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By definition, fractal structures possess recurrent patterns. At different levels repeating
patterns can be visualized at higher magnifications. The purpose of this chapter is three-
fold. First, general characteristics of dynamical systems are addressed from a theoretical
mathematical perspective. Second, qualitative and quantitative recurrence analyses are
reviewed in brief, but the reader is directed to other sources for explicit details. Third,
example mathematical systems that generate strange attractors are explicitly defined, giv-
ing the reader the ability to reproduce the rich dynamics of continuous chaotic flows or
discrete chaotic iterations. The challenge is then posited for the reader to study for them-
selves the recurrent structuring of these different dynamics. With a firm appreciation of the
power of recurrence analysis, the reader will be prepared to turn their sights on real-world
systems (physiological, psychological, mechanical, etc.).
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DYNAMICAL SYSTEMS IN N -DIMENSIONAL SPACE
HOMEOSTASIS VERSUS HOMEODYNAMICS
Systems, mathematical and physical, are each framed by a set of
deterministic rules defined by the interaction of multiple compo-
nents (variables) as coupled by adjustable constants (parameters)
and scaled by fixed constants. To the extent that such systems
are time-varying, they are posited to be dynamical in nature
as opposed to static. Many dynamical mathematical systems are
explicit, exact, noise-free, and time-reversible. But real-world sys-
tems from physics, chemistry, and biology are at best ill-defined for
they exist in noisy environments and have interactions with other
neighborhood systems (changing coupling strengths). The mathe-
matical description of real-world systems is often approximate and
incomplete. The presence of noise itself has the ability to shape,
even tune, dynamical systems such as in the case of stochastic
resonance (Wiesenfeld and Moss, 1995).

A closed system can be conceptually portrayed as a bounded
area embedded within a surrounding environment as illustrated
in Figure 1. Although the simple systems are represented in two
dimensions (flat), no dimensionality is implied or excluded. If the
system is rigid the boundary is fixed and inflexible (solid line), but
if the system is plastic the boundary (dashed line) can move and
adapt to the surrounding environment. In this sense, experience
teaches that the first system is more traditionally mathematical
whereas the second system is more intrinsically biological. Flexi-
bility and adaptability of the boundary determines system survival
and success in harsh environments.

From the field of physiology came the very helpful concept of
system homeostasis. The foundation of homeostasis stems back
to Claude Bernard (1813–1878) and his concept of the milieu
intérieur of the extracellular environment of multicellular living
systems (Gross, 1998). However, it was Walter Cannon (1871–
1945) who coined the term homeostasis (Cannon, 1929) which
has since been elevated to the status of scientific law as it were.
Principles of homeostasis assume that systems of the body are
constrained within certain tight bounds whereby system variables

are attracted to so-called constant or static values compatible with
life. Good, if not obvious, examples include the control of arterial
plasma pH at 7.40; normal body temperature near 37˚C; and mean
blood pressure around 100 mm Hg to name a few.

Homeostasis implies the presence of feedback regulation of
dynamical systems affected by sensors that report back to the con-
trol center of the system. A half century ago engineering sciences
started impacting physiological thinking, so much so that the con-
cept of set points was in vogue for living organisms. Taken to its
extreme, however, homeostasis can become a straight jacket to
dynamical systems. In this context, the poster child for homeosta-
sis might be the cadaver state where all movement is disallowed!
Indeed, many living physiological systems seem to be missing
an error signal (Somjen, 1992), and concepts of homeostasis
and Gaussian statistics may be barriers to understanding natural
variability (West, 2010).

With much deeper appreciation for the rich dynamics afforded
by dynamical systems, the idea of homeodynamics is much more
satisfying. Homeodynamics sets trajectories free from the over-
bearing constraints of homeostasis (Lloyd et al., 2001). These two
concepts can be simply contrasted by considering a simple physics
metaphor. Think of a system represented by a marble fallen into a
hole in the center of a circular plate. With tilting motion applied to
the plate (noise), the marble remains locked in its fixed position,
unless the disturbance becomes too great. This is rigid homeosta-
sis where the marble is entrapped on a strong attractor. Now think
of a second system also consisting of a marble on a plate, but this
plate has no center hole. As the plate is tilted motion is imparted to
the marble. As long as the marble remains on the plate and moves
freely over its domain, the system is stable. This is homeodynamics.
Only when the tilt angle becomes too steep or the marble velocity
becomes too fast does the system fail.

TRANSIENTS AND NON-STATIONARITIES
For any system to be termed dynamic, it must show motions in
time or contrasts in space. The state of the system can be considered
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FIGURE 1 | Closed systems are distinguished from their surrounding
environments by definitive boundaries, firm (left) or fuzzy (right).

as either homeostatic or homeodynamic. Interestingly, homeosta-
tic systems can have motions in the sense that it moves toward the
well of attraction. Similar to the phase-space diagram of Figure 2,
a marble swirling around a stationary funnel cone will soon come
to rest in the smaller-diameter funnel spout where it will remain
at its fixed point. The pathway traversed by the marble is called
the trajectory and the destination is called the basin of attraction.
Likewise, magnets will hold iron filings in complicated yet rigid
patterns within multiple basins of attraction.

From the perspective of homeodynamics, however, trajec-
tories can also be seen as non-stationarities operating over a
field containing basins of attraction always changing. Living sys-
tems, especially, have weak and variable basins of attraction
meaning that the dynamic is always on the move, never rest-
ing per se, as the wells of attraction rise and fall. This would be
like the complex motions of a marble rolling over a large rub-
ber sheet which was continually subjected to topological contour
changes.

DIMENSIONALITY AND RIEMANN SPACE
Examine Figure 3 from left to right. If one works with points
(very, very small marbles), a single point is mathematically defined
as occupying a dimension of zero. As soon as a second point is
introduced to the system, it must be separated by a finite distance
from the first point. The line connecting the two points forms
a line which resides in a dimension of 1. Sliding the horizontal
line vertically defines a square (or rectangle) which lives in a two-
dimensional plane (flat or curved). Shifting the square forms a
cube or rectangular box which exists in three-dimensional space.
Movement of the cube perpendicular to the three orthogonal axes
forms a hypercube or tesseract which cannot be drawn because
it exits in four-dimensional space. In this type of metric space or
Riemann space, the dimensions are integers with no upper limit
(0, 1, 2, 3, 4, etc.). The higher the dimension the more complex is
the system that can be represented. Note that a three-dimensional
system moving in time (a dimension itself) requires four variables
to locate the system or object.

One definition of system complexity relates to the number of
interacting variables present: the more the variables, the higher
the complexity. And the higher the complexity, the greater must

FIGURE 2 | Pathway of a transient trajectory of a dynamical system
enroute to its stable singularity. Public source: http://en.wikipedia.org/
wiki/Phase_space

FIGURE 3 | Representation of N dimensions arising from points
moving in orthogonal directions. Adapted from public source:
http://en.wikipedia.org/wiki/Dimension

be the dimensionality of the system. Thus systems have dimen-
sions that can be captured by embedding methods. For example,
one can compute the distance between sub-states of the system by
defining the Euclidean distance between vectors of the system. The
trick is to be sure that the system is being studied in the dimension
in which it resides, less it be under-represented topologically as
it were. To study a three-dimensional ball in two-dimensions, a
plane can cut through the object and results in a circle of vary-
ing radius depending upon where the slice is made. Conversely,
to study a three-dimensional ball in four-dimensions adds no new
information, but is merely a waste of computational effort. System
information is maximized in the dimension in which the system
lives.

There are various ways to estimate the dimension of a dynam-
ical system, but there are two cautions to remember. First, mea-
surement of dimensionality depends upon the system being in
some kind of homeostatic steady state. This is practically realized
for mathematical systems, but not necessarily biological systems.
Second, the algorithms employed for the estimation of dimension-
ality, lose their efficiency as fast as the dimension being estimated
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increases. This is known supposedly as “the curse of dimension-
ality” in which only the lower dimensions can be measured with
confidence (Parker and Chua, 1989). Third, the presence of real-
world noise inflates the dimension being measured. This is not a
problem for mathematical systems in which there is no noise (save
digital noise), but the more the noise present the greater the real
dimension of the system gets inflated. The reason for this is that
no dimension exists that can completely capture the full dynamic
of pure stochastic noise.

With the introduction of low-dimensional chaos (Lorenz,
1963) and fractal structures (Mandelbrot, 1983) it became fashion-
able to hypothesize that the complexity of biological systems could
be explained by few-variable systems operating in low dimen-
sions. But since the number of quasi-steady state experimental
points required to estimate the system dimension is 10∧dimension,
dimensions greater than six are impractical to measure and inac-
curate to report. But one surprise from fractal structures was the
discovery that dimensions need not be integers. Rather dimen-
sions can be fractions (non-integers; Grassberger and Procaccia,
1983).

DIFFERENTIAL FLOWS AND DIFFERENCE MAPS
Time-varying (or space varying) systems in the real-world are
smooth and continuous insofar that the distance from point to
point is vanishingly small. Electrical analog systems best represent
such continuous and smooth signals as measured as AC voltage
waves from wall sockets (American: 110 V sinusoid at 60 Hz). But
we live in an artificial digital world where reality is discretized
into steps that are significantly larger than the vanishingly small
limit in calculus. The higher the digitization frequency, the higher
is the fidelity of reproduction. But magnification (amplification)
of these signals always reveals the tell-tale steps of these artificial
reproductions of reality.

These comments are made from a purist standpoint. However,
it seems fair to declare a digitized system as continuous if (and only
if) the signal is sampled at least 10 times faster than the fastest fre-
quency within that signal. Here these quasi-smooth signals are
considered to be flows, dynamical flows of the combined system
variables interacting. For example, as a fly navigates a room (true
continuous flow), high-frequency stroboscopic “stopping” of the
motion faithfully captures the trajectory (fictive continuous flow).
There is a caution here. The fair assumption above is disrupted
when surprise events occur within the dynamic. No theory of max-
imal digitization frequency will suffice and the sampling theorem
of Henry Nyquist (1889–1976) is violated (Nyquist, 1924).

Another way of describing a system is to divide the continuous
flow into intervals. This is particularly easy if the signal possess a
stereotypic marker which can serve as triggers to end one inter-
val and start another. Thus, interspike intervals (ISIs) are easily
computed from neuronal spike trains. Likewise, R-wave to R-wave
intervals (RRIs) are easily computed from the PQRST flows of
the English electrocardiogram (ECG) or German elektrokardio-
gramm (EKG). In general, whether or not there are distinctive
features in the time series, difference maps can still be generated by
defining a barrier that is one dimension below that of the system.
Mathematically these difference maps are called Poincaré sections
(Rasband, 1990) named after the French mathematician Henri

Poincaré (1854–1912) who contributed so much to non-linear
dynamics (before the invention of the computer). Figure 4 illus-
trates the formation a two-dimensional Poincaré section from a
smooth and continuous three-dimensional flow. Every time the
dynamical flow crosses the two-dimensional surface (S), differ-
ence points are plotted on the surface. If the points in the Poincaré
section form patterns, there are deterministic rules in place gov-
erning (steering) the dynamic. In this case, the next point P(i+ 1)
becomes a function of the previous point P(i). Such maps can
diagnose simple periodicities (single point), multi-stable systems
(multiple points), and chaotic trajectories (fractal points). How-
ever, if the flow is stochastic (white noise) the Poincaré section will
display points in random patterns without structure, implying that
no determinist rules are in place.

TERMINAL DYNAMICS
Many smooth and continuous mathematical functions are con-
tinuously differentiable and possess unique solutions of the Lip-
schitz type named after German mathematician, Rudolf Lipschitz
(1832–1903). Other smooth and continuous mathematical func-
tions are not continuously differentiable, have multiple solutions
of the non-Lipschitz type, and are strictly non-deterministic and
non-reversible in time (or space). Possible trajectories of one non-
deterministic system is schematized in Figure 5. Starting at time
zero (t 0), f(x) is greater than 0 and the trajectory decays toward the
horizontal axis. When the trajectory reaches this axis (t e), instead
of continuing through a single point to the region of negative val-
ues (as a Lipschitz type system would do), it is extinguished (halts).
Mathematically, when f(x)= 0 all dynamic motion ceases and the
system is rendered non-Lipschitzian. The only way for the system
to be kicked back into action is for infinitesimal noise to jitter the
system off of this singularity, forcing f(x) 6= 0. Since this dynam-
ical action restart can happen at any time following the start of

FIGURE 4 | Example of how a Poincaré section reduces the
dimensionality of a dynamical system. Public source:
http://en.wikipedia.org/wiki/File:Poincare_map.svg
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FIGURE 5 | Schematic of terminal dynamic with multiple trajectory
selections. Adapted from Figure 24.8 of Zbilut et al. (1996).

the singularity, the solutions to the equation become numerous
and variable, initiating new trajectories (1, 2, or 3) where f(x) is
non-zero at different times (t 1, t 2, t 3, respectively). This trajec-
tory selection is unique, flows with the direction of time, and is
non-reversible through the singularity.

There are many real-world examples of non-deterministic sys-
tems which possess alternating deterministic trajectories and sto-
chastic pauses. For example: jet aircraft land and pause at the
gate before taking off again; pauses interrupt arm extensions and
flexions; flatline isopotentials are recorded in the normal ECG
between T -wave repolarizations and P-wave excitations; and the
active running of ants is punctuated by stationary pauses. To best
way to model such systems would be to describe the dynamical
trajectories with differential equations interspersed with realis-
tic (and stochastic) pauses between trajectories (system stop or
pause).

RECURRENCE PLOTS
AUTO RECURRENCES (IMPLEMENTED BY PROGRAM RQD)
Recurrence is a theoretical mathematical concept that has practi-
cal utility in the real-world. Events can recur in time; places can be
revised in space. For starters, take a time series, any digitized time
series, which is by definition a linear vector of N points. Form two
identical copies of this vector calling the first Vi and the second
Vj. Compare each point in vector Vi with every point in vector
Vj and compute the distance between them by taking the absolute
differences between paired scalars according to this formula.[

Dij
]
=

∣∣(Di − Dj
)∣∣ for i = 1 to N and j = 1 to N (1)

This calculation will generate an [Ni, Nj] square matrix called
the distance matrix with N ×N elements. Plotting the distances
at each Vi, Vj coordinate produces an unthresholded recurrence
plot which can be color coded. A ubiquitous line of identity (LOI)
forms a central diagonal where i and j scalars are always identical
(distances of 0). Likewise, the distances are exactly symmetrical to
around this LOI since the distance from point i to point j is the
necessarily the same as the distance from point j to point i. Figure 6
(left) plots an unthresholded (global) recurrence plot that is color

FIGURE 6 | Global (left) and local (right) recurrence plots of monthly
sun spot activity from May 1874 to September 2005 (131 years,
5 months) obtained from the Royal Greenwich Observatory. Twelve
cycles of 11 years each are duplicated as time series beneath the
recurrence plots. With a delay of 1 and embedding dimension of 1, the
distance matrices are scaled from 0 to 100%. With the threshold set to
100% (left) the entire matrix is plotted in 10 different colors representing
10% steps (saturated, unthresholded recurrence plot). With the threshold
set to 1% (right) only a fraction of the first step is plotted in a single color
(sparse, thresholded recurrence plot).

coded by distance (from blue= 0–10% to red= 90–100%). It can
be noted that the dark blue rectangles in the recurrence plot cor-
respond to the nadirs in the sun spot activities, but that the red
recurrent points line up with the largest peak in sun spot activity.

To generate a sparse recurrence matrix, the distance matrix
must be thresholded. The formula for the recurrence matrix is
given below where the epsilon threshold (ε) is some fraction of
the maximum distance in the distance matrix and theta (Θ) is the
Heaviside function that replaces the distance matrix with either 1
for distances below threshold (close or recurrent points) or 0 for
distances above threshold (distant or non-recurrent points).

Ri, j := Θ
(
εi −

∣∣xi − xj
∣∣) , i, j = 1, . . . N (2)

Distance matrix thresholding is demonstrated in Figure 6
(right) in which epsilon is set to 10% of the maximum distance.
In this case, only the dark blue recurrent points are plotted, leav-
ing the remainder of the area as white space (above threshold).
Thresholding converts the saturated global recurrence plot (mul-
ticolored, 100% saturated) into a sparse recurrence plot (single
colored, 5.835% saturated).

Typical recurrence plots from very different dynamical systems
are illustrated in Figure 7. The fundamental observation is that
parallel trajectories score as diagonal lines parallel to the central
LOI. Periodic processes score with very long diagonals (panel 1)
whereas deterministic chaotic processes score with short diago-
nals (panel 2). Auto-regressive processes have parallel trajectories
that stack vertically, forming block patterns (panel 3). However, in
the case of stochastic systems where each point in the time series
is time-independent from all other points, recurrence plots lose
these diagonal line structures (panel 4). Thus the key to discover-
ing determinist rules in dynamical systems is to look for diagonal
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FIGURE 7 | Recurrence plots (top) of time series (bottom) including (left to right): tracheal pressure (rodent); pink noise (auto-regressive process of
integrated white noise); Hénon chaotic attractor (x variable); white noise (caesium137 beta decay).

line structures, the length, number, positioning, etc. which convey
insight into the organization of the dynamics.

The examples given above discuss (for simplicity) the recur-
rences between points. However, by implementing embedding
procedures with lag delays between embedded points, it is possible
to cast the dynamic into higher dimensional space. Typically, the
Euclidean norm is used to compute vectors and then the Euclid-
ean distances between all possible vectors are computed. If the
distances fall below a threshold cutoff (epsilon), that vector pair is
said to be recurrent. To find the proper embedding dimension, it is
recommended to use the false nearest neighbor approach (Kennel
et al., 1992). It is always better to overestimate the ideal embed-
ding dimension than underestimate it so that the full dynamic
can be captured in its proper dimension (as opposed to a projec-
tion to a lower-dimensional wall as it were). Then for embedding
dimensions greater than 1, the proper time delay between embed-
ded points must be found. This can be determined by looking
at the first minimum in the autocorrelation function or the first
minimum in the mutual information function (Fraser and Swiney,
1986). Typically, lag or delay values are greater than one for smooth
flows. However, for discrete intervals (Poincaré sections of flows),
lags of one works just fine.

CROSS RECURRENCES (IMPLEMENTED BY PROGRAM KRQD)
As discussed, auto recurrence looks for parallel trajectories within
a single time series. Likewise, cross recurrence looks for parallel
trajectories between two time series. As explained in the equation
below, the distances between all vectors pairs, xi and yj are com-
puted and thresholded to form a recurrence matrix. In this case
the LOI and symmetry across the central diagonal are both lost if
xi and yj vectors are different. There are practical implementation
rules for computing cross recurrence plots (Webber, 2012). First,
both signals must be digitized simultaneously at the same digiti-
zation rate. Second, both signals must be amplitude adjusted over
the same range (e.g., the unit interval from 0 to 1) to minimize
the distance between parallel but separated trajectories. Third, the
signals must be smooth flows, not discrete intervals. Fourth, the
lag intervals should be set to 1. Cross recurrence plots are use-
ful in separating out events in one signal that lead, lag, or occur
simultaneously with the second signal.

Ri, j := Θ
(
εi −

∣∣xi − yj
∣∣) , i, j = 1, . . . N (3)

FIGURE 8 | Cross recurrence plot (left) and joint recurrence plot (right)
of a fluid-coupled system consisting of an independent sinusoidal
driver (upper trace) and dependent coupled rotor (lower trace).

Shockley et al. (2002) performed coupled-oscillator experi-
ments on a fluid dynamical system. A gravity-driven rotor was
freely spun within a tray filled with a fluid of selectable viscosity
(low, medium, or high). Then the tray was pushed and pulled hori-
zontally by a sinusoidal driver motor system. As shown in Figure 8
(left) for a high viscosity medium, the sinusoidal motion of the
driver tray distorted the motion of the rotor (lower two traces).
The non-linear coupling of the rotor to the driver was then stud-
ied by cross recurrence plots which in this case shows the high
degree of non-linearity along deterministic squiggles which form
crossing patterns (due to the embedding dimension being selected
as 1).

JOINT RECURRENCES (IMPLEMENTED BY PROGRAM JRQD)
The concept of joint recurrences is different from that of cross
recurrences (Marwan et al., 2007). That is, instead of looking
for parallel trajectories between two time series, joint recurrences
look for recurrent points common to the auto recurrence plots of
each signal separately. By this means joint recurrences can detect
direction of phase synchronizations. Joint recurrence plots are
expressed mathematically as the intersection of two individual
auto recurrence plots of separate time series, x and y. It is advised
that recurrence parameters be selected the same for each time
series, but this is not absolutely necessary theoretically. The utility
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of joint recurrence plots awaits further exploration.

Ri, j :=
[
Θ

(
εi −

∣∣xi − xj
∣∣)] ∩ [

Θ
(
εi −

∣∣yi − yj
∣∣)]

i, j = 1, . . . N (4)

Returning to the coupled-oscillator experiments of Shockley
et al. (2002), the coupling of rotor to driver were reexamined by
joint recurrence plots. In this case, Figure 8 (right) shows the high
degree of linearity along deterministic lines with bulges at peri-
odic intervals. Taken together, this simple example highlights how
joint-recurrences and cross recurrences are two different ways in
which coupled system variables can be studied. (More work is
required in this area.)

RECURRENCE QUANTIFICATIONS
The recurrence plot when first reported was heralded as a math-
ematical tool for revealing hidden rhythms within complex time
series (Eckmann et al., 1987). And so it is. But it soon became
apparent that recurrence plots had two inherent difficulties. First,
there were numerous recurrence parameters that needed to be
set logically to match the data set under investigation. These
parameters included the threshold radius, embedding dimension,
time delay between embedded points, selection of the distance
norm (max, min, or Euclidean norm), rescaling of the distance
matrix, a parameter that defined the shortest number of recurrent
points forming a line segment (typically two), and the size of the
recurrence window) short, medium, long. The author has writ-
ten extensively on how to select recurrence parameters elsewhere
(Webber and Zbilut, 2005).

The second difficulty with recurrence plots was the plots them-
selves. That is, how are the intricate and beautiful patterns to
be interpreted? Instead of reading into recurrence plots patterns
unique to the observer (I see a canoe in the clouds, you see
a banana), recurrence quantification were born to extract from
recurrence plots different aspects of the plots. To date there are
eight unique features that are extracted from recurrence plots
according to strict mathematical definitions. These recurrence
variables, as they are called, include percent recurrence (recur-
rence density or recurrence rate), percent determinism (portion
of recurrent points aligning into diagonal lines), dmax (length
of longest diagonal line), Shannon entropy (complexity of line
structure distributions), trend (homogeneity or inhomogeneity of
recurrent points over plot), percent laminarity (portion of recur-
rence points aligning into vertical lines), vmax (length of longest
vertical line), and trapping time (average vertical line length). The
strict mathematical definition of these variables can be found else-
where (Webber and Zbilut, 2007; Webber et al., 2011). The idea
is that from a single time series (with auto recurrence plots) or
double time series (with cross or joint recurrence plots) multiple
reporters of the embedded dynamic are produced. It is the differ-
ential sensitivities of these recurrence variables depending upon
the system under study that render RQA as a sensitive non-linear,
multidimensional tool for exploring the so-called hidden rhythms
in complicated signals. The beauty of this analysis is that no mod-
eling assumptions on the time series are required, no statistical
distributions are excluded, inherent noise in the signal does not
stymy the analysis since the threshold is adjustable, short data sets

(n= 30) can yield useful data, and outliers need not be dropped,
clipped, substituted, or replaced.

MATHEMATICAL FRACTALS
FRACTALS AND RECURRENCE STRUCTURES
There is a natural linkage between fractals and recurrence. By def-
inition, fractals are self-similar structures observed repeatedly or
recurrently at different scales of magnitude. The natural world
is filled with fractal examples such as mountains, clouds, trees.
Thus small trigs from real trees conveniently pass as surrogates
for full trees on HO train layouts. In physiology, the lungs form
a fractal branching pattern from trachea to terminal alveoli with
23–27 branched generations. This fractal form minimizes the dead
space volume of the conducting pathways (airways without alve-
oli), delivers oxygenated air quickly to the live space (airways with
alveoli), and packs the entire lung within the thoracic space yet
provide a huge surface area for gas exchange (70 m2). Likewise,
the human circulatory system starting with the large single aorta
(2.5 cm diameter) branches numerous times to finally form the
millions of tiny systemic capillaries (7 µm diameter), only to col-
lect them again from venules to vena cava and to repeat (recur) the
process once again in the pulmonary circuit flowing through the
lungs. The bronchiolar tree for air flow is also fractal and amenable
to fractal modeling (Canals et al., 2004).

The theoretical study of fractals comes from the field of math-
ematics. Unlike natural fractals which have fundamental limits or
minima (e.g., patent alveoli cannot be smaller than 100 µm and
capillaries with blood flow cannot be smaller than 5 µm), math-
ematical fractals are infinitely deep and unbounded. From the
study of mathematical fractals comes the concept of self-similarity
in which graphical depictions of systems at deep levels reveals
(reflects, recurs) images of larger parent structures magnitudes of
scales distant. And these are not simple structures of geometric
forms, but complex structures of lace-like beauty waiting to be
discovered using the computer as a digital microscope.

Mandelbrot (1924–2010) is the father of fractal geometry. He is
famous for asking the question,“How long is the coast of Britain?”
(Mandelbrot, 1967). The answer to this question is, surprisingly,
the cumulative length depends upon the length of the measur-
ing ruler! That is, the shorter the ruler, the longer is the measured
length. The longest total length would be the integral of the bound-
ary taken to the infinitesimal limit. The conclusion is that the
quantitative description of structures is scale dependent. Because
of this fact, Mandelbrot was able to construct artificial worlds
from algorithmic computations on the computer that could pass
as actual geography in the real-world. It is not overstating the sit-
uation to affirm that our natural world is not as geometric as it is
fractal in design.

What follows are detailed descriptions of five mathematical
fractals, the dynamics of which can be studied by recurrence strate-
gies. The first two fractal systems are continuous flows, and the
remaining three fractal systems are discontinuous maps. Suffi-
cient information will be provided to allow the reader to study the
dynamics of these fractals in detail. More questions will be raised
than answered, but the intent of the author is to simulate further
research into this fascinating field linking mathematical fractals
with recurrence plots and quantifications. The methodology is
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fully applicable to fractal biological systems (Bassingthwaighte
et al., 1994) which are not addressed herein because of space
constraints.

LORENZ ATTRACTOR
Edward Lorenz (1917–2008) was an American mathematician and
meteorologist who studied a simplified model of atmospheric
convection using three ordinary differential equations. The way
air swirled around the overhead atmosphere depended on three
parameters (a, b, c) which dictated the interaction of three strongly
coupled variables (x, y, z) as defined below.

dx
/

dt = a ×
(
y − x

)
(5)

dy
/

dt = −b × x − y − x × z (6)

dz
/

dt = −c × z + x × y (7)

where:
a= 10 (ratio of the fluid viscosity of a substance to its thermal

conductivity).
b= 28 (difference in temperature between the top and bottom

of the gaseous system).
c = 8/3 (width to height ratio of the box being used to hold the

gaseous system).
and
x = rate of rotation of convection cylinder.
y = temperature differential at opposite sides of the cylinder.
z = deviation of the system from a linear, vertical graphed line

representing temperature.
Mathematical solution of the system of Lorenz equations results

in a three-dimensional structure known as a dynamical attractor.
Dynamical motion is captured on the single trajectory forming
the attractor, but other negative spaces are devoid of legal trajec-
tory pathways. The contrast between the presence and absence of
trajectory pathways gives shape to the attractor which appears like
the wings of a butterfly (with asymmetric donut holes) as shown
in Figure 9.

What is remarkable about the Lorenz attractor (and conse-
quently a fundamental principle of chaotic dynamics) is that not
only can rich dynamics be continued within and expressed by sim-
ple non-linear systems (e.g., consisting of a mere three variables),
but that the single dynamical trajectory shows sensitive depen-
dence on initial conditions. What this means is that by just altering
the initial conditions of just one variable by a smidgeon (non-
mathematical term) will lead to two different trajectories over
time. For example, if variables x1 and x2 differ numerically by just
10−5 (x1= 0.10000 and x2= 0.10001), everything else remaining
exactly the same, then the pathways will eventually diverge. Such
extreme sensitivity of chaotic systems to initial conditions has been
called the “butterfly effect” in honor of insect shape of the Lorenz
attractor.

To study the recurrence structure of the Lorenz system, the
three system variables can be followed over time by solving the

FIGURE 9 |The Lorenz strange attractor in its chaotic mode. Public
source: http://en.wikipedia.org/wiki/Lorenz_system

three ordinary differential equations using standard fourth-order
Runge–Kutta estimations. Initial conditions can be set as vari-
ables x = y = z = 0.1 using fixed parameters a= 10, b= 28, and
c = 8/3. The first points of the three-dimensional trajectory can
be retained to follow the transients (off-attractor dynamics) before
the dynamic settles on the attractor proper. The higher the time
increment (e.g., dt = 0.01), the longer will be the transient. The
Lorenz attractor can be viewed in the x,y plane (two paper plates),
the x,z plane (butterfly), and the y,z plane (owl mask) which are
projections of the three-dimensional object.

Since the Lorenz attractor is a three-dimensional structure,
auto recurrence plots can be generated on any one of the vari-
ables. Selecting an embedding dimension of 3 will suffice because
the dimension of this attractor is fractal between 2 and 3. And
any two variables can be paired to generate cross recurrence plots
(KRQD x y ; KRQD x z ; KRQD y z) or joint recurrent plots (JRQD
x y ; JRQD x z ; JRQD y z). See Webber (2012) for free RQA
software and detailed explanations of proper implementation
procedures.

RÖSSLER ATTRACTOR
Otto Rössler (1940–present) is a German biochemist responsible
for the mathematical attractor that bears his name. The Rössler
attractor is similar to the Lorenz attractor and consists of three
coupled differential equations. Insofar that the first two equations
are linear, the Rössler attractor turns out to be simpler than the
Lorenz attractor and easier to analyze.

dx
/

dt = −y − z (8)

dy
/

dt = x + a × y (9)
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FIGURE 10 |The Rössler strange attractor in its chaotic mode. Public
source: http://en.wikipedia.org/wiki/R%C3%B6ssler_attractor

dz
/

dt = b + z × (x − c) (10)

where:
a= 0.2, b= 0.2, and c = 5.7.
As shown in Figure 10, the Rössler attractor is a three-

dimensional chaotic attractor, with unstable spiral orbits in the
x,y plane that grow up into the z plane. The system has only
one manifold and is fractal in nature. Like the Lorenz attractor,
the Rössler attractor demonstrates sensitive dependence on initial
conditions, the hallmark of chaos, and fracticality.

To study the recurrence structure of the Rössler system, the
three system variables can followed over time by solving the
three ordinary differential equations using a standard fourth-
order Runge–Kutta estimation. For example, starting conditions
can begin with variables x = y = z = 0.1 using fixed parameters
a= 0.2, b= 0.2, and c = 5.7. Again the initial points the three-
dimensional trajectory (transient or off-attractor dynamics) can
be studied as can the following points (stable or on-attractor
dynamics) using a high resolution time increment of dt = 0.01.
The x, y, and z variables can be examined using recurrence plots
and quantifications.

As can be demonstrated for the Lorenz attractor, the Rössler
attractor can be shown to possess steady state,periodic, and chaotic
dynamics depending up the value of the b parameter. As parame-
ter b decreases from 2 to about 1.44, the x variable settles on
single point attractors. With further decreases in parameter b, the
x variable falls into a period-2 then period-4, then period-8 sta-
ble periodic states until full chaos erupts with b values less than
0.7. There are brief periodic windows embedded within chaotic
regimes for lower values of b approaching 0. But at b= 0.2 as

is the typical choice, the Rössler attractor is in a strong chaotic
mode.

LOGISTIC ATTRACTOR
Robert May (1938–present) called attention to the logistic map
(May, 1976). This deceptively simple difference equation illus-
trates how complex dynamics can arise from non-linear recurrent
interactions of a single variable. In this case, the next x is a function
of the current x2 term.

Xn+1 = a × Xn × (1− Xn) (11)

where:
a= 0–4 and 0≤ x ≤ 1.
As illustrated in Figure 11, the logistic map forms a “Saint

Louis Arch” in the second dimension (Figure 11A) and a “roller
coaster” in the third dimension (Figure 11B). Interestingly, as tun-
ing parameter a is increased from 0 to 4, the dynamics of x follows a
period-doubling pathway to chaos. Trulla et al. (1996) investigated
these dynamics with RQA windows by adiabatically increment-
ing parameter a. Transitions between periodicity and chaoticity
were easily distinguished by RQA variables, particularly DET and
LMAX. In fact, 1/LMAX values positively correlated with Lya-
punov exponents in the chaotic frames, confirming the postulate
of Eckmann et al. (1987).

The principle difference between the Logistic attractor and the
Lorenz and Rössler attractors is that it is an iterated map, not a con-
tinuous flow. Because sequential points are iterated, they resemble
Poincaré sections not unlike how R–R intervals represent planes
through the ECG flow dynamic. In any case, it is proper to select a
delay of one point when dealing with iterated dynamics (difference
equations as opposed to differential equations).

HÉNON ATTRACTOR
Another excellent example of an iterated map is the Hénon attrac-
tor named after French mathematician, Michel Hénon (1931–
present). As explicitly defined in the equations below, this system
consists of the interplay between x and y variables interlinked
through two parameters, a and b, and a single constant, 1. The
non-linearity of this two-dimensional system derives again from
the x2 term.

Xn+1 = yn + 1− a × X 2
n (12)

Yn+1 + b × Xn (13)

where:
a= 1.4 and b= 0.3.
The plane plot of the coupled x,y variables reveals the dou-

ble crescent shape of the Hénon attractor as shown in Figure 12.
Dark points show allowed positions of the dynamic, and white
space reveals disallowed positions never part of the stable dynamic.
Transients can be studied by examining the x,y variables starting
at randomly selected initial conditions for x0, y0. The fracticality
of the Hénon attractor can be demonstrated by focusing in on one
of the single arms of the double crescent (magnify the scale) and
discovering yet another double-banded structure. This unveiling
of bands after band continues to infinity!
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FIGURE 11 |The Logistic map in two-dimensions (A) and three-dimensions (B). Public source: http://en.wikipedia.org/wiki/File:Logistic_map_scatterplots_
large.png

FIGURE 12 |The Hénon strange attractor in its chaotic mode. Adapted
from public source: http://en.wikipedia.org/wiki/H%C3%A9non_map

It is very instructive to study the dynamics of the Hénon attrac-
tor by following the time courses of x, y individually and coupled in
both the chaotic and periodic modes of the system. To get started,
hints can be gleaned from Webber and Zbilut (1998).

MANDELBROT ATTRACTOR
Mandelbrot has already been introduced above as the father of
fractal geometry. However, most interesting and beautiful is the
mathematical set named after him. The Mandelbrot set is a flat
structure with infinitely deep fractal patterns that lives in the com-
plex plane. The intriguing and early book, The Beauty of Fractals,
by Peitgen and Richter (1986) captures much of the essence of
the Mandelbrot Set which stems from the simple iteration of the

complex equation consisting of one complex variable, z, and one
complex constant, c. The non-linear chaotic dynamics of this equa-
tion grows out of the complex and real parts of both the variable z
(z real, z imaginary) and the constant c (c real, c imaginary), the
former of which is squared according to the following equation.

zn+1 = z2
n + c (14)

The Mandelbrot set (M set) is a black and white set meaning
that complex point c either belongs to the M set (black) or does
not belong to the M set (white). To keep things simple, the equa-
tion can be implemented by setting both z real and z imaginary to
zero and setting c real from −2 to +1 and c imaginary from −1
to +1. Iteration of the equation will alter the z variable to either
some type of converging dynamic (period 1, 2, 4, 8, etc. or chaotic)
or diverging dynamic (tending toward infinity). If the system con-
verges then constant c is a member of the M set and can be plotted
as a black point on the complex plane of c imaginary versus c real.
If the system fails to converge than constant c is a not a member
of the M set as is plotted as a contrasting white point. The M set is
illustrated in Figure 13 in which characteristic cardioids are seen
at both low and high magnifications, demonstrating the fractal
structuring of the set. Mandelbrot conjectured that his set was dis-
continuous, meaning the some white space interspersed between
points of the set. But Douady and Hubbard (1984/1985) proved
that the M set was truly continuous. To visualize the continuity of
the set requires high resolution computer graphics.

To illustrate recurrence properties of the M set, formula 14
was iterated 1000 times using as initial conditions: z real= 0.0,
z imag= 0.0, c real=−0.75, and c imag= 0.005. In the c plane this
is positioned deep within the seahorse valley, the gap between the
large cardioid to the right and smaller circle to the left (Figure 13,
left). The question is, is this specific point a member of the M set or
not? In this case, variable z was iterated 632 times before it started
going toward infinity. Thus complex point c is not a member of
the M set, but still it took many iterations to determine this.
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FIGURE 13 | Mandelbrot set low resolution (left) and high resolution (right). Public source: http://en.wikipedia.org/wiki/File:Mandel_zoom
_00_mandelbrot_set.jpg

The dynamics of z real and z imag were studied individually by
generating their respective recurrence plots as shown in Figure 14.
Using a delay of one, embedding of five, no rescaling of the dis-
tance matrix, and absolute radius of 0.01 and color steps of 0.001
(dark blue to purple). It can be noted that z real shows a gen-
tle decrescendo in terms of amplitude whereas z imag displays a
gradual crescendo. Nevertheless, after 632 iterations the system
explodes toward infinity. Thus imaginary point c is very close to
the M set border, but never touches it.

The reader is challenged to study other transient dynamics of
the complex z variable as it moves from 0.0 to either a steady
state dynamic or a non-steady state dynamic depending upon the
value of complex parameter c. The most complicated and most
interesting dynamics are seen at the borders at very high magnifi-
cations deep within the M set. In these places the c parameter is
taken out to the sixth decimal point or finer causing the z vari-
able to go through hundreds of iterations before it diverges or
converges. Here the user can examine z real and z imaginary vari-
ables either individually or coupled using recurrence programs.
No space remains in this paper to carry this out, so the reader
should take it as an assignment to discover the rich dynamics of
the iterated equation in which are hidden all the exquisite beauty
of the M set.

CONCLUSION
In this communication we have moved from (1) conceptual def-
initions of systems to (2) simple overview themes of recurrence
quantifications for analysis of non-linear (and linear) systems to
(3) practical implementation of recurrence analyses on systems of
common fractals. By design (space limitations notwithstanding)
much work has been left to the reader for study fractals on his/her
own by combining these conceptual and practical ideas. For the
experienced RQA user, it will be easy to move into the mathemati-
cal fractal world using recurrence strategies. For the new RQA user,
it will be absolutely necessary to first read the long chapter (mono-
graph) written by the author to learn the proper procedures for
setting RQA parameters and interpreting RQA variables (Webber
and Zbilut, 2005). Learning by doing is always the best teacher.

Deemphasized in this chapter is the specific application
of recurrence plots and quantifications to real-world systems

FIGURE 14 | Recurrence plot of z real (left) and z imag (right) scaled from
point 1 to point 629 or the 633-point time series (lower traces). The
system diverges toward infinity at the end of the each series, but the
dynamics of the real and imaginary components are rather different.

found in physics, chemistry, biology, and medicine, for exam-
ple. The author has already addressed these things elsewhere
(Webber and Zbilut, 2005). The value of this present chap-
ter is to identify fractals as mathematical systems which pos-
sess deep-rooted complexity and repeating structures at different
magnification scales. In this sense they become analogies for
real-world systems which possess many of the same properties.
Whether a system be mathematical or material, it is governed
by dynamical rules which define boundaries, fuzzy or sharp,
depending upon the state of the system (quasi-steady state or
transient), and the presence of noise (numerical round-off or
environmental).

The big idea of this chapter is that dynamical rules in com-
plex, non-linear systems can be ferreted out as it were, by
applying recurrence analyses to dynamical time series. Embed-
ding procedures allow measured variables to serve as surro-
gates for unmeasured variables (Webber and Zbilut, 2005). The
reader is challenged to apply RQA to systems of their choice.
We live in a fractal world, nay fractal universe. And recur-
rence analysis is one way to delve into the mysteries which lie
before us.
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