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Protein kinases play a crucial role in a plethora of significant physiological functions and a
number of mutations in this superfamily have been reported in the literature to disrupt pro-
tein structure and/or function. Computational and experimental research aims to discover
the mechanistic connection between mutations in protein kinases and disease with the
final aim of predicting the consequences of mutations on protein function and the subse-
quent phenotypic alterations. In this article, we will review the possibilities and limitations
of current computational methods for the prediction of the pathogenicity of mutations in
the protein kinase superfamily. In particular we will focus on the problem of benchmarking
the predictions with independent gold standard datasets. We will propose a pipeline for
the curation of mutations automatically extracted from the literature. Since many of these
mutations are not included in the databases that are commonly used to train the com-
putational methods to predict the pathogenicity of protein kinase mutations we propose
them to build a valuable gold standard dataset in the benchmarking of a number of these
predictors. Finally, we will discuss how text mining approaches constitute a powerful tool
for the interpretation of the consequences of mutations in the context of disease genome
analysis with particular focus on cancer.

Keywords: disease, kinase, literature mining, mutation, pathogenicity prediction, protein kinase, text mining,
variation

THE HUMAN KINOME
Protein kinases are a family of enzymes that catalyze the transfer of
a phosphate from ATP to a serine, threonine, or tyrosine hydroxyl
group in the target protein. Phosphorylation often implies enzyme
activation or inhibition,alteration of interaction surfaces, and con-
formational changes, among the most common consequences. It
is due to the importance of the processes regulated, that protein
kinases generally do not act alone but rather, they form part of a
finely tuned signaling cascade that is strictly controlled spatiotem-
porally. Therefore, protein kinases are metaphorically referred to
as the metabolic switches of the cell.

Protein kinases are one of the most ubiquitous families of sig-
naling molecules in the human cell. The total number of genes
encoding kinases has been a matter of discussion in the last decade
and, for instance, in Wang (1998) estimated between 1000 and
2000 different human kinase genes. With the completion of the
human genome, the current estimate is that 518 genes encode pro-
tein kinases, corresponding to more than 2% of the total number
of genes in the human genome (Manning et al., 2002b).

All members of the superfamily share a characteristic domain –
the protein kinase domain – that confers them the ability to
phosphorylate other proteins. Empirical studies suggest that the
residues conforming the ATP binding site tend to be conserved
and that phosphotransfer is carried out by a shared set of amino
acids (Schee and Bourne, 2005; Knight et al., 2007; López et al.,
2007; Kinnings and Jackson, 2009; Tanramluk et al., 2009).

In spite of these similarities, experiments in yeast models (Man-
ning et al., 2002a; Ubersax et al., 2003) suggest that although

protein kinases individually present a remarkable substrate speci-
ficity, the superfamily as a whole is very promiscuous, phosphory-
lating a wide range of protein substrates. This observation, may be
attributed to the different domain architectures present in the pro-
tein kinase superfamily. In addition to the aforementioned protein
kinase domain committed to the general function of phosphoryla-
tion, a number of modular domains are combined to, for example,
confer substrate specificity, to tightly control the activity of the
enzyme or anchor the kinase to the membrane (Finn et al., 2010).

These differences in terms of functionality and domain archi-
tecture can be used to classify members of the protein kinase
superfamily into different categories. Indeed, there are several dif-
ferent classifications of kinases from the main model organisms:
yeast (Hunter and Plowman, 1997), worm (Manning, 2005), fruit
fly (Manning et al., 2002a), and mouse (Caenepeel et al., 2004).
The reference classification in humans is KinBase (Manning et al.,
2002b; Miranda-Saavedra and Barton, 2007), which has also been
incorporated into UniProt (Bairoch et al., 2005), albeit with minor
modifications.

MUTATIONS IN THE PROTEIN KINASE SUPERFAMILY
Due to their important regulatory function, a number of muta-
tions in protein kinases have been associated with different human
diseases (Shchemelinin et al., 2006), including cancer. For exam-
ple, Greenman et al. (2007) carried out the first large scale study
of the variation of 518 human kinases in 210 samples of cancer
tissues and cell-lines. Moreover, other high-throughput studies
(Sjöblom et al., 2006; Wood et al., 2007) also yielding interesting
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information about the role that variation of human protein kinases
plays in cancer. For a detailed review, refer to Baudot et al. (2009).

The results from these high-throughput resequencing projects
is often available through research publications. However, in order
to make the information more easily accessible, several efforts
are devoted to compile, store, annotate, and characterize muta-
tions, including mutations in the protein kinase superfamily. Some
examples are UniProt (Yip et al., 2008), COSMIC (Bamford et al.,
2004), SAAPdb (Hurst et al., 2009), MoKCa (Richardson et al.,
2009), and KinMutBase (Ortutay et al., 2005). Together they con-
stitute a powerful resource to understand disease association and
the functional/structural properties of the mutations that affect
human protein kinases.

Unfortunately, database curators are not able to store and
annotate the vast amount of information provided by large-scale
variation studies at the same pace it is generated. Mainly, because
the process generally involves the manual inspection and curation
of specific variation studies, which requires considerable resources.
As a consequence, although growing in number, the mutations
totally characterized, and well-understood only represent a small
fraction of all the human variome.

METHODS TO PREDICT PATHOGENIC MUTATIONS
In the section Mutations in the protein kinase superfamily we men-
tioned that high-throughput resequencing screenings represent a
powerful set of techniques to discover large numbers of mutations.
Of these, only a small fraction are causally implicated in disease
onset and therefore, separating the wheat from the chaff is still a
major challenge (Baudot et al., 2009). For a small subset of the
new mutations discovered, experimental information is available
regarding the relationship between the mutation and disease, and
for a smaller number of cases the underlying biochemical mech-
anism is known. Little information is available for the remaining
mutations. The requirement of a lot of investment, both in terms
of time and money, means that it is not feasible to experimentally
test the association of all these mutations to disease, and to char-
acterize their functional effects. Nevertheless, this problem is very
amenable to in silico predictors.

Cline and Karchin (2011) wisely summarized the two different
approaches as follows: “A bench biologist interested in whether a
mutation of interest impacts the transcription of a gene might per-
form site-directed mutagenesis on genomic DNA, transfect mutated
DNA into cell culture, and use readouts of the gene’s transcriptional
activity to measure changes with respect to wild type. In contrast, a
bioinformatics approach typically involves computational analysis of
the DNA sequence surrounding the mutation, possibly supplemented
with information from published bench experiments.”

This is just one example of the very different methods available
to predict in silico the probability of a newly discovered muta-
tion being implicated in disease. Different approaches have been
developed in the last decade (Table 1) and several detailed reviews
on this subject have been published (Baudot et al., 2009; Karchin,
2009; Cline and Karchin, 2011).

These methodologies can be classified according to their under-
lying principles: Some methods make use of several features to
identify relevant positions in a given protein, and hence, rules are
derived to predict the pathogenicity of mutations. Another group

of implementations assumes that evolutionarily conserved protein
residues are important for protein structure, folding, and function,
whereby mutations in these residues are considered deleterious
(Ng and Henikoff, 2001). Variations on this principle lead to meth-
ods that predict deleterious mutations by assessing the changes
in evolutionarily conserved PFAM motifs (Clifford et al., 2004).
Furthermore, a group of methodologies use protein structures to
characterize substitutions that significantly destabilize the folded
state. A growing number of systems integrate prior knowledge
in the form of both sequence-based and structure-based features
from a set of mutations (for which their characterization as path-
ogenic or neutral exists) to train an automatic machine learning
system. Once trained, the system can infer the pathogenicity of
new mutations automatically. Different machine learning methods
can be implemented depending on their individual needs. Among
them, probably the most popular ones are: rule-based systems
(Wang and Moult, 2001; Ramensky et al., 2002; Reva et al., 2011),
decision trees (Krishnan and Westhead, 2003), random forests
(Kaminker et al., 2007b; Wainreb et al., 2010), neural networks
(Ferrer-Costa et al., 2002; Bromberg and Rost, 2007), Bayesian
methods (Adzhubei et al., 2010), and SVMs (Karchin et al., 2005;
Yue et al., 2005; Torkamani and Schork, 2007; Calabrese et al., 2009;
Wainreb et al., 2010). In addition, some meta approaches have been
implemented recently (Lee and Shatkay, 2008), for instance, Con-
del (González-Pérez and López-Bigas, 2011) integrates five of the
most widely employed computational tools for sorting missense
single nucleotide variations.

Methods also differ in the nature of the protein properties
used to determine the pathogenicity of new mutations. Some of
the predictors require sequence-oriented features that are easily
applicable to any polymorphism. Recurrent examples of this cat-
egory are: amino acid type, sequence conservation, domain type,
functional annotations, post-translational modifications, and so
on. A second set of predictors calculate features that require a pro-
tein structure. Common examples to illustrate these are: secondary
structure, solvent accessibility, flexibility, etc. The major drawback
of these methodologies is that although they may increase the
accuracy, the need for either an experimentally solved or a pre-
cisely modeled protein structure implies a loss of coverage. The
number of features and their combinations is infinite. Moreover,
features can also either be general or apply only to a defined subset
of proteins, as is the membership to a kinase group (Torkamani
and Schork, 2007; Izarzugaza et al., 2012).

BENCHMARKING PREDICTION METHODS
In the previous section we discussed the differences between the
various methods, both in terms of implementation and prediction
features. Equally important are the differences found in the com-
position of the datasets used to train the methods. This is particu-
larly relevant in the case of machine learning approaches. Machine
learning approaches are developed in two independent consecu-
tive steps: during the initial development phase, the developers aim
to optimize the combination of features, internal parameters, and
prediction algorithms to obtain a trained classifier. In a later phase,
blind tests are conducted to evaluate the performance simulating
a more realistic scenario. Consequently, three separate datasets are
needed: (i) a training dataset to allow the classifier to learn, (ii) a
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Table 1 | Summary of methods to predict the pathogenicity of mutations.

Method Main features Further information

SIFT (Ng and Henikoff, 2001) Threshold-based, conservation http://sift.jcvi.org

PMUT (Ferrer-Costa et al., 2005) Neural Network, sequence-, and structure-based

features

http://mmb.pcb.ub.es/PMut

SNPs3D (Yue et al., 2006) Support Vector Machine, structure-based features http://www.snps3d.org

PANTHER (Thomas et al., 2003) Threshold-based, conservation (PSEC) http://www.pantherdb.org/tools/

csnpScoreForm.jsp

Pfam LogRE (Clifford et al., 2004) Threshold-based, probability of a PFAM domain to

be pathogenic using a log-odds ratio

LS-SNP (Karchin, 2009) Support Vector Machine, sequence-, and

structure-based features

http://ls-snp.icm.jhu.edu/ls-snp-pdb

CanPredict (Kaminker et al., 2007a) Combines SIFT, Pfam LogRE, and Gene Ontology

terms in a single prediction

http://research-public.gene.com/Research/

genentech/canpredict

SNAP (Bromberg and Rost, 2007) Neural Network, sequence-, and structure-based

features

http://cubic.bioc.columbia.edu/services/

snap

Torkamani (Torkamani and Schork, 2007) Support Vector Machine, sequence-, and

structure-based features, kinase-specific

MutaGeneSys (Stoyanovich and Pe’er,

2008)

Whole-genome marker correlation dataset to

identify association to causal SNPs in OMIM

http://www.cs.columbia.edu/∼jds1

/MutaGeneSys

stSNP (Uzun et al., 2007) Integrates non-synonymous SNPs from dbSNP,

structural models from Modeler and KEGG

pathways. Comparative native/mutant analysis

http://ilyinlab.org/StSNP

F-SNP (Lee and Shatkay, 2008) Metaserver, combines PolyPhen, SNPeffect2.0,

SNPs3D, LS-SNP

http://compbio.cs.queensu.ca/F-SNP

SNP&GO (Calabrese et al., 2009) Support Vector Machine, several sequence-derived

features, and information from Gene Ontology

terms

http://snps-and-go.biocomp.unibo.it

/snps-and-go/

PolyPhen-2 (Adzhubei et al., 2010) Bayesian classifier, sequence-, and structure-based

features

http://genetics.bwh.harvard.edu/pph2

MuD (Wainreb et al., 2010) Random forest, sequence-, and structure-based

features

http://mud.tau.ac.il

CHASM (Wong et al., 2011) Random forest, sequence-based features http://wiki.chasmsoftware.org/index.php

Mutation Assessor (Reva et al., 2011) Threshold-based, differential evolutionary

conservation in subfamilies

http://mutationassessor.org

Condel (González-Pérez and

López-Bigas, 2011)

Metaserver, combines the output of other

predictors

http://bg.upf.edu/condel/

wKinMut (Izarzugaza et al., 2012,

submitted)

Framework for the analysis of kinase mutations.

Integrates annotations, predictions, and information

from the literature

http://wkinmut.bioinfo.cnio.es

validation dataset to optimize the selection of parameters, and (iii)
an evaluation dataset to conduct blind tests to assess the expected
performance of the classifier.

Consequently, the datasets used highly influence the overall per-
formance of the prediction and, if not pondered cautiously might
become a source of evaluation errors. Probably, the most common
of them being overtraining as a result from the evaluation of the
methodologies with mutations that have also been considered in
the training dataset. In other words, if a predictor were evaluated
using a test set whose correct answers the method had previously
been provided with, this may yield unfair over-estimation of the
prediction capability. An extension of this problem,especially if the
features considered predict at the protein level, is that mutations

occurring in the same protein or closely related homologs should
not span two different datasets.

The selection of a benchmark dataset that is fair and does
not lead to artifacts is not a trivial task (Care et al., 2007) and
clean datasets that were not used in the development of any
of the methods are required. Following a similar approach to
those in the detection of bio-entities from the literature (BioCre-
ative), protein structure (CASP), and protein interaction predic-
tion (CAPRI), a successful recent example is CAGI1. In sum-
mary, CAGI is intended to assess a battery of computational

1http://genomeinterpretation.org
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methods for predicting the phenotypic impacts of genome varia-
tion. Participants are provided a number of different sets of genetic
variants and are expected to make predictions of resulting, mol-
ecular, cellular, or organismal phenotype. These predictions are
later on evaluated by independent assessors against experimental
characterizations.

Although CAGI constitutes an undoubtedly powerful tool to
provide insights on the performance of state-of-the-art method-
ologies, the major drawback is that provided datasets are gathered
from very specialized projects, and consequently are seldom uni-
versally applicably to all methodologies,which consequently, limits
the benchmark. An example of the previous would be the intrin-
sic limitation to predict mutations outside the protein kinase
superfamily for kinase-specific methodologies.

Complementary to the CAGI experiment, current text min-
ing methodologies enable the generation of clean sets of experi-
mentally validated mutation mentions from the literature. Those
mutations that were not recorded in the databases used to provide
the training and evaluation datasets are of special interest. Here
we propose a pipeline for the curation of mutations automatically
extracted from the literature and their use as a gold standard in the
benchmarking of pathogenicity predictors. We will describe this
approach thoroughly in the following sections.

MINING KINASE MUTATIONS FROM THE LITERATURE
Previously, we discussed how the efforts of database curators to
store and annotate mutations (Table 2) can hardly keep the pace
of the vast amount of information generated by current large-scale

Table 2 | Summary of resources providing information about kinases and mutations.

Method Description Further information

UniProt (Consortium, 2007) General information about proteins, including human

protein kinases

http://www.uniprot.org/

PDB (Berman et al., 2000) Catalog of protein structures, protein kinases widely

represented

http://www.rcsb.org/

PDBsum (Laskowski et al., 2005) Annotation on protein structures http://www.ebi.ac.uk/pdbsum

KinBase (Manning et al., 2002b;

Miranda-Saavedra and Barton, 2007)

Hierarchical classification of protein kinases http://kinase.com/kinbase/

SwissVar (Yip et al., 2007) Detailed information about mutations present in

UniProt

http://swissvar.expasy.org/

COSMIC (Bamford et al., 2004) Catalog of somatic mutations in cancer http://www.sanger.ac.uk/perl/genetics/

CGP/cosmic
Ensembl (Flicek et al., 2011) Infrastructure for the integrated annotation on

chordate and selected eukaryotic genomes

http://www.ensembl.org

dbSNP (Sherry et al., 2001) Annotated catalog of SNPs http://www.ncbi.nlm.nih.gov/projects/SNP

HapMap (Consortium et al., 2010b) Catalog of common genetic variants in the human

genome

www.hapmap.org

1000 Genomes (Consortium et al.,

2010c)

Deep catalog of human variations derived from the

next-generation sequencing of 1000 people

http://www.1000genomes.org/

TCGA (Network, 2011) The Cancer Genome Atlas is a collection of genetic

variations found in 20 different cancers

http://cancergenome.nih.gov/

ICGC (Consortium et al., 2010a) The International Cancer Genome Consortium project

aims to a comprehensive description of genomic,

transcriptomic, and epigenomic changes in 50 tumor

types and sub-types

http://www.icgc.org

OMIM (Amberger et al., 2011) Catalog of Mendelian mutations known to cause

disease

http://www.ncbi.nlm.nih.gov/omim

SAAPdb (Hurst et al., 2009) Calculation of the structural consequences of

mutations

http://www.bioinf.org.uk/saap/db/

SNPeffect 2.0 (Reumers et al.,

2006)

A database mapping molecular phenotypic effects of

human non-synonymous coding SNPs

http://snpeffect.switchlab.org

ModBase (Pieper et al., 2006) Structural models of mutant proteins http://salilab.org/modbase

TopoSNP (Stitziel et al., 2004) TopoSNP: a topographic database of non-synonymous

single nucleotide polymorphisms with and without

known disease association

http://gila.bioengr.uic.edu/snp/toposnp/

MoKCa (Richardson et al., 2009) Annotated catalog of cancer-associated mutations in

protein kinases

http://strubiol.icr.ac.uk/extra/mokca/

KinMutBase (Ortutay et al., 2005) Registry of disease-causing mutations in protein

kinase domains

http://bioinf.uta.fi/KinMutBase
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variation studies. To bridge this growing gap, automatic extraction
of entities and their relationships from the existing literature can
be applied. This includes text mining techniques such as regular
expressions, pattern recognition, and natural language processing,
among others. Indeed, these approaches have been successfully
applied to other fields of research, for instance for the automatic
extraction of protein–protein interactions (Blaschke and Valen-
cia, 2001; Krallinger et al., 2008c) and in the annotation of genes
and proteins (Krallinger et al., 2008a, 2010). Despite the success of
these methods, it must be born in mind that this technology does
not aim to replace manual curation and validation. Rather, text
mining approaches are better understood as systematic tools to
assist the efforts of human curators by helping them to find infor-
mation, prioritize documents, and highlight potentially relevant
items (Krallinger et al., 2008a,b; Leitner et al., 2010).

Here we will use our recently published pipeline for extracting
mutation mentions in protein kinases from the literature, SNP2L
(Krallinger et al., 2009), as an example of a typical text min-
ing workflow. The pipeline (Figure 1) integrates article retrieval,

detection of mutations, and proteins in the corresponding arti-
cle, correct mutation-protein association and, finally, validation
of the results. To the best of our knowledge there is currently
no pipeline similar to the one presented here. Two main aspects
make our pipeline unique. First, our system is specifically designed
to extract mutations occurring in the protein kinase superfamily.
Second, we perform an additional filtering step to ensure the qual-
ity of the extracted mutations as we will disclose in the following
sections.

ARTICLE SELECTION (TRIAGE): CONSTRUCTING A TEXT MINING
CORPUS
Following a common approach in text mining, we tested SNP2L
with two different datasets: One constituted by the whole collec-
tion of PubMed abstracts and the other by a collection of either
manually or automatically selected full-text articles. In order to
construct the corpus, full-text articles were automatically down-
loaded using an in-house retrieval system (Krallinger et al., 2008a)
prioritized under three different criteria:

FIGURE 1 | SNP2L Pipeline as an example of a typical automatic method to extract mutation mentions from the literature. The pipeline integrates
article retrieval, detection of mutations and proteins in the corresponding article, correct mutation-protein association and, finally, validation of the results.
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1. Relevance of the abstract: information contained in the corre-
sponding abstracts such as the mention of mutations, mention
of human kinases, and a combination of keywords (including
“human kinase mutation”).

2. A priori relevance of the full-text articles: extracting all ref-
erences in PubMed for human kinases contained in multiple
databases (e.g., SwissProt, MINT, and IntAct).

3. Relevance of the journal: based on analyzing a fraction of
mutation-mentioning abstracts of each journal and prioritizing
a set of journals (and thus their articles) to retrieve their full-text
articles. This set consisted of the following journals: American
Journal of Human Genetics, European Journal of Human Genet-
ics, Human Genetics, Human Mutation, and Human Molecular
Genetics.

Before proceeding to the next step, all articles should be split in
sentences using a sentence boundary detection system (Krallinger
et al., 2008a).

ENTITY RECOGNITION: MUTATIONS AND PROTEIN KINASES
The consistent nomenclature used to describe mutations in the
literature makes these entities especially amenable to this type of
approach and accordingly, a growing number of such methods
have been described in the literature over the years. A summary
of several of these literature mining tools to extract information
on mutations is presented in Table 3. In the example discussed
here, we used MutationFinder (Caporaso et al., 2007) for the ini-
tial extraction of single aminoacid substitutions. MutationFinder
constitutes a valuable tool to detect the mention of mutations in a
given set of manuscripts and it relies on language expressions used
to describe mutation events. MutationFinder is very competitive
for recall and precision when compared to other strategies (Yip
et al., 2007), and it has been evaluated using a manually generated
gold standard collection of abstracts.

After recognizing all the mutations mentioned in the text, we
attempted to identify all human protein kinases co-mentioned
with them in the same document. Existing systems that try to
link mentions of genes and proteins to database identifiers gen-
erally rely on approaches that compare the names appearing in
the text to gene names or aliases contained in database records.
The actual task of determining the exact database record for a
gene/protein mention is commonly referred to as gene mention
grounding or normalization, and has been evaluated in the second

BioCreative community challenge, illustrating that dictionary
look-up approaches can obtain competitive results for this purpose
(Morgan et al., 2008).

Following this line, we constructed a lexicon specifically for
human protein kinases, derived from gene and protein symbols,
names, and aliases contained in the UniProt database (see Figure 1,
Get names, symbols, and aliases). Because this gene/protein
lexicon did not capture all representative typographical variants
of a given name, we used a rule-based approach and heuris-
tics for generating typographical variants for the kinase lexicon
entries. With this respect, the alternative use of hyphens, capital-
ization (upper-case and capitalized names), and different word
order variants were captured. The gene/protein lexicon was fil-
tered to eliminate highly ambiguous names through comparison
with a stop word list and by, after an initial look-up step, checking
manually potential outlier names that show a very high mention
frequency. The extended and pruned human kinase lexicon was
then used for the detection of corresponding mentions in our doc-
ument collections containing mutation mentions. As a given name
can correspond to different records (ambiguity), both at the level
of human genes as well as in case of genes from different species
sharing the same name, we calculated for each article, two different
scores reflecting (a) the contextual similarity of the article to the
reference (UniProt) protein record and (b) the overall association
of the article to human species terms from the total set of tagged
species terms. A conceivable alternative would be to simply apply
very strict protein-organism co-mention criteria based on relative
textual distances, which is rather problematic in case of human
proteins were often the organism source is not explicitly stated.

MUTATION-SEQUENCE LINKING
The next step is to link mutation mentions with their correspond-
ing human kinases. This step would be trivial if a single protein
was mentioned per article, however, for most of the articles this
is not the case and more than one protein is mentioned per arti-
cle. A reasonable solution would be to check the existence of the
amino acid at the specified position for each mutation mention-
protein combination. In addition to this basic sequence look-up
validation method additional mutation mapping strategies could
be implemented. They should consider errors resulting from the
wrong detection of the directionality of the extracted mutation
mention (using the wild type as mutant residue and vice versa)

Table 3 | Summary of text mining implementations for mutation extraction.

Method Main features

MEMA (Rebholz-Schuhmann et al., 2004) Regular expressions, gene and protein mentions, co-mention proximity, OMIM validation

MuteXt (Horn et al., 2004) Regular expressions, GPCR and NR mentions detection, co-mention proximity, sequence check

Yip (Yip et al., 2007) Regular expressions, protein mentions detection, SwissProt validation, sequence check

Mutation GraB (Lee et al., 2007) Regular expressions, protein mentions detection, graph shorted distance, sequence check

Mutation Miner (Baker and Rene, 2006) Regular expressions, protein mentions detection, sentence co-mention

MuGeX (Erdogmus and Sezerman, 2007) Regular expressions, protein mentions, protein, and DNA mutation disambiguation

VTag (McDonald et al., 2004) Machine learning detection of acquired sequence variation mentions detection (mutations, translocations,

and deletions)
OSIRIS (Furlong et al., 2008) Detection of human gene variations corresponding to SNPs

MutationFinder (Caporaso et al., 2007) Regular expressions and patterns, protein mutations mentions detection, complex language expressions
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and inconsistencies and alternative sequence counting between
the article and the kinase sequence. For example:

– Sliding window algorithms that look for relative positions of
mutations (pattern) rather than exact position co-occurrences.
With this approach, mutation mentions would be scanned look-
ing for positions relative to the starting one attending to the
distance between all the mutations in the same abstract. The
strength of this approach is that it is able to deal with alter-
native sequence coordinates. There are many examples in the
literature: Mutations F175P, R178L, and Y530L in the proto-
oncogene tyrosine-protein kinase Src, are mentioned in the
considered article (PMID 2108315) as F172P, R175L, and Y527F
respectively. Since the probability of finding simple patterns by
chance can be high in some trivial cases, it is reasonable to con-
sider only those cases where a minimum number of mutated
positions (3 in our example) could be detected.

– Bidirectional mutation to sequence position mapping. Either
the wild type or the mutant residue of an extracted muta-
tion mention might be accepted in the corresponding sequence
position.

– Pro-peptides and mature protein mutation mapping. In order to
allow alternative residue counting due to the presence of a signal
peptide, a displacement equal to the length of the corresponding
signal peptide might be allowed.

– Methionine cleavage: the mutation mapping might be carried
out taking into consideration the possibility of neglecting the
N-terminal methionine.

USING THE LITERATURE TO GENERATE A BENCHMARK DATASET
The main focus of this article has been the construction of a gold
standard dataset to benchmark prediction methods. Following this
thread of reasoning, mutations already present in common data-
bases are discarded, while new ones form the benchmark dataset.
This procedure will ensure a dataset that enables fair comparison
and is less prone to over-estimation of the classifiers’ performance
as we discussed previously in the Benchmarking prediction methods
section.

In spite of constituting a powerful tool for the extraction of
knowledge from the literature, text mining approaches to recover
kinase mutations still have some limitations in terms of recall and
a number mutations escape detection by even the most accurate
state-of-the-art algorithms. Among the challenging aspects in this
respect are the detection of mutations that are described in addi-
tional materials or contained in tables and figures. This is because
they can not easily be converted efficiently to plain text. Another
key issue is the appropriate detection of the kinase mentions,which
can be referred to through a range of different typographical vari-
ations and aliases, of which text mining approaches can only cover
some. To this issue one also needs to add the underlying limitations
in terms of recall of the mutation extraction process (Caporaso
et al., 2007) and inconsistencies of sequence descriptions in refer-
ence databases as compared to those examined in scientific articles.

USING THE LITERATURE TO UNDERSTAND THE CONSEQUENCES OF
MUTATION
From a parallel perspective, text mining approaches can be used to
enhance our understanding of both new and existing mutations.

Text mining approaches output mutations extracted from the
literature along with all their contextual information. Pointers
to the relevant literature are provided, these include: experimen-
tal conditions, organism, or population sub-types, information
regarding observed phenotypes including association to disease,
or in a best case scenario, the underlying biochemical mechanisms.

This information can help to interpret the consequences of
mutations and is often complementary to the valuable clues pro-
vided by the methods to predict the pathogenicity of mutations.
Indeed, the emerging trend in the field is to integrate information
from diverse sources (Lee and Shatkay, 2008; González-Pérez and
López-Bigas, 2011), as we have done recently with the develop-
ment of wKinMut2 to help in the interpretation of mutations in
the protein kinase superfamily.

In addition to the predictions of pathogenicity directly from
our in-house classifier (Izarzugaza et al., 2012) and the values of
the features used in the classification, wKinMut combines infor-
mation from different external sources to help in the interpretation
of the prediction. These include the results from other classifiers
focusing on different aspects of mutation pathogenicity (SIFT; Ng
and Henikoff, 2001; MutationAssessor; Reva et al., 2011), the rep-
resentation of the mutation in the context of its three-dimensional
structure and records of the mutation in other databases such as
SAAPdb (Hurst et al., 2009), UniProt (Yip et al., 2007), COS-
MIC (Bamford et al., 2004), and KinMutBase (Ortutay et al.,
2005). Two text mining resources complement the framework:
iHop (Hoffmann and Valencia, 2005) a literature mining system
to extract gene–gene and protein–protein interactions and SNP2L
(Krallinger et al., 2009) whose capabilities to detect mutation
mentions from the literature have been described thoroughly here.

In summary, wKinMut can be useful to predict the path-
ogenicity of novel mutations and to interpret the biochemical
mechanisms leading to pathogenicity and it can be applied to the
interpretation of genomes from cancer patients.

OVERVIEW AND SUMMARY
Current research aims to discover the mechanistic connection
between mutations and disease. We focused on the protein kinase
superfamily due to the enormous wealth of mentions in the
literature associating different diseases, including cancer, with
mutations in members of this superfamily.

In this article we have reviewed the different possibilities and
limitations of state-of-the-art computational methods for the pre-
diction of the pathogenicity of mutations and we have discussed
the difficulties that arise to benchmark and evaluate the perfor-
mance of the classifiers. We have proposed our recently published
pipeline, SNP2L, for the automatic extraction and curation of
mentions in the literature to collect a gold standard dataset that
might be used in the benchmarking of the different predictors.
Finally, we have introduced wKinMut as an example the integra-
tion of text mining with prediction methodologies to help in the
interpretation of the consequences of mutations in the context of
disease genome analysis with particular focus on cancer. We think
that such applications might be of interest in the interpretation
of patient genomes in the emerging field of personalized/stratified
medicine in, hopefully, a near future.

2http://wkinmut.bioinfo.cnio.es
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