R-square:

R̄2
= 1−

(
1− R2) N − 1

N −M − 1
= 1−

SSerr

SStot

dft
dfe

.

where “N” is the sample size, and “M” is the number of fitted
coefficients (excluding constants). Usage of R̄2 in the comparison
of “simple exponential” and “sum of exponential” is warranted
by the fact that by an increase in the fitted number of the com-
ponents, from one model to the other, the degrees of freedom
changes. Both R2 and R̄2 measures were estimated through non-
linear least square optimization of exponential curve fitting. In the
optimization process for estimating the coefficients of the models,
we adapted Levenberg-Marquardt algorithm with a tolerance of
10−8 (Press et al., 2007b).

Test of linearity in log-normal scale
Linearity in log-normal scale, is a hallmark of an exponen-
tial family process. In order to test the linearity of the PDF in
log-normal scaling, we used Root mean square error (RMSE),

RMSE(θ̂) =

√
MSE(θ̂) where MSE is: SSerr

dfe
. This measure ranges

from 0 to 1, where closer value to 0 is an indicator of a better fit.
This test was performed by fitting y = log [P(x)] with a lin-

ear least square first degree polynomial. As shown in Figure 13C,
sometimes, the initial values in the left tail may slightly devi-
ate from a simple 1st degree polynomial. Therefore, we tested
whether the linearity was improved or worsened when the data
range was reduced to above some Xmin. For doing so, we adapted a
more stringent regression, bi-square robust 1st degree polynomial
(Press et al., 2007b). This method is an iteratively reweighted least-
squares, based on R̄2, and assigns less weight to the values farther
from the line. This procedure was repeated after excluding conse-
quent single values from the left tail (up to 20% of the points). For
each new shortened series, the RMSE (based on bi-square method)
was re-calculated. The rational behind using RMSE for testing the
linearity range in these datasets (with variable N) is that when a
distinct point is removed from the dataset, 2 other reductions fol-
low: (a) the sum of squares and (b) degrees of freedom. Thus, if
after limiting the range, the error remains the same, SSerr would
increase. Similarly, when the error is significantly reduced, SSerr

would increase. Therefore, any change in the error, should only
be considered significant if it is compensated by the amount of
change in the degree of freedom. For quantifying this, we defined
two measures for linearity improvement after limiting the data
above Xmin. The first measure, “overall RMSE change” (oRMSE),
was defined as:

oRMSEi =
RMSEn − RMSEn−i

RMSEn
∗ 100.
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In parallel, “relative RMSE change” (rRMSE), was defined as:

rRMSEi =
RMSEn−i+1 − RMSEn−i

RMSEn
∗ 100,

where RMSEn was the RMSE of the full length data. Next stan-
dard deviation of the, these measures were normalized to their
maximum (noRMSE and nrRMSE) and a 3rd dimension was cre-
ated by the distance of each pair (noRMSEi, nrRMSEi), from the
geometrical diagonal defined as

D =
det [(Q2− Q1) · (P − Q1)]

‖(Q2− Q1)‖

where P was the coordinates of a point (noRMSEi, nrRMSEi)
while Q1= [0 0] and Q2= [1 1] were the vertices of the geo-
metrical diagonal of the RMSEs pair space. The point that had
the maximum “(1−Di)+ noRMSEi+ nrRMSEi” (this value can
range between 0 and 3), was taken as the optimal linearizing short-
ening index (Xmin; Figure 13D). Next, we fitted all data ranges
(from N sample points to N −Xmin) with the two exponential
models as described above.

RESULTS
In this study, we used data from multielectrode recordings in 3
species: cat motor cortex (cats i and ii with a 96 channel multielec-
trode array in primary motor cortex, hindlimb area), cat parietal
cortex (cat iii, 8 bipolar electrodes), monkey motor cortex (three
monkeys with a 64 or 96 recordings from 96 channel multielec-
trode arrays in motor and/or premotor cortex), and humans (2
patients with a 96 multielectrode array in middle temporal gyrus).
In the following, we briefly address definition of avalanche, then
describe the results of power-law analyses on spike avalanche,
state-dependence, regional differences, and polarity-dependence
of LFP maxima avalanche. At the end, we briefly discuss alternative
fits to the data.

AVALANCHE DEFINITION
Figure 1 illustrates the definition of avalanche for discrete (spike)
and continuous (LFP) data, as they are used in this study. For both
spikes and LFP, we used bins of 1–15 ms (in 2 ms steps) for defining
the quiescent vs. active periods. Avalanches are defined by contigu-
ous bins of non-zero activity, separated by periods of quiescence
(empty bins). The size of the avalanche is defined as the sum of all
activities (spikes or LFP peaks) within that active period. Thus, the
avalanches depend on the bin size (as illustrated in Figure 1A for
spikes). For LFPs, we first discretized the continuous data based on
its local maxima. Both positive and negative maxima were exam-
ined in our study. For each polarity, 17 levels of thresholds were
chosen (see Methods for details). After discretization, the obtained
matrix (Figure 1B) was used for the same binning and avalanche
definition as used for spike series.

POWER-LAW FIT
It has been shown that that CDF provides a better measure than
PDF as it avoids erroneous measures at the far end of the dis-
tribution tail of probability curve (Newman, 2005; Clauset et al.,

2009). It is also necessary to exclude the values below the valid
lower bound, or else the calculated coefficient could be highly
biased (Clauset et al., 2009). In each of the following estimates
of power-law distribution, based on the methods described pre-
viously, we adapted the following steps on analyzing the CDF of
avalanches: Values above a given Xmin are used in a maximum
likelihood estimate (MLE) of the exponent α. For each CDF, the
proper lower bound of Xmin is selected using a KS test. We also
used 1000 semi-parametric repetitions of the fitting procedure for
obtaining estimates of uncertainty and goodness of fit.

AVALANCHE ANALYSIS FROM SPIKES
Next, we studied whether the spike avalanches follow power-law
distributions.

Avalanche analysis in wakefulness
We first studied avalanche dynamics in awake resting recordings
from cats and humans. As depicted in Figure 2, neither of these
species, showed a dominant power-law behavior in their spike
avalanche size distribution. The average scaling exponent of awake
recordings for the decades that could be considered to follow
power-law (i.e., >Xmin), was to high to be related to SOC sys-
tems (see Tables 1 and 2; Figures 2i,ii,iii). These values not only
are distant from those of 1/f noise, but also only apply to partial
parts of the CDF (cumulative distribution function) of avalanche
sizes. These lack of clear power-law characteristics is shown with
Xmin lower boundary (green dotted lines in Figure 2). Only values
above Xmin could “statistically” follow a power-law regime and as
mentioned, even in those cases, the exponent values were too high
to be considered a signature of SOC systems. It is important to
note that the CDF representation is cumulative, and thus the left
tail is not excluded from the data but its influence is shifted to the
right (see details in Clauset et al., 2009; see also Methods).

Interestingly, representing the size distributions in log-linear
scale revealed a scaling very close to linear for all species (Figure 3),
indicating that avalanches defined from spikes scale close to an
exponential, as would be predicted by a Poisson type stochastic
process. This conclusion was also reached previously by analyzing
units and LFP recordings in cats (Bedard et al., 2006). Also, as can
be seen in the inset of Figure 2A, the same analyses done on the
awake recording from the parietal cortex (albeit spatially sampled
at only 8 electrodes) shows similar scaling behavior.

In addition to wake resting recordings, we also considered
recordings made while monkeys engaged in cognitive motor tasks.
Similar to awake resting recordings in cat and man, the lower
bound was variable between different binning sizes, thus exclud-
ing parts of the “invalid” initial avalanche sizes, which are usually
used as evidence of existence of power-law (Beggs and Plenz, 2003;
Petermann et al., 2009; Klaus et al., 2011). The inclusion of these
initial parts may cause errors, and were removed here; however,
their cumulative effects are still present in the tested regimen above
Xmin of the analyzed“cumulative distribution function”(Goldstein
et al., 2004; Newman, 2005; Bauke, 2007; Clauset et al., 2009).
Above the lower bound value, all the CDF curves showed signifi-
cant high exponent values. Interestingly, the MI (in both monkeys
A and B) had similar mean to PMd (Table 1; Figures 2D–F),
suggesting similar dynamics in the two areas.
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FIGURE 2 | Avalanche analysis on spiking activity during wakefulness. In
idle awake (A). Cat i (96 electrode array) and Cat iii (inset, 8 electrode array).
(B) Human i (96 electrode array). (C) Human ii (96 electrode array). Different
line colors refer to different bin sizes as shown in the legend. The lower bound
(Xmin, shown in green dotted line), shows that the CDF of avalanche size, only
partially, may follow power-law distribution. Even in such cases, the

exponents had very high values, well above the criticality regime that is
hypothesized for 1/f noise. (D–F) Show the same type of curves for monkeys
engaged in cognitive motor task (96 electrode array; augmented with a 64
electrode array). Same pattern is observed; it also seems MI has slightly
higher values than PMd in the plausible power-law regime. For the mean/STD
exponent values, seeTables 1 and 2.

Table 1 | Summary spike avalanche.

Species Loc State CDF exponent Pval gof

Monkey i MI Awake 3.4413±0.7616 0.0419±0.1152 0.0442±0.0216

Monkey i Pmd Awake 4.1660±0.6590 0.1130±0.2140 0.0180±0.0050

Monkey ii MI Awake 4.6250±0.4730 0.4550±0.3600 0.0330±0.0120

Monkey iii MI SWS 4.5560±0.7980 0.0030±0.0100 0.0220±0.0080

Monkey iii Pmd SWS 3.7760±0.8660 0±0 0.0430±0.0170

Cat ii MI Awake 2.8412±1.2184 0.3056±0.3844 0.0599±0.0368

Cat iii Parietal Awake 3.1410±0.8720 0.2010±0.3680 0.0270±0.0180

Cat iii Parietal SWS 4.2110±0.7930 0.3290±0.3620 0.0350±0.0140

Cat iii Parietal REM 1 3.3240±0.8150 0.2990±0.2170 0.0290±0.0110

Cat iii Parietal REM 2 3.4050±0.8250 0.4250±0.4470 0.0230±0.0140

Human i Temporal Awake 3.5490±0.8790 0.3870±0.3650 0.0210±0.0080

Human i Temporal SWS 1 3.6340±0.6410 0.3790±0.3150 0.0250±0.0100

Human i Temporal SWS 2 3.2550±0.5770 0.1710±0.2670 0.0330±0.0150

Human i Temporal REM 1 3.3740±0.8560 0.0930±0.1720 0.0300±0.0090

Human i Temporal REM 2 3.6430±0.5540 0.0960±0.1950 0.0320±0.0170

Human i Temporal Awake 3.9200±0.7970 0.0080±0.0230 0.0090±0.0070

Human i Temporal SWS 3.8950±0.7630 0.0070±0.0140 0.0100±0.0070

Cross species summary of spike avalanche.

Avalanche analysis during natural sleep
It has been claimed that wakefulness may not be the best state to
display SOC, and that avalanches may be more naturally related
to brain states with oscillations, and slow-wave oscillations in par-
ticular (Hahn et al., 2011). In contrast to this, a previous study
in cat found that like wakefulness, slow-wave sleep (SWS) did
not display power-law scaling as defined from spike avalanches

(Bedard et al., 2006), but this latter study suffered from a limited
spatial sampling. To further investigate the issue, we have exam-
ined SWS and Rapid Eye Movement (REM) sleep periods with
more dense sampling of spike activity. Figures 4 and 5, show the
analyses for cat, human i and ii as well as monkey iii (MI and
PMd) for SWS and REM periods. In none of these cases we, see
clear sign of power-law scaling. In all cases (except human ii), the
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variability of lower bound between different bin sizes is robust. All
the curves represent “partiality of power-law” with high exponent
values. During SWS, cat, human subjects, and monkey iii (MI and
PMd) all manifested either lack of significant power-law scaling,
or had such higher exponent values that makes it highly unlikely
for power-law to be the generating process of spike dynamics

Table 2 | Detailed awake spike avalanche.

Loc Bin size (ms) CDF exponent Pval gof

MI 1 2.5 0 0.036

MI 3 5 0.008 0.020

MI 5 3.36 0 0.029

MI 7 3.63 0 0.039

MI 9 3.03 0 0.047

MI 11 3.83 0.327 0.034

MI 13 3.35 0 0.060

MI 15 2.83 0 0.089

PMd 1 4.1 0 0.006

PMd 3 2.81 0 0.021

PMd 5 5 0 0.018

PMd 7 4.85 0.061 0.017

PMd 9 4.03 0 0.022

PMd 11 4.21 0.018 0.024

PMd 13 4.25 0.216 0.019

PMd 15 4.08 0.61 0.017

Monkey i detailed table.

(Table 1). Similarly, in REM periods, there was no evidence for
power-law scaling in human i’s first and second REM episodes.
Together, with Cat REMs’ high exponents values, power-law scal-
ing appears to be an unlikely candidate to describe the statistics of
neural firing (Table 1). Taken together, these various tests all based
on proper statistical inferences, show that spike avalanches do not
follow power-law scaling, for any brain state or sampling density.

Detailed numerical values for spike avalanche CDF exponents
and their goodness of fit are provided in Tables 1 and 2.

AVALANCHE DYNAMICS FROM LOCAL FIELD POTENTIALS
Next,we investigated the occurrence of avalanche type of dynamics
from the local field potentials, which were simultaneously recorded
with unit activity, in all datasets.

Relation between LFP peaks and spiking activity
Calculation of neuronal avalanches from LFP data is based on
the assumption that statistically speaking, in comparison with the
positive LFPs (pLFP), the negative LFP (nLFP) peaks are more
strongly related to neuronal activity (e.g., see Destexhe et al., 1999
and references therein). Indeed, the 8-electrode cat LFP data ana-
lyzed here show such a relation (Destexhe et al., 1999; Touboul and
Destexhe, 2010). To further test this relation, we also examined the
simultaneous LFP and unit recordings in the ensemble recordings
in cat,man,and monkey. We used a wave-triggered-average (WTA)
procedure, where the ensemble of nLFPs were used to epoch the
ensemble spike activity. Averaging across these WTAs across dif-
ferent thresholds, show that there is indeed a weak relationship
between nLFP and spiking (Figure 6A). However, repeating the

FIGURE 3 | Spike avalanche distributions in log-linear representation.
(A–D) Show results for different subjects. Different line colors refer to different
bin sizes as shown in the legend. An exponential process has a linear trend in

log-linear scale. Spike avalanches for all coarse graining levels, showed a linear
trend. Please notice that bin sizes 11 and 15 are not shown because for the
clarity in the line plot, but showed similar linear trend in this scale (not shown).
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FIGURE 4 | Avalanche analysis of spiking activity during slow-wave
sleep. (A) Cat iii, (B) Human i, (C) monkey iii MI, and (D) monkey iii
PMd. Different line colors refer to different bin sizes as shown in the
legend. In parallel to awake dynamics (Figure 2), there is no sign of

criticality, the curves follow different partial power-law with high
exponents and variable lower bound values. The avalanche dynamics do
not show a state-dependent trend. For the mean/STD exponent values,
seeTable 1.

same procedure for positive LFP (LFP) peaks, did not display any
relation (Figure 6B), in agreement with the same analysis in cats
(Touboul and Destexhe, 2010). Through four different types of
control and randomization, we show that the relation between
nLFP and spike is robust and is not attributable to randomness of
the spiking events or spurious fluctuations in the LFPs. For details
of these control/randomization, see methods and Figure 6. This
fundamental difference between nLFP and pLFP peaks provides a
very important test to infer if a given power-law observation from
LFPs is related to the underlying neuronal activity, as we will, see
below.

nLFP avalanches
Similar to previous studies, we investigated the avalanche dynam-
ics from nLFPs. The nLFPs were detected using a fixed threshold,
defined as a multiple of the standard deviation (STD) of the LFP
signal (see Methods), and several thresholds were tested. In the
following, we use “high,” “medium” and “low” thresholds, which
correspond to 2.25, 1.75, and 1.25 multiples of the standard devi-
ation, respectively. As shown in Figures 7 and 8, the distributions
defined for avalanches at different bin sizes and thresholds seem
to display power-law scaling, both for human and monkey. This
result seems to be in agreement with similar analyses done on
awake monkey (Petermann et al., 2009). However, plotting the
same data as CDF revealed that the scaling as power-law was very
narrow (Figure 9). While Monkey ii displayed apparent power-law
over more than one decade, the other cases from cats and humans,

did not display any convincing power-law scaling. For details of
nLFP avalanches for an example subject, and its comparison with
pLFP avalanches, see Table 3. One can also note that in some of
the CDFs (and their counterpart PDF), there is a possibility that
the distribution can be segmented into two regions each covering
certain decades of avalanche size. In such cases, relying on a single
scaling exponent to describe the totality of the functional dynamics
of the network does not seem adequate. This could be an indication
that the space of the distributions is not uniform and the underly-
ing mechanisms could be of metastability nature (Mastromatteo
and Marsili, 2011). In such scenario, interaction with the external
world could push the system from the “currently most stable state”
to a new “most stable state.” Such constant changes may lead to
the formation of non-uniform distribution of the neural events
at different temporal scales. Therefore it is essential to emphasize
that, in some cases, one scaling exponent may not be sufficient to
describe the complexity of the spiking or oscillations.

pLFP avalanches
Next, we investigated the avalanche dynamics of positive LFP
peaks, which, as we have seen above, is not statistically related to fir-
ing activity (Figure 6). Similar to nLFP peaks, the pLFP avalanches
defined for human wakefulness did not display power-law scaling
(Figure 10). Both nLFP and pLFP had similar CDF of avalanche
size across different species and cortices. The example shown in
Figure 10 (awake human) shows that across different thresholds,
both nLFP and pLFP had variable lower bounds and high scaling
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FIGURE 5 | Avalanche analysis of spiking activity during REM sleep.
(A) Cat iii REM episode 1, (B) cat iii REM episode 2, (C) human i REM episode
1, (D) human i REM episode 2. Different line colors refer to different bin sizes

as shown in the legend. Similar to awake and SWS, the lack of criticality,
variability through different coarse graining thresholds, and lower bounds is
the universal finding. For the mean/STD exponent values, seeTable 1.

exponents for the region of the data that could statistically be con-
sidered for power-law properties. Moreover, the absence of any
region with clear linear scaling in the logarithmic coordinates fur-
ther confirms that there is no power-law scaling in this case. For
details, see Table 3.

Avalanches in different cortical regions
In the cases that we had simultaneous, dual array multielectrode
recordings from PMd and MI, the analyses showed that these two
cortical areas do not show signs of criticality but have slight differ-
ences in their exponent values for MI and for PMd (Tables 1 and 2;
Figure 11). Such findings show that the fact that these two cortices
directly interact with each other, and one acts as input and one as
the output of motor processing unit, is reflected in their slightly
different CDF features. Thus, two different cortical areas seem to
display similar features, although no sign of power-law scaling.

STATISTICAL ANALYSIS OF THE AVALANCHE DISTRIBUTIONS
Goodness of fit
Given data x and given lower cutoff for the power-law behav-
ior Xmin, we computed the corresponding p-value for the
Kolmogorov-Smirnov test, according to the method described in
Clauset et al. (2009). See methods for details. The results are given
in Tables 1, 2, and 3 (“gof” columns).

Avalanche size boundaries
Imposing lower or upper bounds when fitting avalanche distri-
butions can greatly affect the outcome of the fit (Clauset et al.,

2009). In many cases, the analyses have been limited to the lower
boundary of avalanche size= 1 and Xmax of N, where N is the
number of channels. Using such bounds improves the fitting of
the data by power-law compared to other distributions, as con-
firmed by KS-statistics (Klaus et al., 2011). The pitfalls of such an
approach are two-fold: (a) the lower boundary is set to 1, therefore
the avalanches that are below the acceptable lower bound of Xmin

are erroneously fitted with the power-law, thus reducing the reli-
ability of the fit while producing mis-estimated scaling exponents
(see Clauset et al., 2009 for details of lower bound selection). (b)
Xmax is set to the maximum active channels, and any return to
a given channel is counted in the avalanche, but the maximum
allowed avalanche size is limited to N, based on the argument that
the large avalanches are infrequent and their inclusion implies
misfit. This type of approach, limits the number of avalanches
to an extreme degree and introduces a bias. Below we investigate
this bias.

Avalanche size distribution and upper boundary limits
Figure 12 tests the effect of enforcing an upper boundary to
the avalanche analysis. The red color shows the excluded (satu-
rated) avalanches enforced by limiting the Xmax to N (number
of independent measures), while cyan represents the acceptable
avalanches below this upper threshold. This figure shows that set-
ting the Xmax to a cutoff value of N, produces variable biases based
on the bin size. Importantly, in simultaneously recorded regions,
the majority of avalanches will be included in one case (like in
PMd as shown in Figure 12A) but not in the other (like MI, as
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FIGURE 6 | Relation between unit firing and LFP peaks in wakefulness.
nLFP (red) and pLFP(blue)-based wave-triggered-average (WTA) of
percentage unit activity, showing that the negative peaks have closer
association with an increase of neuronal firing. (A) Tightly regulated local
jitter of nLFP peaks destroys the large nLFP peak. Inset shows the zoom
around 0. (B) Preserving the internal structure of aggregate spike train and
ensemble LFP peaks, but destroying the relation between the two leads to
the disappearance of the nLFP peak. See text for details of randomization
and controls. The WTA traces in this figure are from Human i, (based on
183127, 98520, and 47451 nLFP and 158737, 79225, and 36020 pLFP peaks
for low, medium, and high threshold respectively.)

depicted in Figure 12B). Such discrepancy emphasizes that setting
a cutoff will necessarily introduce a bias and causes variable results
from region to region and from bin size to bin size.

Comparison of exponential and power-law fit: Model
Mis-specification and lower boundary problem
It has been argued whether neuronal avalanches are better fitted
by an exponential or power-law distribution. Here we tested two

aspects, exponential vs. power-law comparison, as well as the effect
of setting a lower boundary to the fit. It has been shown that defin-
ing a proper lower boundary improves the maximum likelihood
that the distribution could be fit by a power-law (Clauset et al.,
2009). In agreement with this, Klaus et al. (2011) used a lower
boundary of 1 and showed that using KS-statistics, the power-law
indeed provides a better fit to the data in comparison to expo-
nential distribution. Here, we systematically tested whether such
practice would return erroneous results in avalanche analysis. The
results shown in Figures 13A,B, are from cat spikes data. For
each bin size, we first defined the optimal lower boundary after
Clauset et al., 2009; see Methods), called Xmin. We started with a
lower boundary set to 1, and reduced the distribution of avalanche
data gradually up to Xmin. For each newly produced set, we calcu-
lated the empirical CDF (ECDF) as well as the provisional fitted
probability’s CDF (based on direct maximum likelihood) for both
exponential as well as power-law. The results for a sample bin size
are shown in Figure 13A. Power-law at the lower boundary of 1
provides a bad fit. However, overall, power-law outperforms the
exponential fit, specially after limiting the range of the data by
increasing the lower boundary. The best power-law fit is obtained
when the lower boundary approaches Xmin.

This finding matches the results of the KS test (based on Clauset
et al., 2009) as we report in this manuscript. However, from our
analyses, we know that when we reach the best power-law fit, the
estimated scaling exponents are too high for any known natural
system to follow a self-organized criticality regime. Therefore, we
have a situation where either one gets unreliable but desired scaling
exponent by setting the lower boundary to 1, or one obtains reli-
able but undesired scaling exponent by setting the lower boundary
to Xmin > 1.

Next, we quantified the goodness of fit with a more rigorous
approach than the simple KS test. If the parametric CDF is close
to the probabilities from the ECDF, then the depicted line should
approach the diagonal (1:1) line with minimal drift from it. For
quantifying this, we measured the integral of the distance of each
point on the p-p curves from the 1:1 diagonal line. This value
should be zero in a perfect fit; its non-zero value shows departure
from a perfect fit. Figure 13B shows the results for all bin sizes.
Similar to Klaus et al. (2011), the power-law provides a better fit
in comparison to exponential. However, there are two aspects that
can not be ignored for this condition to be true: (a) the distance
improves only as we tighten the lower bound criteria to be close to
Xmin, but it does not mean that this is a proper fit; (b) there is no
rule of thumb for such an improvement; in almost all of the cases,
a linear relationship in the normal probability plot distribution of
the distance was not found. This shows that power-law provides a
better fit than the exponential distribution, but that both fits are
not satisfactory. We consider alternative distributions below.

Alternative distributions for avalanche dynamics
Although previously, at the microcircuit scale, some studies have
asserted the existence of criticality as a universal characteristic of
neural dynamics in both spike and LFP avalanches (Beggs and
Plenz, 2003; Ribeiro et al., 2010), other evidence suggest that
same behavior can also be observed through stochastic processes
(Bedard et al., 2006; Touboul and Destexhe, 2010). In this study,
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FIGURE 7 | Avalanche analysis in awake monkey LFPs in logarithmic
representation. A power-law process has a linear trend in log-log scale.
LFP (negative or positive) maxima avalanches for all coarse graining
levels, as well as all thresholds, showed a linear trend. Upper row (A–C),
shows the nLFP for low, mid, and high thresholds respectively. Lower

row (D–F), shows the same for pLFP. Please notice that bin sizes 11 and
15 are not shown because for the clarity in the line plot; however, they
too, also showed a very clear linear trend in this scale. Such trend is
necessary but not sufficient for a process to be power-law. See text and
Figure 9.

FIGURE 8 | Avalanche analysis in awake human LFP in logarithmic
representation. A power-law process has a linear trend in log-log scale.
LFP (negative or positive) maxima avalanches for all coarse graining
levels, as well as all thresholds, showed a linear trend. Upper row (A–C),
shows the nLFP for low, mid, and high thresholds respectively. Lower

row (D–F), shows the same for pLFP. Please notice that bin sizes 11 and
15 are not shown because for the clarity in the line plot; however, they
too, also showed a very clear linear trend in this scale. Such trend is
necessary but not sufficient for a process to be power-law. See text and
Figure 9.

after rigorous testing, we showed that the avalanches do not follow
power-law as a universal feature. Thus we also tested whether an
alternative probability distribution could provide a better estimate
for the experimental observations.

We first tested a simple exponential fitting of the spike
avalanches, by fitting straight lines in a log-linear plot. As seen
from Figure 13C, a linear fit (“exp1”) can only fit part of the
data, as the initial points (for small size) do not scale linearly. In
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FIGURE 9 | Avalanche analysis based on LFP negative peaks in
wakefulness. (A) Cat ii (96 electrode array) and Cat iii (inset, 8 electrode
array), (B) Human i, (C) Human ii, (D) Monkey ii MI. In all cases, different
binnings lead to variable lower bound and scaling exponents. Lack of linear

trend in CDF shows that the observed linear trend in log-log scale, as
shown in Figures 7 and 8, are not sufficient for showing that avalanche
dynamics are power-law processes. For the mean/STD exponent values,
seeTable 3.

detection of the lower bound of linearity, i.e. (Xmin), the robust
bi-square method is more stringent than simple least square fits
and leaves behind more data points for exponential fitting (see
different lines in Figure 13C; errors based on bi-square are plotted
in Figure 13D; see Methods for details on linearity optimization).

Next, we tested a multiple exponential fitting of the data. The
rationale is that two exponential processes may represent dif-
ferences in two populations of cells, for example excitatory and
inhibitory cells. The fit resulting from a “sum of exponential
processes” was extremely good in minimum residual and reliable
prediction bounds for the data (Figure 13E). This “sum of expo-
nential” model (“exp2”) gave a very good performance in both full
length (dark blue) and reduced above “Xmin” (red). The “simple
exponential” model (exp1) reaches a very good fit only for the
reduced set (cyan) but not for the full length of the avalanches
(light brown). For comparison of “exp1” and “exp2” on differ-
ent spike avalanches, with and without “linearity improvement,”
see Figure 13F. Overall, it seems that both exp1 and exp2 exhibit
comparably high values of goodness of fit for the reduced sets.
However, only the double exponential fit was able to fit the entire
dataset.

DISCUSSION
In the present paper, we have analyzed and compared the avalanche
dynamics obtained from multielectrode recordings of spikes and
LFPs, for three species, cat, monkey, and human. In each case,
we used recordings exclusively made in non-anesthetized brain
states, including quiet and active wakefulness, SWS (slow-wave

sleep), and REM (Rapid eye movement). The primary result of
our analysis is that there is no power-law scaling of neuronal
firing, in any of the examined recordings, including “desynchro-
nized” EEG states (wakefulness), SWS, and REM sleep. All species
consistently showed distributions which approached exponential
distributions. This confirms previous findings of the absence of
power-law distributions from spikes in cats (Bedard et al., 2006),
and extends these findings to monkeys and humans. An obvious
criticism to that prior study is that a set of 8 electrodes is too low
to properly cover the system, and the absence of power-law may
be due to this subsampling. We show here that the same results are
obtained when a significantly higher density of recording is used,
confirming the absence of power-law.

In contrast, avalanche dynamics built from nLFPs displayed
more nuanced results. In some cases, the avalanche size distrib-
utions appear to draw a straight line in log-log representations,
but the more reliable CDF based tests did not show clear evi-
dence for power-law scaling. Indeed, statistical tests such as the
KS test did not give convincing evidence that these data are uni-
versally distributed according to a power-law. More importantly,
while nLFP are related to firing activity, we showed that a sim-
ilar behavior was also observed for pLFP peaks. The avalanche
analysis from positive peaks displayed similar results as for neg-
ative peaks, although positive peaks displayed a weaker statistical
relation to firing activity. Using 4 types of control/randomization
we provide very robust evidence that the fundamental differences
between nLFP and pLFP are not attributable to random behavior
of spikes or LFP peaks. Yet still, the discretized thresholded LFPs,
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Table 3 | Detailed awake LFP avalanche.

Bin size (ms) Polarity Threshold CDF exponent Pval gof

1 Neg Low 1.71 0 0.019

3 Neg Low 2.99 0.056 0.051

5 Neg Low 2.55 0 0.052

7 Neg Low 2.84 0.074 0.052

9 Neg Low 2.42 0 0.053

11 Neg Low 2.37 0 0.059

13 Neg Low 2.43 0 0.054

15 Neg Low 2.36 0 0.052

1 Neg Mid 1.83 0.002 0.015

3 Neg Mid 2.79 0.425 0.040

5 Neg Mid 2.84 0.55 0.042

7 Neg Mid 2.81 0.376 0.048

9 Neg Mid 2.84 0.345 0.050

11 Neg Mid 2.84 0.435 0.048

13 Neg Mid 2.71 0.098 0.058

15 Neg Mid 2.74 0.204 0.056

1 Neg High 1.9 0 0.018

3 Neg High 1.55 0 0.029

5 Neg High 2.44 0.645 0.036

7 Neg High 2.43 0.201 0.046

9 Neg High 2.41 0.672 0.036

11 Neg High 2.39 0.67 0.035

13 Neg High 2.3 0.496 0.036

15 Neg High 2.3 0.36 0.040

1 Pos Low 1.68 0 0.020

3 Pos Low 1.37 0 0.073

5 Pos Low 3.03 0 0.066

7 Pos Low 4.21 0.762 0.051

9 Pos Low 3.59 0.585 0.048

11 Pos Low 3.39 0.43 0.047

13 Pos Low 2.98 0.079 0.046

15 Pos Low 2.9 0.032 0.052

1 Pos Mid 1.74 0 0.018

3 Pos Mid 3.67 0.128 0.062

5 Pos Mid 3.79 0.047 0.069

7 Pos Mid 5 0.827 0.061

9 Pos Mid 3.78 0.797 0.041

11 Pos Mid 3.68 0.926 0.036

13 Pos Mid 3.87 0.797 0.049

15 Pos Mid 3.51 0.553 0.046

1 Pos High 1.76 0.009 0.020

3 Pos High 1.47 0 0.061

5 Pos High 3.19 0.169 0.067

7 Pos High 3.17 0.063 0.066

9 Pos High 3.07 0.251 0.061

11 Pos High 3.09 0.325 0.059

13 Pos High 3.18 0.286 0.062

15 Pos High 2.74 0.033 0.061

Human i detailed Table.

show strikingly similar behavior in their avalanche statistics. These
findings render any conclusions about self-organized criticality
based on simple power-laws of PDFs as phenomenological.

Together, these results suggest that the power-law behavior
observed previously in awake monkey (Petermann et al., 2009;
Ribeiro et al., 2010) cannot be reproduced in awake humans’ tem-
poral cortex or cat and monkey motor cortex. This conclusion also
extends to slow-wave sleep and REM sleep, which we found did not
display power-law distributed avalanches, as defined from either
spikes or LFPs. In searching for the linear domains in CDF based
on the KS test, one can force the scaling exponent to fall within
the range of the plausible values (comparable to those observed
in known physical phenomena). Doing so, of course, yields more
conservative values of scaling, but means that such scaling would
be applicable to only a limited range of data. In fact, unless the
system has universal scaling, there is always a tradeoff between the
range to which a scaling exponent can be extended (i.e., the linear
regime in the data) and the proximity of the scaling exponent value
to those of a narrow range (in this case, values of the SOC systems
are of interest). Our tests, did not force the scaling exponent to be
limited to values between 1 and 2, therefore it had a more stringent
emphasis on the linearity of more decades of the avalanche sizes.
In some cases where the data showed statistically significant lin-
earity, the obtained scaling exponents were an order of magnitude
higher than what falls in the range of the critical regime of known
physical phenomena. Conversely, these observations imply that,
a single scaling exponent is not sufficient to explain the complex
dynamics of ensemble activity.

A possibility worth exploring is that some form of power-law
in LFPs is the result of volume conduction associated with LFPs
recorded in high density arrays. When a peak is detected, it is
often also present in many different channels. A possibility worth
to explore is whether the same event could be volume-conducted
across many channels in the array, which may lead to an arti-
ficial increase the large-size avalanches. This possibility should
be examined by mathematical models of the volume conduction
effect.

It must be noted that the evidence for self-organized criticality
in neuronal cultures or in slices (Beggs and Plenz, 2003), as well
as in anesthetized states (Hahn et al., 2010) is not contradictory
with the present findings. The wiring of in vitro preparations, as
well as the network dynamics in anesthesia, are evidently different
than in the intact brain (Steriade, 2001). We find here that there is
no evidence for SOC in wakefulness and natural sleep states, and
for 3 different species. On the other hand, the report of power-law
scaling of nLFPs avalanches in awake monkey (Petermann et al.,
2009) seems in contradiction with the present findings. Many pos-
sibilities exist to reconcile these observations, such as differences
between brain region, recording method, cortical layer, or vol-
ume conduction effects. These possibilities should be investigated
in future studies. Moreover, in a recent report (Friedman et al.,
2012), it has been shown that data from high density recordings
(up to 512 electrodes) from from neural culture show elements
of universality and that avalanches can be collapsed into a uni-
versal scaling function (Papanikolaou et al., 2011). Such findings
confirm that brain circuits in vitro operate near criticality. Further
studies should examine how to reconcile such evidence with the
present in vivo findings.

Due to the high dimensionality of neural data, it is crucial to
separate the features of the inferred models that are induced solely
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FIGURE 10 | Comparison of Avalanche analysis based on negative and
positive peaks. (A–C) Show the CDF for different thresholds of pLFP and
(D–F) are related to nLFP. LFP (negative or positive) maxima avalanches for all
coarse graining levels, as well as all thresholds did not show linear trend in

CDF, therefore negate power-law as the generating process. These curves
show while nLFP has a closer relation with spiking, the avalanche dynamics
of nLFP and pLFP are strikingly similar in their lack of robust criticality when
tested with rigorous statistical tests.

FIGURE 11 | Avalanche analysis in different cortical areas
recorded simultaneously. Avalanche dynamics in nLFP shows that
the CDF of the input and output units of two interacting cortices have
slightly different characteristics but neither follow criticality regime.

(A) Monkey i, MI, low threshold (B) Monkey i, MI, medium threshold,
(C) Monkey i, MI, high threshold, (D) Monkey i, PMd, low threshold
(E) Monkey i, PMd, medium threshold, (F) Monkey i, PMd, high
threshold.
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FIGURE 12 | Effects of setting upper boundaries on avalanche size
distribution. Each column shows avalanches of a different bin size
(increasing from left to right). (A,B) Show the results of spike avalanche
size distribution of the PMd and MI (respectively). For each bin size, the
distributions of different avalanche sizes are shown in circles; the
avalanche size increases from the bottom to the top, while the size of each
circle represents the ratio to the overall number of avalanches. Red color
shows the excluded (saturated) avalanches enforced by limiting the Xmax to

N (number of independent measures; i.e., units in the case of spike
avalanches and electrodes in the case of LFP avalanches). Cyan color
shows the included avalanches. Y axis is in logarithmic scale for better
visualization and the values of Y represent the orders of magnitude of N for
proper comparison between different bin sizes (i.e., a given circle at y=2,
represents the avalanches that their size=2 log(N), its diameter shows the
number of avalanches that had that size and its color shows whether it is
included or excluded according to the Xmax =N rule).

by the inference scheme from those that reflect natural tenden-
cies of the studied system (Mastromatteo and Marsili, 2011). In
some cases, one could fit the data with different lines by limiting
the range of the decades within which a fit is analyzed. While it
is indeed possible, and highly likely, that neural data at this level
follow a multi-scale regime, albeit such a property would push
the system away from cohesively operating at self-organized criti-
cality because the relation between microscopic interaction of the
(neural) elements and collective behavior (of the cortical network)
no longer manifests in single valued features, like a single scaling
exponent.

Finally, it is important to emphasize that the present results
were obtained using statistical tests similar to previous statistical
analyses (Newman, 2005; Clauset et al., 2009). In particular, the use

of the CDF distribution rather than simple log-log representations
of the size distribution is a particularly severe test to identify if a
system scales as a power-law. The use of statistical measures such as
the Kolmogorov-Smirnov test (Tables 1, 2, and 3) also constitutes
a good quantification of which distribution fits the data, and is
largely superior to the least square fit in double logarithmic scale
(Clauset et al., 2009). The uncertainty and goodness of fit were
estimated by 1000 repetitions of each fitted distribution. We also
showed that setting bounds to the fit can introduce biases in favor
of power-law fits, as analyzed previously (Clauset et al., 2009). In
agreement with this, it was found with bounded fits that power-
law provides a better match to data compared to exponential
distributions (Klaus et al., 2011). Our analysis shows that nei-
ther power-law nor exponential distributions provide acceptable
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FIGURE 13 | (A,B) Fits comparison and lower boundary. (C–F) Alternative fits
for avalanche size distributions. (A) Probability-Probability plot (ECDF vs.
provisional CDF) for a sample bin size (cat i spike avalanche). Green colors are
p-p plot for ECDF vs. exponential, and blue colors are for p-p plot for ECDF vs.
power-law. In each color family, as the lower boundary is increased (from 1 to
Xmin), the color saturation fades; i.e., darkest color shows lower boundary of 1
and the lightest shows lower boundary of Xmin (where Xmin is based on the
Clauset method for fitting power-law to empirical data). (B) Integral of p-p
distance to the 1:1 diagonal (perfect match of the parametric CDF to ECDF).
The colors (blue to red) are related to bin sizes (from smallest to biggest).
Cross signs represents exponential distance and circles represents power-law
distance to the ECDF. (C) Simple exponential fitting of spike avalanche data.
The data points (purple and green) are plotted in a log-linear representation,
together with a simple polynomial fit (blue), a robust fit calculated on the full
length data (red) and a robust fit on the reduced data (magenta). The two
vertical lines indicate the lower bound of the region of linearity, i.e., “Xmin,”
calculated based on the simple polynomial fit (black) and the bi-square
method (gray). (D) Comparison of the goodness of fit of different exponential

fits to different reductions of the same dataset. The 3 coordinates are
“normalized overall improvement of RMSE” (noRMSE), “normalized relative
improvement of RMSE” (nrRMSE) and distance of a point from the diagonal
in (noRMSE,nrRMSE) plane. Each point in this 3D space, is the result of a
bi-square robust fit after elimination of the first i elements of the data (best fit
in red). (E) Bi-exponential fitting of the same data. The “sum of exponential”
model (exp2) gave a very good performance in both full length (dark blue) and
reduced above “Xmin” (red). The “simple exponential” model (exp1) reaches a
very good fit only for the reduced set (cyan) but not for the full length of the
avalanches (light brown). (F) Effects of linearity improvement on exponential
fits. Each set of four colors refer to the spike avalanche of Monkey i (MI),
Monkey ii (MI), Human A(Temporal), and Monkey i (PMd). In each set, green
colors refer to the simple exponential family (exp1) and the red colors depict
the sum of exponentials (exp2). Light green and light red, refer to the
calculated R̄2 on full length avalanche sizes, while dark green and red show
the average R̄2 for the dataset ranging from N −1 to N −Xmin where the
optimized length Xmin was 5 [see (C,D)]. (C–E) Were obtained from 15 ms bin
avalanches from human i awake spikes.
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fits to the datasets analyzed here. Multi-exponential fits suggest
that bi-exponential processes provide a particularly good fit to the
distributions, which suggests that the underlying neuronal dynam-
ics is most compatible with two exponential processes, which could
be for example excitation and inhibition, both scaling as exponen-
tial distributions. Such a possibility should be tested by further
studies, and seem in agreement with the complementary excitatory
and inhibitory dynamics found in the awake and sleeping brain
(Peyrache et al., 2012).
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