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This article will be positioned on our previous work demonstrating the importance of adher-
ing to a carefully selected set of criteria when choosing the suitable method from those
available ensuring its adequate performance when applied to real temporal signals, such
as fMRI BOLD, to evaluate one important facet of their behavior, fractality. Earlier, we
have reviewed on a range of monofractal tools and evaluated their performance. Given
the advance in the fractal field, in this article we will discuss the most widely used
implementations of multifractal analyses, too. Our recommended flowchart for the fractal
characterization of spontaneous, low frequency fluctuations in fMRI BOLD will be used as
the framework for this article to make certain that it will provide a hands-on experience
for the reader in handling the perplexed issues of fractal analysis. The reason why this par-
ticular signal modality and its fractal analysis has been chosen was due to its high impact
on today’s neuroscience given it had powerfully emerged as a new way of interpreting
the complex functioning of the brain (see “intrinsic activity”). The reader will first be pre-
sented with the basic concepts of mono and multifractal time series analyses, followed by
some of the most relevant implementations, characterization by numerical approaches.The
notion of the dichotomy of fractional Gaussian noise and fractional Brownian motion signal
classes and their impact on fractal time series analyses will be thoroughly discussed as the
central theme of our application strategy. Sources of pitfalls and way how to avoid them
will be identified followed by a demonstration on fractal studies of fMRI BOLD taken from
the literature and that of our own in an attempt to consolidate the best practice in fractal
analysis of empirical fMRI BOLD signals mapped throughout the brain as an exemplary
case of potentially wide interest.

Keywords: fractals, monofractals, multifractals, time series analysis, numerical testing, fMRI BOLD, brain

INTRODUCTION
Fractality (Mandelbrot, 1967, 1980, 1985; Bassingthwaighte et al.,
1994; Gouyet, 1996; Eke et al., 2002), – in addition to deter-
ministic chaos, modularity, self-organized criticality,“small word”
network-connectivity – by now has established itself as one of the
fundaments of complexity science (Phelan, 2001) impacting many
areas including the analysis of brain imaging data such as fMRI
BOLD (Zarahn et al., 1997; Thurner et al., 2003; Maxim et al.,
2005; Raichle and Mintun, 2006; Fox et al., 2007; Razavi et al.,
2008; Wink et al., 2008; Bullmore et al., 2009; Herman et al., 2009,
2011; Ciuciu et al., 2012).

The interest in fractal analysis accelerated the development
of the new paradigm beyond a rate when the new – essentially
mathematical or physical (i.e., statistical mechanics) – knowl-
edge could be consolidated, their tools thoroughly evaluated and
tested before being put to wide-spread use in various fields of
science; typically beyond the frontiers of mathematics. The lack
of an in-depth understanding of the implications of the methods
when applied to empirical data, often generated conflicting results,

but also prompted efforts at making up for this deficiency. Early,
with the migration of the fractal concept from mathematics to
various fields of science like physiology, the groups of Bassingth-
waighte (Bassingthwaighte, 1988; Bassingthwaighte et al., 1994)
and Eke et al. (1997) realized the need to adopt a systematic
approach in developing needed analytical and testing frameworks
to characterize and evaluate various monofractal time series meth-
ods (Bassingthwaighte and Raymond, 1994, 1995; Caccia et al.,
1997; Eke et al., 2000, 2002). Eke and coworkers demonstrated
that conscious and precise monofractal time series analysis could
only be done when one has an a priori concept of the nature
of the observed signals. They introduced the dichotomous frac-
tional Gaussian noise (fGn)/fractional Brownian motion (fBm)
model of Mandelbrot and Ness (1968) as the basis of monofractal
time series analysis (Eke et al., 2000, 2002) and offered a strat-
egy for choosing tools according to a proven selection criteria
(Eke et al., 2000). Given the continuing advance in the fractal
field and in sync with the increasing awareness to avoid poten-
tial pitfalls and misinterpretation of results in various forms of
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fractal analyses (Delignieres et al., 2005; Gao et al., 2007; Delig-
nieres and Torre, 2009; Marmelat and Delignieres, 2011; Ciuciu
et al., 2012), in this article we apply our evaluation strategy to
multifractal tools, and characterize their most widely used imple-
mentations. Our motivation in doing so stems from the potentials
of fMRI BOLD multifractal analysis in revealing the physiological
underpinnings of activation-related change in scaling properties
in the brain (Shimizu et al., 2004).

fMRI BOLD (Ogawa et al., 1990, 1993b; Kwong et al., 1992;
Bandettini, 1993) has been selected as an exemplary empirical
signal in our demonstrations, because its impact on contempo-
rary neuroscience (Fox and Raichle, 2007). The human brain
represents the most complex form of the matter (Cramer, 1993)
whose inner workings can only be revealed if signals reflecting
on neuronal activities are recorded at high spatio-temporal res-
olution. One of the most powerful methods, which can record
spatially registered temporal signals from the brain, is magnetic
resonance imaging (MRI; Lauterbur, 1973). The MRI scanner can
non-invasively record a paramagnetic signal (referred to as blood
oxygen level dependent, BOLD; Ogawa et al., 1990, 1993a) that
can be interpreted as the signature of the functioning brain via its
metabolic activity continuously modulating the blood content,
blood flow, and oxygen level of the blood within the scanned
tissue elements (voxels). Recently, a rapidly increasing volume
of experimental data has demonstrated that BOLD is a com-
plex signal, whose fractality – if properly evaluated – can reveal
fundamental properties of the brain among them the so called
“intrinsic or default mode” of operation that appears comple-
menting the stimulus-response paradigm in the understanding
the brain in a powerful way (Raichle et al., 2001). We hope, our
paper could contribute to this major effort from the angle of con-
solidating some relevant issues concerning fractal analysis of fMRI
BOLD.

CONCEPT OF FRACTAL TIME SERIES ANALYSES
MONOFRACTALS
All fractals are self-similar structures (mathematical fractals in
an exact, natural fractals in a statistical sense), with their fractal
dimension falling between the Euclidian and topologic dimen-
sions (Mandelbrot, 1983; Eke et al., 2002). When self-similarity
is anisotropic, the structure is referred to as self-affine; a feature,
which applies to fractal time series (Mandelbrot, 1985; Barabási
and Vicsek, 1991; Eke et al., 2002), too. Statistical fractals cannot
be described comprehensively by descriptive statistical measures,
as mean and variance, because these do depend on the scale of
observation in a power law fashion:

µ2

µ1
=

(
s2

s1

)ε

, (1)

where µ1, µ2 are descriptive statistical measures, and s1, s2 are
scales within the scaling range where self-affinity is present, and ε

is the power law scaling exponent. From this definition a universal
scale-free measure of fractals can be derived:

D = − lim
s→0

(
inf

log (N (s))

log (s)

)
. (2)

D is called capacity dimension (Barnsley, 1988; Liebovitch
and Tóth, 1989; Bassingthwaighte et al., 1994), which
is related but not identical to the Hausdorff dimension
(Hausdorff, 1918; Mandelbrot, 1967), s is scale and N (s) is the
minimum number of circles with size s needed to cover the frac-
tal object to quantify its capacity on the embedding dimensional
space (it corresponds to µ in Eq. 1). For fractal time series, the
power law scaling exponent ε is typically calculated in the time
domain as the Hurst exponent (H ), or in the frequency domain
as the spectral index (β). H and D relate (Bassingthwaighte et al.,
1994) as:

H = 2− D. (3)

Further, β can also be obtained from H as (H − 1)/2 for fGn
and (H + 1)/2 for fBm processes (Eke et al., 2000).

MULTIFRACTALS
While D does not vary along a monofractal time series, it is
heterogeneously distributed along the length of a multifractal
signal.

This phenomenon gave rise to the term “singular behavior,” as
self-affinity can be expressed by differing power law scaling along
a multifractal time series, X i as:

Xi+∆i − Xi ∝ |∆i|h(i), (4)

where h is the Hölder exponent defining the degree of singularity
at time point, i. Calculating the fractal dimension for each sub-
sets of Xi of the same h, one obtains the singularity spectrum,
D(h) (Mandelbrot spectrum), which describes the distribution of
singularities (Frisch and Parisi, 1985; Falconer, 1990; Turiel et al.,
2006).

D(h) =
log(ρ(h)/ρ(hmax))

log smin
, (5)

where hmax is the Hölder exponent corresponding to maximal
fractal dimension, smin is the finest scale corresponding to Hölder
trajectory, and ρ(h) is the distribution of singularities.

The singular behavior of a multifractal is a local property. Sepa-
ration of the singularities can be difficult, given the finite sampling
frequency of the signal of interest (Mallat, 1999). Thus, in con-
trast with monofractality, a direct evaluation of multifractality is a
demanding task in terms of the amount of data and the computa-
tional efforts needed, which can still not guarantee precise results
under all circumstance.

With the aid of different moments of appropriate measure, µ, a
set of equations can be established to obtain the singularity spec-
trum, which is a common framework exploited by multifractal
analysis methods referred to as multifractal formalism (Frisch and
Parisi, 1985; Mandelbrot, 1986; Barabási and Vicsek, 1991; Muzy
et al., 1993). Using a set of different moment orders, one can deter-
mine the scaling behavior of µq, yielding the generalized Hurst
exponent, H (q) (Barunik and Kristoufek, 2010; See Figure 1):〈
µq(s)

〉
∝ sq·H (q). (6)
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FIGURE 1 | Monofractal and multifractal temporal scaling. Three kinds of
fractals are shown to demonstrate scale-free property of these structures: a
stationary monofractal (fractional Gaussian noise), a non-stationary
monofractal (fractional Brownian motion), and a multifractal (Devil’s staircase
with weight factors p1 =p3 = 0.2, p2 =0.6). Every fractal is self-similar: fGn
and fBm in a statistical sense (as in empirical structures and processes where
fractality is manifested in equal distributions, only) and Devil’s staircase in an
exact manner (as self-similar structuring in mathematical, i.e., ideal fractals is
exact). For fractals, descriptive statistical measures [for example mean,
variance, fluctuation (Fq) etc.] depend on the corresponding scale in a power

law fashion. Thus as a scale-free descriptor, the extended Hurst exponent (H ′)
is calculated as a slope of regression line between the logarithms of the scale
(s) and Fq (For an explanation of H ′, see main text). The obtained slopes for
different magnifications of the time series [here with the order of q = (1, 2, 3),
which is the order of moment of the used measure] are the same for
monofractals and different for multifractals, demonstrating that power law
scaling behavior is a global property of monofractals, while it is a local
property of multifractals. Accordingly, note that slopes in the bottom left and
middle panel are the same, while in the right panel they indeed differ. For
further details, see main text.

On the right side of Eq. 4 ∆i corresponds to scale, s, on the
right side of Eq. 6. Using the partition function – introduced
in context of Wavelet Transform Modulus Maxima (WTMM)
method – singularities are analyzed globally for estimating the
(multi)scaling exponent (Mallat, 1999):

Z (s, q) =

N (s)∑
k=1

µ
q
i (s) (7)

τ(q) = lim
s→0

inf
log Z (s, q)

log s
, (8)

where τ(q) can be also expressed from H (q) (Kantelhardt et al.,
2002) as:

τ(q) = q ·H (q)− DT, (9)

where DT is the topological dimension, which equals 1 for time
series.

The generalized fractal dimension can also describe the scale-
free features of a multifractal time series:

D(q) =
τ(q)

q − 1
=

q · h(q)− 1

q − 1
. (10)

The singularity spectrum, D(h), can be derived from τ(q) with
Legendre transform (Figure 2), via taking

h = τ′(q), (11)

the slope of the tangent line taken at q for τ(q), and yielding

D(h) = inf
q

(qh − τ(q)), (12)

that when evaluated gives the negative of the intercept at q= 0 for
the tangent line (See Figure 2).

Natural signals have a singularity spectrum over a bounded
set of Hölder exponents, whose width is defined by [h−∞, h+∞]
(Figure 3).
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FIGURE 2 | Legendre transform. It is known that singularity spectrum,
D(h), has a concave shape, and provided that τ(q) is also a concave function,
they can be explicitly transformed into each other via the Legendre
transform (Bacry et al., 1993). Legendre transform takes a function, in our
case τ(q) and produces a function of a different variable, D(h). The Legendre
transform is its own inverse and uses minimization as the basis of the
transformation process according to Eq. 12. If minimization cannot be
achieved, the transformation would fail. On the left a real (concave), on the
right a non-concave case for τ(q) is shown. A simple concave function,
f (x )=−x 2

+ 5x +4 (shown in blue) is used for modeling τ(q). If f (x ) is
differentiable, hence a tangent line (shown in red) can be taken at point of
P 0 (q0, τ0) with a slope τ′(q), then g*(q0) is the y -intercept, (0, g*), and −g*
is the value of the Legendre transform (See Eq. 11). Maximization at (q0, τ0)

is valid since for any other point on the blue curve, a line drawn through that
point with the same slope as the red line will yield a τ0-intercept below the
point (0, g*), showing that g* is indeed obtained as a boundary value
(maximum), thus the transformation for D(h) would also yield a single
boundary value (minimum) on the green curve as D(h)=−g*= τ′(q)q−τ(q).
Steps of the transformation process are shown (1) select q, (2) read τ(q), (3)
take a tangent line at (q, τ) and determine its slope, h= τ′(q), (4) select h, (5)
determine D(h) using the above equation; repeat for the set. On the right
side, a non-concave function is shown (blue) for demonstrating a case,
when due to the non-concave shape of τ(q) the shape of the transformed
function, D(h), does not yield a realistic singularity spectrum given that in
this case the transform by failing on minimization is poorly behaved yielding
ambiguous values.

A combination parameter, Pc, can be calculated (definitions
on Figure 3) to facilitate the separation of time series character-
istics (Shimizu et al., 2004), which can aid the exploration of the
physiological underpinnings, too.

Pc =
hmax

Dmax
· FWHM . (13)

A similar parameter is W (Wink et al., 2008) calculated as

W =
W+

W−
. (14)

IMPLEMENTATION OF FRACTAL TIME SERIES ANALYSES
Implementation of concepts in reliable algorithms is a critical task,
as stationary and non-stationary signals require different meth-
ods when analyzed for their fractality. For a stationary signal the
probability distribution of signal segments is independent of the
(temporal) position of the segment and segment length, which
translates into constant descriptive statistical measures such as
mean, variance, correlation structure etc. over time (Eke et al.,
2000, 2002).

Accordingly, signals can be seen as realizations of one of two
temporal processes: fBm, and fGn (Eke et al., 2000). The fBm signal
is non-stationary with stationary increments. An fBm signal, Xi, is
self-similar in that its sampled segment Xi,n of length n is equal in
distribution with a longer segment Xi,sn of length sn when the lat-
ter is rescaled (multiplied) by s-H. This means that every statistical

measure,mn, of an fBm time series of length n is proportional to nH

Xi,n ∝ s−H Xi,sn , (15)

mn ∝ pnH , which yields log mn ∝ log p +H log n, (16)

where H is the Hurst exponent. H ranges between 0 and 1.
Increments Yi=Xi−Xi−1 of a non-stationary fBm signal yield
a stationary fGn signal and vice versa, cumulative summation of
an fGn signal results in an fBm signal. Note that most methods
listed below that have been developed to analyze statistical frac-
tal processes share the philosophy of Eq. 15 in that in their own
ways all attempt to capture the power law scaling in the various
statistical measures of the evaluated time series (Eke et al., 2002).

MONOFRACTAL METHODS
Here we focus on widely used monofractal methods selected from
those in the literature.

Time domain methods
Detrended fluctuation analysis. The method of Peng et al. (1994)
begins with the signal summed and the mean subtracted

Yj =

j∑
i=1

Xi − 〈X〉 . (17)

Then the local trend Yj,n is estimated in non-overlapping win-
dows of equal length n, using least-square fit on the data. For a
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FIGURE 3 | Approaches to multifractal analyses. Direct approach of
multifractal analysis means exploiting the local power law scaling behavior
to obtain local Hölder exponents (Eq. 4), from which the Mandelbrot
spectrum is calculated with histogram method (Falconer, 1990; Eq. 5).
Indirect approaches shown here (MF-DFA, multifractal detrended fluctuation
analysis; MF-DMA, multifractal detrended moving average; WTMM, Wavelet
Transform Modulus Maxima) estimates the scaling exponent, τ as a function
of q. It is worth to note, that this is carried out differently for MF-DFA,
MF-DMA (Eq. 9), and for WTMM (Eq. 8). From τ(q), the Mandelbrot

spectrum can be obtained with the application of the Legendre transform,
while its relation to generalized fractal dimension D(q) is given by Eq. 10.
Singularity spectrum, D(h), is an important endpoint of the analysis. The
spectrum is concave and has a nearly parabolic shape with a maximum
identified by the capacity dimension at q =0 (Mallat, 1999; Shimizu et al.,
2004; Ihlen, 2012). Please note that some of its measures (FWHM, Dmax,
W+ , W−) can be used to calculate meaningful combined parameters (such
as Pc, and W in Eqs 13 and 14, respectively) with potential in correlating
with key features of fMRI BOLD time series.

given window size n the fluctuation is determined as the variance
upon the local trend:

Fn =

√√√√√ 1

N

N∑
j=1

(Yj − Yj ,n)2, (18)

For fBm processes of length N with non-overlapping windows
of size n the fluctuation depends on the window size n in a power
law fashion:

Fn ∝ pnα, and (19)

(20)
α = lim

n→0

log Fn

log n
.

If Xi is an fGn signal then Yj will be an fBm signal. Fn then is
equivalent to mn of Eq. 16 yielding Fn∝pnH therefore in this case
α=H. If Xi is an fBm signal then Yj will be a summed fBm signal.
Then Fn∝pnH+ 1, where α=H + 1 (Peng et al., 1994).

Signal summation conversion method. This method was first
introduced by Eke et al. (2000) for enhancing signal classification
as a variant of the scaled windowed variance (SWV) analysis of
Mandelbrot (1985) as further developed by Peng et al. (1994).
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Fluctuations of a parameter over time can be characterized by
calculating the standard deviation

SDn =

√√√√ 1

N − 1

N∑
i=1

(Xi − 〈X〉)
2. (21)

For fBm processes of length N when divided into non-
overlapping windows of size n as Eq. 21 predicts the standard
deviation within the window, sn, depends on the window size n in
a power law fashion:

SDn ∝ pnH , (22)

and

H = lim
n→0

log SDn

log n
. (23)

In practice SDn’s calculated for each segment of length n of the
time series are averaged for the signal at each window size. The
standard method applies no trend correction. Trend in the signal
seen within a given window can be corrected either by subtracting
a linearly estimated trend (line detrended version) or the values
of a line bridging the first and last values of the signal (bridge
detrended version; Cannon et al., 1997). This method can only be
applied to fBm signals or cumulatively summed fGn signals.

The signal summation conversion (SSC) method was first used
for enhanced signal classification according to the dichotomous
fGn/fBm model (Eke et al., 2000). There are two steps: (1) calcu-
late from Xi its cumulative sum (this converts an fGn to an fBm or
converts an fBm to its cumulant), and (2) use the bdSWV method
to calculate from the cumulant series Ĥ ′ . The interpretation of Ĥ ′

is that when 0 < Ĥ ′ ≤ 1, then Xi is an fGn with Ĥ ′. Alternatively,
when Ĥ ′ > 1, then the cumulant series is identified as an fBm
signal of Ĥ = Ĥ ′ − 1. As seen, in order to keep Ĥ ′ scaled within
the [0,1] range, in the original version of the method in the fBm
case 1 was subtracted from the estimate of H. Given that the SSC
method handles fGn and fBm signals alike, we eliminate this step
and report values as 0 < Ĥ ′ < 1 for fGn and 1 < Ĥ ′ < 2 for
fBm signals referring Ĥ ′ as the “extended” Hurst exponent. This
way, the mere value of the Hurst exponent would reflect on signal
class, the focus of fractal time series analysis strategy. Also the use
of Ĥ ′ would greatly facilitate reviewing the results of numerical
performance analyses.

Real-time implementations of SSC and Detrended Fluctuation
Analysis (DFA) methods have been recently reported (Hartmann
et al., 2012).

Frequency domain method
Fractal analysis can also be done in the frequency domain using
methods such as the power spectral density (PSD) analysis
(Fougere, 1985; Weitkunat, 1991; Eke et al., 2000).

Power spectral density analysis (lowPSDw,e). A time series can
be represented as a sum of cosine wave components of different

frequencies:

Xi =

N/2∑
n=0

An cos [ωnti + ϕn] =

N/2∑
n=0

An cos

[
2πn

N
i + ϕn

]
, (24)

where An is the amplitude and φn is the phase of the cosine-
component with ωn angular frequency. The commonly used
sample frequency is fn=ωn/2π. The An(fn), φn(fn), and A2

n(fn)

functions are termed amplitude, phase, and power spectrum of the
signal, respectively. These spectra can be determined by an effec-
tive computational technique, the fast Fourier transform (FFT).
The power spectrum (periodogram, PSD) of a fractal process is a
power law relationship

A2
n ∝ pω−β

n , or
∣∣A(f )

∣∣2 ∝ 1/f β which yields β =

lim
n→0

log A2
n

log fn
, (25)

where β is termed spectral index. The power law relationship
expresses the idea that as one doubles the frequency the power
changes by the same fraction (2−β) regardless of the chosen fre-
quency, i.e., the ratio is independent of where one is on the
frequency scale.

The signal has to be preprocessed before applying the FFT
(subtraction of mean, windowing, and endmatching, i.e., bridge
detrending). Discarding the high power frequency estimates
improves the precision of the estimates of β (Fougere, 1985; Eke
et al., 2000). Eke et al. (2000) introduced this version denoted as
lowPSD w,e as a fractal analytical tool.

Time-frequency domain method
Fractal wavelet analysis uses a waveform of limited duration with
an average value of zero for variable-sized windowing allowing
an equally precise characterization of low and high frequency
dynamics in the signal. The wavelet analysis breaks up a signal
into shifted and stretched versions of the original wavelet. In other
words, instead of a time-frequency domain it rather uses a time-
scale domain, which is extremely useful not only in monofractal
but multifractal analysis, too. One such way to estimate H is by
the averaged wavelet coefficient (AWC) method (Simonsen and
Hansen, 1998). The most commonly used analyzing wavelet is the
second derivative of a standard normalized Gaussian function,
which is:

ψ(t ) =
d2

dt 2
e−

t 2

2 . (26)

The scaled and translated version of the analyzing wavelet is
given by

ψa;b(t ) = ψ

(
t − b

a

)
, (27)

where the scale parameter is a, and the translation parameter b.
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The wavelet transformation is essentially a convolution
operation in the time domain:

Wψ[X ](a, b) =
1

a

+∞∫
−∞

X(t ) ·ψa;bdt . (28)

From Eq. 16, one can easily derive how the self-affinity of
an fBm signal X(t ) determines its continuous wavelet transform
(CWT) coefficients:

W [X ](sa, sb)=d s
1
2+H W [X ](a, b). (29)

The AWC method is based on Eq. 29 (Simonsen and Hansen,
1998) and can be applied to fBm signals or to cumulatively
summed fGn signals.

MULTIFRACTAL METHODS
Three analysis methods are described here; all use different sta-
tistical moments (termed q-th order) of the selected measure to
evaluate the signal’s multifractality. Despite of certain inherent
drawbacks, these methods are widely used in the literature, and
can obtain reliable results if their use is proper with limitations
considered.

Time domain methods
Below, the Multifractal DFA (MF-DFA; Kantelhardt et al., 2002)
and the recently published Multifractal Detrended Moving Aver-
age (MF-DMA; Gu and Zhou, 2010) will be reviewed. We will focus
on MF-DMA, but since it is similar to MF-DFA, their differences
will be pointed out, too. They rely on a measure of fluctuation,

F, as in their monofractal variant (Peng et al., 1994), and differ in
calculating the q-th order moments of the fluctuation function.

Step 1 – calculating signal profile, Yj, by cumulative summation.
It is essentially the same as in Eq. 17, however note that in DFA
methods, the mean of the whole signal is subtracted before sum-
mation, while in DMA methods this is carried out locally in
step 3.
Step 2 – calculating the moving average function, Ỹj .

Ỹj =
1

n
·

[(n−1)(1−θ)]∑
k=−[(n−1)θ]

yt−k (30)

For further details, see Figure 4.
Step 3 – detrending by moving average: By subtracting Ỹt a residual
signal, εt, is obtained:

εt = Yt − Ỹt , (31)

where n−[(n−1) ·θ]≤ t ≤N−[(n−1)· θ].
This fundamental step of the DMA methods is essen-

tially different from the detrending step of DFA methods (See
Figure 4).
Step 4 – calculation of fluctuation measure. The signal is split into
Nn= [N /n− 1] number of windows (See Figure 4), ε(v), where
v refers to the index of a given window. The fluctuating process
is characterized by Fv(n), which is given as a function of window
size, n:

F 2
v (n) =

1

n
·

n∑
t=1

ε2
t (v). (32)

A B
C D

FIGURE 4 | Detrending scheme and fluctuation analysis for MF-DFA and
MF-DMA methods. The detrending strategy for MF-DFA (A) is that the signal
is divided into a set of non-overlapping windows of different sizes, and a local
low-order polynomial (typically linear) fit (shown in green) is removed from
each window’s data. In contrast, MF-DMA (B) removes the moving average
point-by-point calculated in different window sizes around the processed point
with a position given by θ. This parameter describes the delay between the
moving average function and the original signal. Its value is taken from [0, 1]

interval, 0 meaning only from signal values on the left (“backward,” past), in
contrast with 1 meaning that only signal values to the right (“forward,” future)
are used for calculating Ỹj . The centrally positioned sliding window
corresponds to the case of θ=0.5 balancing contributions from the past and
the future to the reference point. The approaches of MF-DFA and MF-DMA
thus ought to yield different detrended signals, whose calculated moments
(C,D) and Eqs 33 and 34 obtained by the analysis should also be somewhat
different.
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Step 5 – calculation of q-th order moments of the fluctuation
function.

Fq(n) =

(
1

Nn
·

Nn∑
v=1

F
q
v (n)

)1/q

. (33)

For q= 2, the algorithm reduces to the monofractal DMA
method. For the special case q= 0, Fq(n) can be obtained as a
limit value that can be expressed in a closed form:

log[F0(n)] =
1

Nn
·

Nn∑
v=1

log[Fv (n)]. (34)

Relation of the q-th order moment of the fluctuation measure
and H (q) follows a power law:

Fq(n) ∝ nH (q). (35)

Thus H (q) can be estimated as the slope of the least-square
fitted regression line between log n and log [Fq(n)]. Finally,
Mandelbrot spectrum is obtained with subsequent application of
multifractal formalism equations (Eqs 9–12) yielding multifractal
features τ(q), D(h).

Time-frequency domain methods
Wavelet analysis methods can be used to estimate the singularity
spectrum of a multifractal signal by exploiting the multifractal
formalism (Muzy et al., 1991, 1993, 1994; Mallat and Hwang,
1992; Bacry et al., 1993; Arneodo et al., 1995, 1998; Mallat, 1999;
Figure 5). Wavelet transform modulus maxima (WTMM) has
strong theoretical basis and has been widely used in natural
sciences to assess multifractality.

Step 1 – continuous wavelet transformation: This step is essentially
the same as described previously in Eqs 26–28 yielding a matrix
of wavelet coefficients (Figure 5B):

W ≡ [w(it , is)], (36)

where w(it, is)= |W ψ[X](t, s)|, is is the scaling index, where
s= smin, . . ., smax and it= 1, 2, . . ., N, where t is the sampling
time of each successive data point.
Step 2 – chaining local maxima: The term modulus maxima
describes any point (t 0, s0) where |W ψ=[X](t, s)| is a local
maximum at t = t 0:

∂Wψ [X] (t0, s0)

∂t
= 0. (37)

This local maximum is strict in terms of its relation to t 0 in
its immediate vicinity. These local maxima are to be chained by
interconnection to form a local maxima line in the space-scale
plane (t, s) (See Figure 5C).
Step 3 – calculating partition function. With the aid of partition
function (Eq. 7, Figure 5D), singular behavior of the multifractal

time series can be isolated. Wavelet coefficients along maxima
chains are considered as µ measures.

Z (s, q) =
∑

`∈L(s)

|w(is , it )|
q . (38)

Summation is executed along maxima chains (`), the set of all
maxima lines is marked by L(s).
Step 4 – calculating singularity spectra and parameters of mul-
tifractality. The following step is to determine the multiscaling
exponent, τ(q) by H (q), and then using Eqs 10–12 to give full
quantification of the multifractal nature.

CHARACTERIZATION OF METHODS
Before the application of fractal analysis methods, their behav-
ior should be thoroughly evaluated on a large set of signals with
known scale-free structure and broad representation (Bassingth-
waighte and Raymond, 1994, 1995; Caccia et al., 1997; Cannon
et al., 1997; Eke et al., 2000, 2002; Turiel et al., 2006). Signal
classification, estimating performance in terms of precision and
limitations of the methods should be clarified during characteriza-
tion. The capability of multifractal analysis to distinguish between
mono- and multifractal processes should also be evaluated.

Stationarity of a signal is an important property for pairing with
a compatible fractal analysis tool (see Table 2 in Eke et al., 2002).
In addition, all methods have some degree of inherent bias and
variance in their estimates of the scaling exponent bearing great
importance due to their influence on the results, which can be
misinterpreted as a consequence of this effect. The goal of perfor-
mance analysis is therefore to characterize the reliability of selected
fractal tools in estimating fractal parameters on synthesized time
series. This should be carried out at least for a range of signal
sizes and structures similar to the empirical dataset, so that the
reliability of fractal estimates could be accurately determined.

Extensive results obtained with our monofractal framework
have been reported elsewhere (Eke et al., 2000, 2002), but for the
sake of comparison it will be briefly described. Our multifrac-
tal testing framework is aimed to demonstrate relevant features of
MF-DFA and MF-DMA method, utilizing the equations described
in Section “Implementation of Fractal Time Series Analyses.”

TESTING FRAMEWORK FOR MULTIFRACTAL TOOLS ON
MONOFRACTALS
Monofractal signals of known autocorrelation (AC) structure can
be synthesized based on their power law scaling. The method of
Davies and Harte (1987) (DHM for short) produces an exact fGn
signal using its special correlation structure, which is a conse-
quence of the power law scaling of the related fBm signal in the
time domain (Eq. 19). It is important, that different realizations
can be generated with DHM at a given signal length and Hurst
exponent, which consists of a statistical distribution of similarly
structured and sized monofractals.

The next question is how to define meaningful end-points for
the tests? For ideal monofractals with a given length and true H,
Mean Square Error (MSE) is a good descriptor: it can be calculated
for each set of series of known H and particular signal length, N
(Eke et al., 2002). It carries a combined information about bias
and variance, as MSE= bias2

+ variance.
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A B C

D E F

FIGURE 5 | Relations of Continuous WaveletTransform operation,
WaveletTransform Modulus Maxima method, and multifractal formalism
to obtain singularity spectrum of an ideal multifractal. Devil’s staircase
with weight factors p1 =p3 = 0.2, p2 =0.6 was used to model an ideal
multifractal time series (A). The wavelet coefficient matrix (B) is obtained by
continuous wavelet transform in the time-scale space. Modulus maxima map
(C) containing the maxima lines across the scales defined by CWT. We call
modulus maximum of the wavelet transform |Wψ[X ](t, s0)|; any point (t 0, s0),
which corresponds to a local maximum of the modulus of |Wψ[X ](t, s0)| is
considered as a function of t. For a given scale, it means that |Wψ[X ](t 0,
s0)| > |Wψ[X ](t, s0)| for all t in the neighborhood right of t 0, and |Wψ[X ](t 0,
s0)|≥ |Wψ[X ](t, s0)| for all t in the neighborhood left of t 0. Local maxima are
chained, and in the subsequent calculations only maxima chains propagating
to the finest scales are used (Mallat, 1999). Chaining local maxima is

important, because it is proven that their distribution along multiple scales
identifies and measures local singularities, which is tightly linked to the
singularity spectrum. The moment-based partition function (D) separates
singularities of various strength as coded in (B,C) as follows. Z is obtained for
the range [smin, s] as the sum of moments of the wavelet coefficients
belonging to those along a set of maxima lines at s [shown as circles in (C)].
This definition corresponds to a “scale-adapted” partition with wavelets at
different sizes. A moment-based set of Z are plotted in a log-log
representation as shown in (D). Notice that these log Z (log s) functions are
lines representing the power law behavior of the multifractal signal within the
scaling range shown. Therefore when the slope of each and every log Z (log s)
lines are plotted as a function of moment order, q, it yields τ(q) (E). From τ(q)
via Legendre transform the singularity spectrum, D(h) (F), is obtained (See
Chapter 2, Figure 3).

Interpreting the multifaceted results of numerical experiments
is a complex task. It can be facilitated if they are plotted in a prop-
erly selected set of independent variable with impact shown in
intensity-coded representations (Figure 6; Eke et al., 2002). Preci-
sion index is determined as the ratio of results falling in the inter-
val of [H true – H dev, H true+H dev], where H dev is an arbitrarily
chosen value referring to the tolerable degree of deviation.

In the monofractal testing framework, we used DHM-
signals to evaluate the performance of MF-DMA (Gu and
Zhou, 2010) and MF-DFA (Gu and Zhou, 2006), by
the code obtained from http://rce.ecust.edu.cn/index.php/en/
research/129-multifractalanalysis. It was implemented in Matlab,
in accordance with Eqs 17 and 30–35. As seen in Figure 6, preci-
sion of MF-DFA and MF-DMA depends on N, H, and the order
of moment.

In order to compare the methods in distinguishing multifrac-
tality, end-points should be defined reflecting the narrow or wide
distribution of Hölder exponents. We select a valid endpoint ∆h

proposed by Grech and Pamula (2012), which is the difference
of Hölder exponents corresponding to q=−15 and q=+ 15
(Figure 7).

TESTING APPROACHES FOR MULTIFRACTAL TOOLS ON
MULTIFRACTALS
Extending the dichotomous model of fGn/fBm signals (intro-
duced in context of monofractals; Mandelbrot and Ness, 1968;
Eke et al., 2000) toward multifractal time series is reasonable
as it can account for essential features of natural processes
exhibiting local power law scaling. Description of an algo-
rithm creating multifractional Brownian motion (mBm) and
multifractional Gaussian noise (mGn) can be found here
(Hosking, 1984), while implementation of such code can be
found on the net (URL1: http://fraclab.saclay.inria.fr/, URL2:
www.ntnu.edu/inm/geri/software). Given that these algorithms
require Hölder trajectories as inputs, multifractality cannot be
defined exactly on a finite set, which is a common problem of such
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A

B

C

FIGURE 6 | Precision as a function of moment order, signal length, and
Hurst exponent. Precision of MF-DFA [left side of (A–C)] and MF-DMA
[right side of (A–C)] as a function of q, H true, N. fGn and fBm signals were
generated by DHM with length of 28, 210, 212, 214, and H true increased from
0.1 to 1.9 in steps of 0.1, skipping H true = 1 (corresponding to 1/f boundary
seen as the black horizontal line in the middle). Estimation of the
generalized Hurst exponent should not depend on q, as monofractal’s H (q)
is a theoretically constant function scattering around H true across different
order of moments. The intensity-coded precision index is proportional to the
number of estimates of H falling into the range of H true ±0.1, with lighter

(Continued )

FIGURE 6 | Continued
areas indicating more precise estimation. Calculation of this measure is
based on 20 realizations for each q, H true, N. (A) Performance of methods
for q =±5. (B) Performance of methods for q =±2. (C) Performance of
methods for q =±0.5. Besides the clear dependence of precision on H true

and N, influence of moment order is also evident, given that the lightest
areas corresponding to the most reliable estimates tend to increase in
parallel with moment order approaching 0 [Note the trend from (A–C)]. The
lower half of the plots indicates that MF-DFA is applicable for signals of both
types, while MF-DMA is reliable only on fGn signals. This result is further
supported by the paper of Gao et al. (2006), who demonstrated a saturation
of DMA at 1 for H when the true extended Hurst exponent exceeds 1 (thus
it is non-stationary).

FIGURE 7 | Separating monofractals from multifractals. ∆h values
obtained by MF-DFA (as difference of Hölder exponents at q =+15 and
q =−15) are shown for monofractals with length of 210 (blue), 212 (green),
214 (red). It is clearly shown that longer signals are characterized by lower
∆h, and its value below 0.2 means that true multifractality is unlikely
present (Grech and Pamula, 2012). Signals were created by DHM at
extended Hurst exponents of 0–1.9 with a step of 0.1.

synthesis methods. Selecting a set of meaningful trajectories is a
challenging task: it should resemble those of empirical processes
and meet the analytical criteria of the selected algorithms (such
criteria are mentioned in Concept of Fractal Time Series Analyses).

On the contrary, iterative cascades defined with analytic func-
tions are not influenced by the perplexity of definitions associated
with multifractality outlined in the previous paragraph, given that
their value at every real point of the theoretical singularity spec-
trum is known. Due to their simplicity, binomial cascades (Kan-
telhardt et al., 2002; Makowiec et al., 2012) and Devil’s staircases
(Mandelbrot, 1983; Faghfouri and Kinsner, 2005) are common
examples of theoretical multifractals used for testing purposes.
A major drawback of this approach is that these mathematical
objects do not account for features in empirical datasets, but can
still be useful in comparing reported results.

The most extensive test of multifractal algorithms which used
a testing framework of signals synthesized according to the model
introduced by Benzi et al. (1993) was reported by Turiel et al.
(2006). Briefly, it is a wavelet-based method for constructing a
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signal with predefined properties of multifractal structuring with
explicit relation to its singularity spectrum. Since the latter can
be manipulated, the features of the resulting multifractal signal
could be better controlled. The philosophy of this approach is
very similar to that of Davies and Harte (1987) in that a family
of multifractal signals of identical singularity spectra can be gen-
erated by incorporating predefined distributions (log-Poisson or
log-Normal) giving rise to controlled variability of realizations.
Additionally, using log-Poisson distribution would yield multi-
fractals with a bounded set of Hölder exponents in that being
similar to those of empirical multifractals. To conclude, this testing
framework should merit further investigation.

ANALYTICAL STRATEGY
In this article we expand our previously published monofrac-
tal analytical strategy to incorporate some fundamental issues
associated with multifractal analyses keeping how these can be
applied to BOLD time series in focus. Progress along the steps
of the perplexed fractal analysis should be guided by a consoli-
dated – preferably model-based– view on the issues involved (See
Figure 8).

A fundamental question should be answered whether it is wor-
thy at all to take on the demanding task of fractal analysis? This can
only be answered if one characterizes the signal in details according
to the guideline shown in Figure 8 using tools of descriptive sta-
tistics and careful testing; first for the presence of monofractal and
later that of multifractal scale-free features. At this end, we present
here a new tool for an instantaneous and easy-to-do performance
analysis (called “performance vignette”), which can facilitate this
process and does not require special knowledge needed to carry out
detailed numerical experiments on synthesized signals (Figure 9).
The latter, however, cannot be omitted when full documentation
of any particular fractal tool’s performance is needed. In that the
vignette has been designed for prompt selection, overview, and
comparison of various methods; not for their detailed analysis.

We sustain our recommendation that proper class-dependent
or class-independent methods should be chosen.

We feel, that calculating global measures of multifractal scaling,
such as Pc (Shimizu et al., 2004) or W (Wink et al., 2008), can help
consolidating experimental findings in large fMRI BOLD volumes
across many subjects and experimental paradigms. Based on our
tests, we conclude that straightforward recommendations for mul-
tifractal analysis for the purpose of fMRI BOLD time series analysis
needs further investigations.

PITFALLS
SOURCES OF ERROR
Problems emerging from inadequate signal definition (measurement
sensitivity, length, sampling frequency)
Measurement sensitivity. The precondition of a reliable fMRI
time series analysis is that the BOLD signal has adequate definition
in terms of being a true-to-life representation of the underlying
biology it samples. In particular, the fMRI BOLD measurement
is aimed at detecting the contrast around blood filled compart-
ments in magnetic susceptibility of blood and the surrounding
medium in a uniform high field (Ogawa and Lee, 1990). A contrast
develops from tissue water relaxation rate being affected by the

paramagnetic vs. diamagnetic state of hemoglobin. The contrast
increases with decreasing oxygenation of blood, a feature that
renders the technique capable of detecting the combined effect
of neuronal metabolism coupled via hemodynamics throughout
the brain (Smith et al., 2002). As Ogawa and Lee (1990) demon-
strated, the BOLD contrast increases with the strength of the main
magnetic field, B0 (i.e., due to the sensitivity of the relaxation
rate).

In his early paper (Lauterbur, 1973), Lauterbur gave clear evi-
dence of the fact that resolution of magnetic resonance signals will
strongly depend on B0. Newer generations of scanners with con-
tinuously improved performance were constructed utilizing this
relation by incorporating magnets of increased strength (in case
of human scanners from, i.e., 1.5–7T, in small animal scanners due
to the smaller brain size with strength in the 4–17.2T range). Bull-
more et al. (2001) showed indeed, that the performance of some
statistical method and their results depended on the magnetic field
used (1.5 vs. 3T); calling for caution and continuous reevaluation
the methods in the given MRI settings.

In order to confirm the impact of B0 on the sensitivity on
the definition of the BOLD signal fluctuations, we have com-
pared the spectral index (ß) of resting-state BOLD fluctuations
in vivo to those post mortem and in a phantom in 4, 9.4, and
11.7T in anesthetized rats (Figure 10). What we have learned
from this study was that in contrast with amplitude-wise opti-
cal measurements of cerebral oxygenation and hemodynamics
such as near infrared spectroscopy (Eke et al., 2006), due to the
contrast-detecting foundations of fMRI, signal definition can-
not be characterized by comparing fluctuation ranges in vivo
vs. post mortem. After death deoxyhemoglobin molecules are
still present in the MRI voxels post-sacrifice and thus gener-
ate susceptibility-induced magnetic field gradients that would
impact diffusion of tissue water molecules (Herman et al., 2011),
a process that can generate fluctuating BOLD contrast without
ongoing physiology. What matters is that in vivo the blood gets
oxygenated and via the combined impact of neuronal metab-
olism, blood flow, and blood volume, the internal structuring
of the BOLD contrast signal will change from close to random
to a more correlated level as indicated by β, which is in vivo
significantly higher than post mortem. Increasing field strength
enhances this effect and yields a more articulated topology of β

throughout the brain. Conversely, low field measurements favor
the dominance of instrument noise in addition to being less sen-
sitive in detecting the BOLD contrast. The inference of these
preliminary data is that, given the BOLD contrast (and pre-
sumably even the spatial resolution) of our animal imaging,
a 1.5T human scanner may not be of sufficient sensitivity to
detect BOLD fluctuations at adequate definition for a reliable
monofractal analysis, not to mention multifractal analysis known
to require a much higher signal definition for an optimal perfor-
mance that can be achieved in higher field scanners (Ciuciu et al.,
2012).

While the use of fMRI is typically qualitative where the baseline
is conveniently differenced away to reveal focal area(s) of interest
(Shulman et al., 2007), this practice would not interfere with frac-
tal time series analysis, given that scaling exponent is invariant to
mean subtraction.
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FIGURE 8 | Analytical strategy for fractal time series analysis. Toward
obtaining a reliable (multi)fractal parameter, which is the purpose of the
analysis, the first step to take is to collect a high definition dataset
representing the temporal signal, X (t ), ensuring adequate definition.
Provided that quality-controlled, adequate length of signal, Xi, was
acquired at a sufficient frequency sampling X (t ) (Eke et al., 2002),
scale-free processes can be characterized in terms of either a single
global or a distribution of many local scaling exponents, the former
pertinent to a monofractal, the latter to a multifractal signal, respectively
(Figure 1). A detailed flowchart of our monofractal analytical strategy has
been reported earlier (Eke et al., 2000, 2002), hence only some of its
introductory elements are incorporated here. The signal-to-noise
ratio – as part of signal definition – is a source of concern in
preprocessing the signal. Ensuring the domination of the underlying
physiological processes over inherent noise is a critical issue, which – if
not dealt with properly – will have a detrimental effect on the correlation

structure of the signal. Endogenous filtering algorithms of the
manufacturers of MRI scanners could be operating in potentially relevant
frequency ranges of fractal analysis aimed at trend or noise removal
(Jezzard and Song, 1996). In case of BOLD signals, this problem may
prove hard to track as the system noise may cause a temporally (i.e.,
serially) correlated error in the measurement (Zarahn et al., 1997). This
may alter the autocorrelation structure of the signal with embedded
physiological content (Herman et al., 2011). Various aspects of temporal
smoothing have been discussed in Friston et al. (2000). To conclude,
scale-free properties of the signal must be preserved during steps
carried out before fractal analysis, otherwise the physiologically relevant
internal structuring of the BOLD signal cannot possibly be revealed
(Herman et al., 2011). Once a multifractal has been isolated by a
class-independent method, such as MF-DFA, we can only assume that
the multifractal structuring of the signal is due to serial correlation.

(Continued )
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FIGURE 8 | Continued
As autocorrelation structure of the signal can reflect a broad probability
distribution, surrogate analysis is needed on a shuffled signal – which
destroys this correlation – to ensure that the origin of the scale-invariance
is due to genuine autocorrelation in the signal (Kantelhardt et al., 2002).
The null-hypothesis (the signal is not multifractal) is rejected if multifractal
measures determined for the raw and surrogate sets are different. This
procedure is similar to verifying the presence of deterministic chaos
(Herman and Eke, 2006). Attention should be given to select the scaling
range properly: involving the finest and coarsest scales in calculating H (q)
would greatly impair its estimate. The range of moments should be

selected such that sufficient range of singularity spectrum is revealed,
allowing for the calculation of scalar multifractal descriptors such as P c.
Next, one has to decide as to which path of the detailed multifractal
analysis to choose (indirect vs. direct or time vs. time-frequency domain)?
Each of these paths would have advantageous and disadvantageous
contributions to the final results to consider. The methods of analysis
must be selected compatible to the path taken. Once methods have been
chosen, their performance (precision) ought to be evaluated. With
adequate performance verified, the multifractal analyses can then be
followed by attempts to find physiological correlates for the estimates of
(multi)fractal parameters.

Length and sampling frequency. A signal is a sampled
presentation of the underlying process, which generates it. Hence
the sampling frequency must influence the extent the signal cap-
tures the true dynamics of the process, which is in the focus of
fractal analysis irrespective if its analyzed in the time (in form of
fluctuations) or in the frequency domain (in form of power distri-
bution across the frequency scale). The sampling frequency should
preferably be selected at least a magnitude higher than the highest
frequency of the observed dynamics we would aim to capture.

The relationship between length and frequency can best be
overviewed in the frequency domain along with the frequency
components and aliasing artifact of the spectrum as seen in
Figure 12 of Eke et al. (2002). Note, that the dynamics of inter-
est can be best captured hence analyzed if the signal length is
long; the sampling frequency is high, because it will provide a
spectrum of many components with a weak artifactual impact
of aliasing. Herman et al. (2011) have recently demonstrated this
relationship on resting-state BOLD time series and concluded that
lower frequency dynamics are better sampled by longer BOLD
signals, whereas a high sampling rate is needed to capture dynam-
ics in a wide bandwidth signal (See Figure 3 in Herman et al.,
2011). In other words, inadequately low frequency is more detri-
mental to the result of fractal analysis than somewhat truncated
signal.

Due to the discrete representation within the bounded tem-
poral resolution of the signal, the precision of its fractal analysis
increases with its length as demonstrated on simulated signals of
known (true) fractal measures by the bias and variance of its esti-
mates. The minimum length at which reasonable results can be
expected depends not only on signal length but on the method
of analysis and the degree of long-range correlation in the sig-
nal (as characterized by its H ); an issue that has been explored
in details for monofractal time series by the groups of Bass-
ingthwaighte and Raymond (1994, 1995); Eke et al. (2000, 2002);
Delignieres et al. (2006), and for multifractal methods by Turiel
et al. (2006).

Multifractal analysis can be considered as an extension of
monofractal analysis, which is explicitly true for moment-based
methods: while in case of monofractals a scale-free measure is
obtained at q= 2, the procedure for multifractals uses a set of
different q-order moments. Think of q as a magnifier glass: differ-
ent details of the investigated scale-free structure can be revealed
at different magnification. However, if signal definition is poor
due to short length or small sampling frequency, estimates of
D(h) will become imprecise at large ±q (Figure 6). Since the

order of q needed to obtain characteristic points of the singular-
ity spectrum usually falls beyond q=± 2, a longer time series is
required to guarantee the needed resolution in this range. Hence,
dependence of precision on signal length in case of multifrac-
tals is a more complicated issue, where the effect of spectral
characteristics interacts with that of signal length (Turiel et al.,
2006).

A reasonable conclusion is that the recommended minimum
length for a reliable multifractal analysis ought to be longer
than that found earlier for monofractal series (Eke et al., 2002;
Delignieres et al., 2006).

Problem of signal class (fGn vs. fBm)
In fractal analysis, signal classification is a central issue (Eke et al.,
2000) and should be regarded as a mandatory step when a tool is
to be chosen from the class-dependent group. Living with the rel-
ative convenience of using a class-independent method does not
render signal classification unnecessary given the great importance
of proper interpretation of the findings that can be enhanced by
knowing signal class.

Recently, Herman et al. (2011) found in the rat brain using
monofractal analysis (PSD) that a significant population of fMRI
BOLD signal fell into the non-stationary range of β. These non-
stationary signals potentially interfere with resting-state connec-
tivity studies using spatio-temporal volumes of fMRI BOLD. It is
even more so, if SSC is used for signal classification (Figure 11)
and analysis (Figure 12) shifting the histogram of H ′ to the
right.

For multifractals the problem and proposed solution is gener-
ally the same, but the impact of the fGn/fBm dichotomy on the
multifractal measures is not a trivial issue. Our preliminary results
reported here (Figure 12) are steps in this direction, but this issue
calls for continuing efforts in the future. It seems that at least sta-
tionarity vs. non-stationarity is a valuable piece of information for
selecting a concise model of multifractals.

Distinguishing monofractals from multifractals
Multifractal analysis of an exact monofractal rendered at ideal
resolution (in infinite length, sampled at infinite frequency, at infi-
nite sensitivity of detection) would yield a constant H (q), a linear
dependence of τ on q and a point-like Mandelbrot spectrum with
its Hölder exponent (hmax) equal with its Hurst exponent.

Due to the finite and discrete nature of the signal, the singular
behavior of a suspected scale-free process cannot be quantified
perfectly. As a consequence, the homogeneity of a monofractal’s
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FIGURE 9 | Fractal tool performance vignette. It provides a quick
assessment of any fractal time series tool’s performance. As such can be
useful as a method of standardization and/or comparison of various
algorithms. Technically, a vignette is created as any given fractal time series
method evaluates a volume of synthesized time series for a particular fractal
parameter. The results are converted to extended H ′ as H ′ =H fGn,
H ′ =H fBm + 1 using a conversion table between H and other fractal
parameters (Eke et al., 2002). The signals are generated for a range of
length, L [Lmin, Lmax] in increments of ∆L, and for the full range of the
fGn/fBm dichotomy at β or H ′ at given increments of the exponent, ∆H’ by
the DHM method (Davies and Harte, 1987; Eke et al., 2000). The volume is
created from these signals arranged in a square raster, which will
correspond to one of four identical quadrants of the vignette. Once the
analysis by a fractal tool has been carried out the results are plotted in a
square array as shown in (A) such a way that fGn signals occupy a square
created by the four identical quadrants. The 1/f boundary separating the fGn
from the fBm range can be easily identified as plotted with a midscale color.
Warmer colors indicate over-, cooler colors underestimation of the scaling
exponent at the particular signal length or degree of correlation. When
applied to class-independent or dependent methods (B), like PSD, SSC (B,
upper half) or Disp (dispersional analysis) and bdSWV (bridge detrended
Scaled Window Variance) (B, lower half), respectively, an immediate
conclusion on signal performance can be drawn: PSD and SSC can be used
for fGn and fBm signals alike (except in the vicinity of the 1/f boundary) and
SSC is more precise. Disp (Bassingthwaighte and Raymond, 1995; Eke
et al., 2000, 2002) and bdSWV (Eke et al., 2000, 2002), two
class-dependent methods of excellent performance (note the

(Continued )

FIGURE 9 | Continued
midscale colored area in the fGn and fBm domains, respectively) do show
up accordingly. The vignette is applicable to indicate the performance of
multifractal methods, too. The monofractal H can be determined in two
ways: in case of q =2 from τ(q), and in case of q =0 from hmax in the
singularity spectrum.

singularities cannot be captured by a multifractal analysis. The
reason being is that due to numerical background noise (Grech
and Pamula, 2012) – resulting from factors mentioned above – it
would always smear the point-like singularity spectrum into one
mimicking that of a multifractal. This is confirmed by the appar-
ent uncertainties associated with the estimates of H (q) obtained
at various moments in our simulations. All in all, multifractal
analyses have been conceived in a manner that tends to view a
monofractal as a multifractal.

In order to avoid false interpretation of the data, time series
should be produced at the highest possible definition to amelio-
rate this effect and criteria should also be set up to distinguish
the two entities in the signal to be analyzed. Numerical simulation
has been demonstrated as a useful tool to work out a parame-
ter that can be used to substantiate a monofractal/multifractal
classification (Grech and Pamula, 2012; Figure 6).

Trends and noises
Empirical time series are typically non-linear, non-stationary and
can be contaminated by noise and other signal components for-
eign to the fractal analysis of the system under observation. Trend
is deterministic in its character and of typically low frequency in
contrast with noise, which has a completely random structuring
in a higher frequency range. Monofractal analysis methods are
quite robust with respect of noise, thus in case of monofractals
do not require preprocessing (Bassingthwaighte and Raymond,
1995). When uncorrelated noise is added to a multifractal process,
the shape of its singularity spectrum will also be preserved (Figli-
ola et al., 2010). However with correlated noise present, – known
to impact fMRI BOLD time series – preprocessing should be con-
sidered (Friston et al., 2000), and if carried out, it should be done
with an appropriate adaptive filter (Gao et al., 2010, 2011; Tung
et al., 2011).

In case of wavelet-based methods, a polynomial trend can be
removed based on the analyzing wavelet’s properties. However, if
the trend has a different character (i.e., trigonometric or exponen-
tial), or it has more vanishing moments than that of the analyzing
wavelet, the estimation of singularity spectrum will be impaired
(See theorem 6.10 in Mallat’s book; Mallat, 1999).

Various detrending schemes have been developed to enhance
performance of fluctuation analysis (FA) on detrended signals,
which has been compared (Bashan et al., 2008). The most com-
mon trend removal is based on fitting a low-degree polynomial to
local segments of the signal such as employed in DFA (Figure 4).
In particular, DFA’s trend removal is credited for being very effec-
tive, however – as recently reported (Bryce and Sprague, 2012) – it
can become inadequate if the trend ends up having a character dif-
ferent from the coded algorithm, which scenario cannot at all be
excluded. A further problem is that the signal arbitrarily divided
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FIGURE 10 | Definition of spontaneous BOLD fluctuations critically
depends on main field strength. Exemplary coronal scans are shown
obtained in anesthetized rat in MR scanner applying 4, 9.4, and 11.7T main
external field. All fMRI data were collected at 5 Hz in length of 4096 (212)
images with gradient echo planar imaging (EPI) sequence using 1H surface
coils (Hyder et al., 1995). (A) shows in vivo and post mortem maps of spectral
index, β. β was calculated from the spectra of the voxel-wise BOLD time
series by the PSD method for a restricted range of fluctuation frequency
(0.02–0.3 Hz) found to exhibit inverse power law relationship [fractality;
indicated by vertical dashed lines on the PSD plots in (B)]. In order to achieve
a suitable contrast for the topology, β are color coded within the fGn range

(from 0 to 1). Hence voxel data with β > 1 indicating the presence of fBm
type fluctuations are displayed saturated (in red). β maps for water phantoms
placed in the isocenter are also shown for comparison. Note, that the fractal
pattern of internal structuring of the spontaneous BOLD signal cannot be
captured at adequate definition at 4T as opposed to 11.7T, where the rate of
scale-free rise of power toward low frequencies are thus the highest at about
the same region of interest (ROI) located in the brain cortex. This dependence
translates into an articulate in vivo topology with increasing B0. Also note that
in vivo 4T cannot yield a clear topology of β when compared to post mortem,
and that the well defined topology achieved at higher fields vanished post
mortem indicating the link between β and the underlying physiology.

into analyzing window of different sizes in which trend removal is
carried out based on a priori assumption (e.g., polynomial). This
problem is exaggerated as by using partitioning of the signal into a
set of non-overlapping windows and performing detrending in a
window-based manner would not guarantee that the trend in each
and every window would be identical with the assumed one. This
is especially true for small windows, where trend tends to deviate
from that in larger windows. Contrary to expectations, this criti-
cal finite size effect is always present, thus this pitfall can only be
avoided if explicit detrending is applied by using adaptive methods
(Gao et al., 2011).

To conclude, the recently reported uncontrollable bias to the
results of DFA (Bryce and Sprague, 2012) raised major concern
as to the reliability of FA with this detrending scheme. Thus if
DFA is to be used, it should be done with special care taken in the
application of more adaptive detrending analyses.

Finally, empirical mode decomposition (EMD) is a promising
adaptive approach, one of whose feature is the ability to estimate
trend explicitly. It also creates an opportunity to combine EMD
with other fractal analysis methods like those based on FA to
achieve a more reliable scale-free method (Qian et al., 2011).

Problems of moment-based methods
Using moment-based methods to estimate the Mandelbrot spec-
trum is a common approach with some drawbacks. Due to the
discretized nature of the signal under analysis, small fluctuations
cannot be resolved perfectly and therefore the Hölder exponents
become biased in the range of their large negative moments (cor-
responding to the right tail of the singularity spectrum; Turiel
et al., 2006). All moment-based methods are influenced by the
linearization of the right tail thus yielding biased estimates of the
negative statistical moments of the measure, µ (Turiel et al., 2006).
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FIGURE 11 | Classifying rat fMRI BOLD data. Signal classification was
performed on the 11.7T BOLD dataset shown in Figure 10 by the PSD and
SSC methods (A) previous tested in this capacity by Eke et al. (2002);
misclassification rates for PSD and SSC are shown in the plots of (B) the
lower panel. Because SSC is a much better classification tool, than PSD is,
the classification topology will be drastically different for these two
methods. The ROI’s corresponding to voxel-wise signals identified by SSC
as non-stationary indeed do clearly delineate the anatomical boundaries of
the brain cortex, while those by the PSD only the spots of highest β.

This type of error cannot be eliminated with increasing the signal’s
length (Turiel et al., 2006). In case of large fluctuations in the sig-
nal, numerical limitations become problematic when calculating
large positive moments.

Problems associated with moment-based methods can be sum-
marized as follows. Firstly, a carefully selected set of different order
(q) statistical moments of µ should be calculated. Selecting too
large negative and positive moments would lead to imprecise
generalized Hurst exponent [H (q)] or multiscaling exponent
(Figure 6; Ihlen, 2012). A sufficient range of q is needed, however,
in order to characterize the global singular behavior of the studied
time series. This is especially important in the evaluation of the
spectrum, but from a practical point of view, the spectrum width
at half maximum is sufficient to obtain Pc, or W + /W−, that
are frequently used lumped parameters in describing multifractal
fMRI BOLD signals, too (Shimizu et al., 2004; Wink et al., 2008).
In summary, precise estimation of singularity strength is needed
at characteristic points of the spectrum: around its maximum
(i.e., at q≈ 0) and at its half maximum a dense definition is rec-
ommended. Thus, the optimal selection depends on the signal
character and needs to be analyzed with several sets of q. In gen-
eral, estimating spectrum between q=−5 and q= 5 is sufficient
in biomedical applications, as proposed by Lashermes and Abry
(2004). Secondly, methods implementing direct estimation of sin-
gularity spectra can be applied (Figure 3). One typical example is
the gradient modulus wavelet projection (GMWP) method, which
turned out to be superior to all other tested methods (WTMM,
too) in terms of precision as reported by Turiel et al. (2006). It was

shown that direct approaches can give quite good results in spite of
the numerical challenges imposed by calculating the Hölder expo-
nents (h) locally and without the need of using statistical moments
and Legendre transform (Turiel et al., 2006). Strategies including
the latter two approaches are widely used and can be considered
reasonably, but not exclusively reliable in terms of their handling
the numerical difficulties associated with multifractal analysis.

Problems of wavelet transform modulus maxima methods
In case of monofractals, the average wavelet coefficient method
is the most effective and the easiest to implement (Simonsen
and Hansen, 1998; Eke et al., 2002). It can be used for fBm and
cumulatively summed fGn signals.

There are other issues related to this method, whose nature
can be numerical on the one hand and theoretical on the other.
For example, the first and last points of the signal exhibits
artifactual scaling, improperly selected scales would impair the
results considerably, etc. A well-selected analyzing wavelet also
ensures reliable results, which is also proven for certain indi-
rectly calculated partition functions (via Boltzmann weights;
Kestener and Arneodo, 2003). The effect of the modifications
addressing these issues is discussed in Faghfouri and Kinsner
(2005) and a detailed test of WTMM is reported by Turiel et al.
(2006).

Due to the difficulties in the reliable application of WTMM,
other methods were developed in the field, the most promising
one being the Wavelet Leader method (Lashermes et al., 2005;
Serrano and Figliola, 2009), which has recently been applied to
human fMRI BOLD signals (Ciuciu et al., 2012). As refinements
of WTMM, the wavelet leader is beyond the scope of this review,
the reader is referred to the cited references.

Identifying the spectral extent of monofractality within a signal
Verifying the presence of self-similarity, as one of the fundamental
properties of monofractals is a key element of the analytical strat-
egy of fractal time series analysis (Eke et al., 2000; Figure 8). It
should be present within a sufficiently wide scaling range. In case
of exact (mathematical) fractals the scaling range is unbounded. In
natural fractal time series however it is typically restricted to a set
of continuous temporal scales as demonstrated by Eke et al. (2006)
for fluctuating cerebral blood volume in humans and Herman et al.
(2011) for resting-state fMRI BOLD signals in rat. As shown in the
frequency domain by spectral analysis, in both species, scale-free
structuring of the signal was present across a range of frequencies
well below the Nyquist frequency (half of the sampling frequency).
It was characterized by a systematically and self-similarly increas-
ing power toward lower frequencies that could be modeled by Eq.
25 yielding a spectral index of β > 0, which is an indication of ser-
ial correlation between the temporal events (long-term memory).
Above this range, the fluctuations were found random with β≈ 0
meaning that subsequent temporal events were not correlated. The
separation of these ranges therefore is crucial because failing to do
so would cause a bias in the estimate of β.

For fractal time series analysis a proper scaling range should be
selected where fluctuations are scale-invariant. Optimization of
the sampling process, as well as the regression analysis on log-log
representations of measures vs. scales yielding the scaling exponent
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FIGURE 12 | Fractal analyses of rat fMRI BOLD data. The 11.7T BOLD
dataset shown in Figure 10 was analyzed monofractally (A) in the frequency
domain by PSD, in the time domain by SSC, and multifractally (B) in the time
domain by MF-DFA and MF-DMA methods. Estimates of spectral index were
converted to extended Hurst exponent, H ′. Our tool performance vignette is
displayed next to the methods. Histograms of H ′ computed from the fractal
image data by SSC are shown. The vignette data reconfirms that SSC is
superior over PSD as a monofractal tool. Due to the downward bias of PSD in
the anticorrelated fGn range, H ′ are significantly underestimated. Because
SSC’s estimates are unbiased, the SSC topology should be considered
realistic, which translates into a right shift of the SSC H ′ histogram relative to
that of PSD’s. Based on the vignette pattern, among the multifractal tools,
MF-DFA works quite well on fGn and fBm signals, alike, while MF-DMA with
fair performance in the fGn range but closer to the 1/f boundary, and fails on
fBm signals of the set. For reasons mentioned above, the estimates of SSC

should be taken as precise. Given that most values in the fGn range fall into
the range of complete uncertainty of the MF-DMA (See Figure 6 at q =2) and
that MF-DMA cannot handle fBm signals, all estimates ends up being 1.0.
Differencing the signals (including those of the vignette) changed the situation
dramatically. As seen on the vignette, the originally fBm signals would be
mapped into the fGn range that can be handled by MF-DMA very well. Actually
better than the original fGn signals where slight overestimation is seen. This
kind of behavior of MF-DMA may have inference with the findings of Gao
et al. (2006). Also note, that the double differenced fGn signals end up being
overestimated. These effects are worth to investigate in order to characterize
the impact of the fGn/fBm dichotomy on the performance of these time
domain multifractal tools when signals are being converted between the two
classes. P c – as a global multifractal measure – captures a topology similarly
to the monofractal estimates. The corresponding singularity spectra do
separate with the likelihood that the underlying multifractalities indeed differ.

is essential (Eke et al., 2002). In case of time domain methods
such as DFA, DMA, and AFA as well introduced by Gao et al.
(2011), optimizing the goodness-of-fit of the regression analysis
is an example. Detailed recommendations as to how to deal with
this problem can be found elsewhere (Peng et al., 1994; Cannon
et al., 1997; Eke et al., 2002; Gao et al., 2006). When a signal’s spec-
trum contains other than monofractal components, it may prove

difficult to select a monofractal scaling range even by isolating
local scaling ranges and fitting local slopes for the spectral index.
This procedure should be carefully carried out given that local
ranges may end up containing inadequately few spectral estimates
for a reliable fitting of the trendline. When the aim is to assess the
topology of the measure, this criterion can be relaxed (Herman
et al., 2011).
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Faghfouri and Kinsner (2005) reported that improper selection
of scaling range has a detrimental effect on the results of WTMM.
Different scales correspond to different window sizes in MF-DFA
and MF-DMA method, and discarding the smallest and largest
window sizes was even suggested by Peng et al. (1994) for the orig-
inal DFA. Cannon et al. (1997) and Gao et al. (2006) suggested an
optimization for the appropriate range of analyzing window sizes
(i.e., scales). While this can be regarded as best practice in carrying
out MF-DFA, some degree of bias is still introduced to the results
arising mainly from the smallest window sizes (Bryce and Sprague,
2012).

Dualism in multifractal formalism
Amongst the indirect, moment-based methods, WTMM uses a
different approach to obtain the singularity spectrum than MF-
DFA and MF-DMA. Convergence of this dualism is very unlikely,
as the relationship of exponents in MF-DFA to the multifrac-
tal formalism is reported to be valid only in special cases (Yu
and Qi, 2011). The seminal paper of MF-DFA Kantelhardt et al.
(2002) established a relationship between the generalized Hurst
exponent and multiscaling exponent. The validity of this equa-
tion was reported to be valid only if H = 1 (Yu and Qi, 2011),
and thus another derivation for τ(q) was proposed. In addi-
tion, singularity spectra reported with MF-DFA – as it follows
from the Legendre transform of τ(q) (Eq. 9) – always reaches
their maxima at 1, while this does not hold for wavelet meth-
ods. In our opinion, revision of results obtained with MF-DFA
may be necessary along with consolidating the multifractal for-
malism published in the field, using the original papers as a
starting point of reinvestigation (Frisch and Parisi, 1985; Mandel-
brot, 1986; Barabási and Vicsek, 1991; Muzy et al., 1993; Arneodo
et al., 1998).

DEMONSTRATION
Scrutinizing relevant data in selected previous works recognized
as having proven or potential impact on the development of the
field will likely demonstrate some typical pitfalls.

SIGNIFICANCE OF SYSTEM NOISE IN THE INTERPRETATION OF fMRI
BOLD FLUCTUATIONS
Zarahn et al. (1997) demonstrated early in a careful analysis
on spatially unsmoothed empirical human fMRI BOLD data
(collected under null-hypothesis conditions) that the examined
datasets showed a disproportionate power at lower frequencies
resembling of 1/f type noise. In spite of the very detailed analy-
sis, these authors treated the 1/f character as a semi-quantitative
feature of fMRI noise and accepted its validity over a decaying
exponential model as the form of the frequency domain descrip-
tion of the observed intrinsic serial, or autocorrelation. The spec-
tral index, β, however was not reported but can be reconstructed
from the power slope by converting the semilog plot of power
vs. frequency in their Figure 3D panel to a log-log plot compat-
ible to |A(f ) |2∝1/f β model. A β value of ∼3.3 is yielded, which
is exceedingly higher than the values of 0.6 < β < 1.2 reported
recently for an extensive 3T dataset by He (2011). This precludes
the possibility that the collected resting-state 1.5T BOLD dataset
would have been of physiological origin. Our recently reported

results for the rat brain with−0.5 < β < 1.5 reconfirms this asser-
tion (Herman et al., 2011). In fact, Zarahn et al. (1997) wished to
determine if the 1/f component of the noise observed in human
subjects was necessarily due to physiological cause, but had to
reject this hypothesis because they found no evidencing data to
support this hypothesis. Zarahn et al. (1997) felt the AC struc-
ture (in the time domain, which is equivalent to the inverse
power law relationship in the frequency domain) may not be
the same for datasets acquired in different magnets, not to men-
tion the impact of using various fMRI scanning schemes (Zarahn
et al., 1997). Accordingly, and in light of our rat data for mag-
nets 4, 9.4, and 11.7T, a less than optimal field strength could
have led to a signal definition inadequate to capture the 1/fβ

type structuring of the BOLD signal of biological origin that
must have been embedded in the human datasets Zarahn et al.
(1997) but got overridden by system noise. Most recently, Her-
man et al. (2011) and He (2011) referred to the early study of
Zarahn et al. (1997) as one demonstrating the impact of system
noise on fMRI data, while Fox et al. (2007) and Fox and Raichle
(2007) as the first demonstration of 1/f type BOLD noise with the
implication that the 1/f pattern implied fluctuations of biological
origin.

SIGNIFICANCE OF THE GENERAL 1/fβ VS. THE STRICT 1/f MODEL IN THE
INTERPRETATION OF fMRI BOLD NOISE DATA
Fox et al. (2007) reported on the impact of intrinsic BOLD fluctu-
ations within cortical systems on inter-trial variability in human
behavior (response time). In conjecture of the notion that the
variability of human behavior often displays a specific 1/f fre-
quency distribution with greater power at lower frequencies, they
remark “This observation is interesting given that spontaneous
BOLD fluctuations also show 1/f power spectrum (Figure S4).
While the 1/f nature of BOLD fluctuations has been noted previ-
ously (Zarahn et al., 1997), we show that the slope is significantly
between −0.5 and −1.5 (i.e., 1/f ) and that this is significantly
different from the frequency distribution of BOLD fluctuations
observed in a water phantom,” and in their Figure S4 conclude
that “the slope of the best fit regression line (red) is −0.74, close
to the −1 slope characteristic of 1/f signals.” This interpretation
of the findings implies that the spontaneous BOLD fluctuations
can be adequately described by the “strict” 1/f model, where the
spectral index, β, in 1/f β – known as the “general” inverse power
law model – is treated as a constant of 1, not a variable carrying
information on the underlying physiology. Incidentally, studies of
Gilden and coworkers (using a non-fMRI approach) have indeed
demonstrated (Gilden et al., 1995; Gilden, 2001; Gilden and Han-
cock, 2007) that response time exhibits variations that could not
be modeled by a strict 1/f spectrum but by one incorporating a
varying scaling exponent (Gilden, 2009).

Scrutinizing the data of Figure S4 can offer an alternative
interpretation as follows. In terms of the hardware, the use of
3T magnet must have ensured adequate signal definition for the
study. In their Figure S4, spectral slopes were reported in a lumped
manner, in that power at each and every frequency were aver-
aged for the 17 human subjects first (thus creating frequency
groups), and then mean slopes along with their statistical vari-
ation were plotted for the frequency groups. The mean slope of
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−0.74 (of thee lumped spectrum) was obtained by regression
analysis. This treatment of the data implies that the |A(f )|2∝ 1/f β

model (Mandelbrot and Ness, 1968; Eke et al., 2000, 2002) was
a priori rejected otherwise the slope should have been deter-
mined for each and every subject in the group across the range
of observed frequencies and their associated power estimates (of
the true spectrum) first, followed by the statistical analysis for
the mean and variance within the group of 17 subjects, for the
following reasons. The spectral index is found by fitting a linear
model of |A(f )|2∝ 1/f β across spectral estimates for a range of
frequencies. In our opinion when it comes to provide the mean
spectral index, it is indeed reasonable (Gilden and Hancock, 2007;
Gilden, 2009) to come up with statistics on the fractal estimates
for a group of time series data first by obtaining the estimates,
proper. Averaging spectral estimates at any particular frequen-
cies and assembling an average spectrum from them tend to
abolish the fractal correlation structure for any particular time
series and develop one for which the underlying time series is
indeed missing. Because the transformation between the two treat-
ments is not linear, the true mean slope of the scale-free analysis
cannot be readily reconstructed from the reported slope of the
means. Nevertheless, if we regard its value as an approximation
and convert it to β, which being less than 1 warrants the use
of H ′= (βfGn+ 1)/2, one would yield a value of β= 0.77 and
H ′= 0.87, respectively.

A recent review by Fox and Raichle (2007) offers an impres-
sive overview and insight of how to delineate cooperative areas
(or systems) in the brain based on functional connectivity that
emerges from spatial cross-correlation maps of regional fluctuat-
ing BOLD signals in the resting brain (Biswal et al., 1995). These
authors place the spontaneous activity of the brain as captured
in BOLD fluctuations in spatio-temporal domains of fMRI data
in the focus of the review emphasizing that itis a fingerprint of
a newly recognized mode of functional operation of the brain
referred to as default or intrinsic mode (Fox and Raichle, 2007).
They argue that the ongoing investigation of this novel aspect of
the mode of brain’s operation using fractal analysis of resting-
state fMRI BOLD may lead to a deeper and better understanding
of the way the brain – on the expense of very high baseline energy
production and consumption by glucose and oxidative metabo-
lism – maintains a mode capable of selecting and mobilizing these
systems in order to respond to a task adequately (Hyder et al.,
2006). One has to add that the default or intrinsic mode of oper-
ation has been demonstrated and investigated in overwhelming
proportions by connectivity analyses based on cross-correlating
BOLD voxel-wise signals as opposed on AC of single voxel-wise
BOLD time series.

Fox and Raichle (2007) emphasize “spontaneous BOLD fol-
lows a 1/f distribution, meaning that there is an increasing power
in the low frequencies.” In their furthering on the nature of this 1/f
type distribution they refer to the studies of Zarahn et al. (1997)
and Fox et al. (2007) in the context it was described above (Fox
et al., 2007) reaching the same conclusion, in that the character-
istic model of human spontaneous BOLD is the 1/f (meaning the
“strict”) model. We would like to suggest that the notion of 1/f
distribution having a regression slope of close to−1 on the log-log
PSD plot is somewhat misleading.

In an attempt to consolidate this issue, we suggest that the data
be fitted to a model in the form of 1/fβ, where β is a variable (Eke
et al., 2000, 2002) responding to states of physiology (Thurner
et al., 2003; He, 2011) of characteristic topology (Thurner et al.,
2003; Herman et al., 2011) in the brain, not a constant of 1. A
potential advantage of this model is that by regarding β as a scal-
ing exponent the distribution can then be described to be scale-free
(or fractal).

SIGNIFICANCE OF THE 1/fβMODEL AND THE DICHOTOMOUS fGn/fBm
ANALYTICAL STRATEGY IN ANALYZING SCALING LAWS AND
PERSISTENCE IN HUMAN BRAIN ACTIVITY
As seen above, from the modeling point of view the issue of
a reliable description of the autoregressive signal structuring of
spontaneous BOLD, is fundamental and critical in resting-state. If
it is done properly, it can lend a solid basis for assessing changes
in the scaling properties in response to changing activity of the
brain. The study of Thurner et al. (2003) was probably the first to
demonstrate that spontaneous BOLD in the brain was scale-free
and that the scaling exponent of inactive and active voxels dur-
ing sensory stimulation differed. At the time of the publication of
their study, the monofractal analytical strategy of Eke et al. (2000,
2002) based on the dichotomous fGn/fBm model of Mandelbrot
and Ness (1968) did not yet reached the fMRI BOLD commu-
nity, hence Thurner et al. (2003) did not rely on it, either. In this
section we will demonstrate the implications of this circumstance
in terms of the validity and conclusions of their study. We will do
it in a detailed, didactical manner so that our reader should gain a
hands-on experience with the perplexed nature of the issue.

Subtracting the mean from the raw fMRI signal precedes the
analysis proper, Ī Ex (t ), yielding I Ex (t ) in Eq. 39,

I Ex (t ) = Ī Ex (t )−
〈
Ī Ex (t )

〉
t
, (39)

which step is compatible with (D)FA (Eke et al., 2000).
Subsequently, in Eq. 40, the temporal correlation function,

C Ex (τ), is calculated

C Ex (τ) =
〈
I Ex (t )I Ex (t + τ)

〉
=

1

N − τ

N−τ∑
t=1

I Ex (t )I Ex (t + τ). (40)

In fact in this step of the analysis the covariance was calculated
given that a division by variance was missing. Hence, it is slightly
misleading to regard Eq. 40 as the temporal (or auto) correlation
(see Eke et al., 2000, Eq. 2). Only, if assumed that the signal is fGn,
whose variance is known to be constant over time, the covariance
function can be taken as equivalent to the AC function. Because the
authors have not tested and proven the signal’s class was indeed
fGn (Eke et al., 2000), there is no basis for the validity of this
assertion.

In Eq. 41, the signal is summed yielding X Exn (τ), in order to
eliminate problems in calculating the AC function due to noise,
non-stationarity trends, etc.

Xn
Ex (τ) =

n∑
t=1

I Ex (t ) (41)
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This form of the signal is further referred to as “voxel-profile.”
Note, that the signal remains in this summed form for the rest

of the analysis (i.e., analyzed as fBm). As a consequence, spec-
tral analysis later in the study was applied to a summed – hence
processed – signal and the results were thus reported for this and
not the raw fMRI signal, which circumstance prevented reaching
a clear conclusion.

Furthermore, the authors indicated that the temporal corre-
lation function would characterize persistence. It seems the two
terms (correlation vs. persistence) are used as synonyms of one
another whereas they are not interchangeable terms: persistence is
a property of fBm, while correlation is that of an fGn signal (Eke
et al., 2000). Please note, as the raw signal has been summed, the
covariance here characterized persistence that was not present in
the raw fMRI signal.

In the next step (Eq. 42), the AC function is approximated by a
power law function with γ as its exponent

C Ex (τ) ∼ τ−γ, · · · 0 < γ < 1. (42)

Based on the equation of the AC function using the Hurst
exponent, H, γ must be proportional to 2H (Eke et al., 2000,
Eq. 15).

Subsequently, as a part of a FA of the authors (cited in their
Reference 19 as unpublished results of their own), the statistics
(F Ex (τ), standard deviation) was calculated for the AC function in
Eq. 43

F Ex (τ) =

〈(
X Exn+τ − X Exn

)2
〉1/2

n
. (43)

In the left side of Eq. 44, a general power law was applied to the
fluctuation from Eq. 43 as F Ex (τ) ∼ τα

F Ex (τ) ∼ τα, α = 1− γ
/

2. (44)

(Note, as the fluctuations have not been detrended, this method
is not the DFA of Peng et al., 1994 but strongly related to it).

Consider the scaling exponent, α, on the left side of Eq. 44.
According to Peng et al. (1994) and Eke et al. (2002) α=H only if
the raw signa l,I Ex (t ), is an fGn. However, because at this point the
summed raw signal, X Exn (τ), is the object of the analysis, α and H
should relate to each other as α=H + 1. Given that the signal was
summed in Eq. 41 leading up to Eq. 43, and the values for “out-
side the brain” were reported as α≈ 0.5, and for “inside the brain”
as 0.5 < α < 1, α must have been improperly calculated because
α cannot possibly yield a value of 0.5 for a summed signal given
that H scales between 0 and 1 and for an fBm series α=H + 1
holds. The reported value of 0.5 < α < 1 can be regarded correct
only forI Ex (t ), the raw fMRI signal, which therefore had to be an
fGn process. On the other hand, the reported values 2 < β < 3 are
correct for the X Exn signal, only (for reasons given later). Hence the
reported α and β values lacking an indication of their respective
signal class ended up being ambiguous.

Next, consider the right side of Eq. 44, which expresses α by
using γ introduced earlier. We just pointed out that the raw fMRI

signal must have been an fGn with α≡H. Consequently, α can be
substituted for H in Eq. 44 as H = 1− γ/2 and γ expressed as

γ = 2− 2H . (45)

The authors referring to power law decays in the correlations
relate the spectral index, β, to γ as

β = 3− γ, (46)

and further to α as

β = 2α+ 1.

Note, that these relations between β, γ, and α in principle do
depend on signal class that was not reported.

Now, let us substitute γ as expressed in Eq. 45 into Eq. 46

β = 3− 2+ 2H = 1+ 2H,

then express H

H =
β− 1

2
. (47)

As shown by Eke et al. (2000), Figure 2; in Eke et al. (2002),
Table 1, based on the dichotomous fGn/fBm model, Eq. 47 would
have equivocally identified the case of an fBm signal. As pointed
out earlier, the raw fMRI signal was summed before the actual
fractal analysis. Consequently, the relationship β= 3 – γ ends up
holding only if the raw fMRI signal was an fGn process. This is
therefore the second piece of evidence suggesting that the class of
the raw fMRI signal must have been fGn. Nevertheless, the rela-
tionship β= 2α+ 1 could not hold concomitantly for reasons that
follow. In an earlier paper of the group (Thurner et al., 2003),
the authors stated “The relationship is ambiguous, however, since
some authors use the formula α= 2H + 1 for all values of α, while
others use α= 2H−1 for α < 1 to restrict H to range (0,1). In this
paper, we avoid this confusion by considering α directly instead
of H.” The fGn/fBm model (Eke et al., 2002) helps resolving this
issue as neither of these relationships between α and H holds
because if α is calculated with the signal class recognized and deter-
mined, the relationship between α and H is equivocally α=H fGn

and α=H fBm+ 1. Based on the fGn/fBm model, the relationship
between β and α given in Eq. 46 as β= 2α+ 1 needs to be revised,
too, to is correct form of β= 2α− 1 (See Table 1 in Eke et al.,
2002).

Thurner et al. (2003) concluded: “Outside the brain and in
non-active brain regions voxel-profile activity is well described
by classical Brownian motion (random walk model, α∼ 0.5 and
β∼ 2).” Recall, the “voxel-profile” is not the raw fMRI signal
(intensity signal, I Ex (t ), most probably an fGn), but its summed
form, X Exn (τ), an fBm.

Our conclusion on the above analysis by Thurner et al. (2003)
is as follows: (i) α was improperly calculated by the authors’ FA
method because α∼ 0.5 cannot possibly be valid for an fBm signal
given that αfBm > 1 (Peng et al., 1994), (ii) β∼ 2 is only for-
mally valid given that it was calculated based on Eq. 46 from an
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improperly calculated α and by using an arbitrary relationship
between α and β. The subsequent and opposite effects of these
rendered the value of β to β∼ 2.

When the results of Thurner et al. (2003) are interpreted
according to the analytical strategy of Eke et al. (2000) based on
the dichotomous fGn/fBm model of Mandelbrot and Ness (1968),
the reported values of Thurner et al. can be converted for their
fMRI “voxel-profile” data X Exn to αfBm ∼ 1.5, βfBm ∼ 2, H fBm ∼ 0.5
or for the raw fMRI intensity signal I Ex (t ) to αfGn ∼ 0.5, βfGn ∼ 0,
H fGn ∼ 0.5. This interpretation of the data reported for humans by
Thurner et al. (2003) is fully compatible with the current findings
by He (2011) on the human and by Herman et al. (2009, 2011) on
the rat brain.

MULTIFRACTAL ANALYSES ON RAT fMRI BOLD DATA
Exemplary analysis on empirical BOLD data is presented on the
11.7T coronal scan shown in Figure 10 to demonstrate the inner
workings of these methods when applied to empirical data, and
point to potential artifacts, too (See Figure 12). For monofractal
analysis, we recommend using monofractal SSC for it gives unbi-
ased estimates across the full range of the fGn/fBm dichotomy.
For this reason, the topology is well defined and not as noisy as
on the PSD maps. MF-DFA, due to its inferior performance in
the strongly correlated fGn range (See Figure 6 at q= 2), failed
with this particular BOLD dataset. Also note, that the histograms
obtained for the same datasets evaluated by these different meth-
ods do differ indicating that method’s performance were different.
Proper interpretation of the data therefore assumes an in-depth
understanding of the implication of method’s performance on the
analysis. Pc and most certainly W seems a promising parameter
to map from the BOLD temporal datasets. Their proper statisti-
cal analyses along with those of singularity spectra for different
anatomical locations in the brain should be a direction of future
research.

PHYSIOLOGICAL CORRELATES OF FRACTAL MEASURES OF
fMRI BOLD TIME SERIES
Eke and colleagues suggested and demonstrated that β should be
regarded as a variable responding to physiology (Eke et al., 1997,
2000, 2002, 2006; Eke and Herman, 1999; Herman and Eke, 2006;
Herman et al., 2009, 2011).

Soon, Bullmore et al. (2001) suggested treating 1/f type fMRI
BOLD time series as realizations of fBm processes for the pur-
pose of facilitating their statistical analysis using pre-whitening
strategies. For this reason, signal classification did not emerge as
an issue to address. Then Thurner et al. (2003) demonstrated that
human resting-state fMRI BOLD is not only a scale-free signal, but
do respond to stimulation of the brain. Their analysis yielded this
conclusion in a somewhat arbitrary manner in that the importance
of the fGn/fBm dichotomy was not recognized at the time that led
to flaws in the calculation of the scaling exponent as demonstrated
above. Hu et al. (2008) and Lee et al. (2008) also reported that H
obtained by DFA can discriminate activation from noise in fMRI
BOLD signal.

In later studies dealing with the complexity of resting-state and
task-related fluctuations of fMRI BOLD, the issue of signal class

has gradually shifted into the focus (Maxim et al., 2005; Wink et al.,
2008; Bullmore et al., 2009; He, 2011; Ciuciu et al., 2012).

Recently Herman et al. (2011) found in the rat brain using
PSD that a significant population of fMRI BOLD signal fell into
the non-stationary range of β. The inference of this finding is
the potential interference of non-stationary signals with resting-
state connectivity studies using spatio-temporal volumes of fMRI
BOLD. It is even more so, if SSC is used for signal classifica-
tion (Figure 11) and analysis (Figure 12) shifting the population
histogram of H ′ to the right.

The β value converted from the reported human spectral slopes
by Fox et al. (2007) (see above) fits very well within the range of
human data reported most recently by He (2011) for the same
instrument (3T Siemens Allegra MR scanner). He (2011) adopt-
ing the dichotomous monofractal analytical strategy of Eke et al.
(2002) demonstrated that β of spontaneous BOLD obtained for
multiple regions of the human brain correlates with brain glu-
cose metabolism, a fundamental functional parameter offering
grounds for the assertion that that β itself is a functional parame-
ter. Herman et al. (2011) using the same analytical strategy (Eke
et al., 2000, 2002) on resting-state rat BOLD datasets showed that
β maps capture a gray vs. white matter topology speaking for the
correlation of β and functional activity of the brain regions being
higher in the gray than in the white matter.

With near infrared spectroscopy, – recommended by Fox and
Raichle (2007) as a cost-effective, mobile measurement alterna-
tive of fMRI to capture resting-state hemodynamic fluctuations in
the brain – a 1/f β temporal distribution of cerebral blood volume
(one of the determinant of BOLD) was found in humans, with an
age and gender dependence on β (Eke et al., 2006). Furthermore,
β determined from heart rate variability time series was found
to differ between healthy and unhealthy individuals (Makikallio
et al., 2001).

The above physiological correlates seem to have opened a new
perspective in basic and clinical neurosciences (Hausdorff et al.,
1997) by recognizing β as an experimental variable and applying
adequate tools for its reliable assessment (Pilgram and Kaplan,
1998; Eke et al., 2000, 2002; Bullmore et al., 2009; He, 2011)
with multifractal analyses as a dynamically expanding perspective
(Ciuciu et al., 2012; Ihlen, 2012), too.

We propose that the inter-regional spatial cross-correlation
(connectivity) as a means of revealing spatial organization in the
brain be supplemented by a temporal AC analysis of extended
BOLD signal time series by mapping β as an index of temporal
organization of the brain’s spontaneous activity.
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