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As endothelial cells form the barrier between blood flow and surrounding tissue, many
of their functions depend on mechanical integrity, in particular those of the plasma
membrane. As component and organizer of the plasma membrane, cholesterol is a
regulator of cellular mechanical properties. Disruption of cholesterol balance leads to
impairment of endothelial functions and eventually to disease. The mechanical properties
of the membrane are strongly affected by the cytoskeleton. As Phosphatidylinositol-4,5-
bisphosphate (PIP2) is a key mediator between the membrane and cytoskeleton, it also
affects cellular biomechanical properties. Typically, PIP2 is concentrated in cholesterol-
rich microdomains, such as caveolae and lipid rafts, which are particularly abundant in
the endothelial plasma membrane. We investigated the connection between cholesterol
and PIP2 by extracting membrane tethers from bovine aortic endothelial cells (BAEC) at
different cholesterol levels and PIP2 conditions. Our results suggest that in BAEC the role
of PIP2, as a mediator of membrane-cytoskeleton adhesion, is regulated by cholesterol.
Our findings confirm the specific role of cholesterol in endothelial cells and may have
implications for cholesterol-dependent vascular pathologies.
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INTRODUCTION

The endothelium of blood vessels is a barrier that maintains the
dynamic balance between blood flow and tissue. Disruption in
endothelial cell function alters the permeability of this barrier
and increases the risk of vascular disease, such as atheroscle-
rosis, a potentially fatal abnormality of the circulatory system
(Bonetti et al., 2003; Davignon and Ganz, 2004). Cholesterol is
an essential component of the membrane of most cell types. Due
to its association with cardiovascular disease, it plays particular
role in endothelial cells. Alterations in the level of membrane
cholesterol lead to significant changes in a number of cell func-
tions, such as signaling (Parpal et al., 2001; Qin et al.,, 2006;
Ramprasad et al., 2007), adhesion (Kaur et al., 2004; Qin et al.,
2006; Ramprasad et al., 2007), motility (Vasanji et al., 2004;
Qin et al., 2006), and remodeling of the cytoskeleton (Pierini
et al., 2003; Riff et al., 2005; Qin et al., 2006; Iliev et al., 2007),
as well as cell mechanical properties, such as fluidity (Brulet
and McConnell, 1976; Cooper, 1978; Xu and London, 2000)
and elasticity (Evans and Needham, 1986; Needham et al., 1988;
Needham and Nunn, 1990). Elevation of membrane cholesterol
level increases the stiffness of artificial lipid bilayers (el-Sayed
et al., 1986; Needham and Nunn, 1990), whereas depletion in
membrane cholesterol in the cellular plasma membrane makes
cells typically less stiff (Vlahakis et al., 2002; Kwik et al., 2003).
Surprisingly, the opposite result was found in endothelial cells:
depletion in membrane cholesterol level strengthened the inter-
action between the plasma membrane and the cytoskeleton and
resulted in the stiffening of endothelial cells (Byfield et al., 2004;
Sun et al., 2007).

Decreasing cell stiffness upon depletion of membrane choles-
terol could be attributed to the reduction in the level of
phosphatidylinositol-4,5-bisphosphate (PIP2) in the plasma
membrane (Kwik et al., 2003), as this molecule is known to
be an important regulator of membrane-cytoskeleton associa-
tion (Sechi and Wehland, 2000), and consequently of the cell’s
biomechanical properties (De Camilli et al., 1996; Rozelle et al.,
2000; McLaughlin and Murray, 2005). Indeed, inactivation of
PIP2 in fibroblasts resulted in decrease in membrane-cytoskeleton
adhesion energy (Raucher et al., 2000).

The molecular mechanism underlying the cholesterol depen-
dence of endothelial biomechanical properties is, however, not
known. What is known is that cholesterol can induce the for-
mation of special membrane microdomains, i.e., lipid rafts and
caveolae (Anderson and Jacobson, 2002), particularly in endothe-
lial cells (Zhu et al., 2003; Navarro et al., 2004), and these
domains attract acidic lipids such as PIP2 (Pike and Casey,
1996; Pike and Miller, 1998; Sundaram et al., 2004). As deple-
tion in the level of endothelial plasma membrane cholesterol
leads to the strengthening of membrane-cytoskeleton adhesion,
the role of PIP2 in endothelial biomechanics must be different
from that in the other cell types studied so far (in particu-
lar fibroblasts). We asked what this role might be and how
it is affected by changes in endothelial membrane cholesterol
level.

We studied endothelial membrane biomechanics using atomic
force microscopy (AFM)-based force spectroscopy to measure
the force needed to extract membrane tethers (i.e., tether force)
from bovine aortic endothelial cells (BAEC). In this technique
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the tether force Fr needed to pull a tether from the mem-
brane at constant speed v is measured and the functional relation
Fr(v) is analyzed. For the analysis we used Fr = Fo + 2mn4v
(Hochmuth et al., 1996), where Neff and F are, respectively, the
membrane effective surface viscosity and the threshold pulling
force. Effective surface viscosity means that ney, in general,
contains contributions associated with the intrinsic material
properties of the lipid bilayer, the interbilayer slip and the
connection of the membrane with the underlying cytoskele-
ton (Hochmuth et al., 1996). The force Fy is a direct measure
of the membrane-cytoskeleton adhesion energy and membrane
stiffness (Hochmuth et al., 1996; Sheetz, 2001). The above rela-
tionship has been widely employed to quantify the results of
tether-pulling experiments (Hochmuth et al., 1996; Shao and
Hochmuth, 1996; Hochmuth and Marcus, 2002; Girdhar and
Shao, 2007; Liu et al., 2007; Sun et al, 2007). In particu-
lar it allowed for an accurate quantitative description of our
earlier AFM studies on endothelial biomechanics (Sun et al.,
2007).

The above-described method has extensively been used to
quantitatively assess the strength of membrane-cytoskeleton asso-
ciation (Sun et al., 2005, 2007; Cuerrier et al., 2009). To establish
the role of PIP2 in endothelial membrane-cytoskeleton interac-
tion, we investigated the localization and distribution of PIP2
in BAEC and its effect on the tether force under variable PIP2
and cholesterol conditions. Our results indicate that in endothe-
lial cells PIP2 functions in a cholesterol-dependent manner, in a
way that is different or even opposite to that observed in other
cell types. Our experiments also elucidate the mechanism of PIP2
regulation by cholesterol. These results are consistent with the
particular role of cholesterol in endothelial biomechanics.

MATERIALS AND METHODS

CELL CULTURE AND CHOLESTEROL DEPLETION

BAEC between passages 15 and 18 were cultured in Dulbecco’s
Modified Eagle’s Medium (DMEM; Cell Grow, Washington, DC)
supplemented with 10% Fatal Bovine Serum (FBS; ATALANTA
Biologicals, Lawrenceville, GA). Human skin fibroblasts (HSFs;
CRL-2522; American Type Culture Collection (ATCC), Manassas,
VA) were grown in DMEM containing 20% F-12 Nutrient mix-
ture (Ham) (Life Technologies, Grand Island, NY) and 20% FBS.
Cell cultures were maintained in a humidified incubator at 37°C
and 5% CO;. The cells were fed and split every 2-3 days. For
cholesterol depletion, BAEC were incubated in 5mM methyl-
B-cyclodextrin (MBCD, Sigma, St. Louis, MO) in serum free
medium for 45 min (Byfield et al., 2004).

PH-PLC-GFP TRANSFECTION

Inactivation of PIP2 was accomplished by transfecting HSFs
and BAEC with PH-PLC-GFP (i.e., GFP tagged plextrin homol-
ogy domain of phospholipase C). PH-PLC-GFP inactivates PIP2
through sequestration. For PH-PLC transfection, 60-70% con-
fluent HSFs and BAEC on 18 mm square glass cover slips
were washed with 2ml OPTI-MEM® [ Serum Free Medium
(Invitrogen, Grand Island, NY). Next, cells were incubated at
37°C, 5% CO; for 4h in 1 ml OPTI-MEM® I Reduced Serum
Medium supplemented with 4 pg tris-EDTA buffer (TE) diluted

DNA plasmid vector that contained the PC-PLC-GFP construct
and 4 ] Lipofectamine (Invitrogen, Grand island, NY). Finally,
the transfection medium was gently removed and replaced
with 2ml CO,-independent DMEM with 2% FBS. For com-
parison, BAEC were also transfected with only GFP, follow-
ing the above procedure. Images of BAEC were acquired 24 h
post-transfection with fluorescent PH-PLC-GFP, using a Bio-
Rad Radiance 2000 confocal system (Carl Zeiss Microimaging,
Thornwood, NY).

DELIVERY OF EXOGENOUS PIP2 INTO ENDOTHELIAL CELLS

Exogenous PIP2 was delivered into BAEC by Echelon PIP2-
Shuttle kit (Echelon Biosciences, Inc. Salt Lake City, UT). Cells
were washed twice with serum free DMEM, followed by incuba-
tion at 37°C for 30 min in serum free DMEM containing 10 uM
PIP2-Shuttle complex (Wang et al., 2003). For the combina-
tion of cholesterol depletion and exogenous PIP2 enrichment,
cholesterol depletion was performed first.

MEASUREMENT OF TETHER FORCE

Measurements were performed at room temperature as described
earlier (Sun et al., 2005). Briefly, a 60-mm Petri dish containing
cells in CO;-independent medium with 2% FBS, 10 pg/ml peni-
cillin, streptomycin, and kanamycin sulphate was placed under
AFM. The cantilever was lowered toward the cell until contact
with the cell membrane was established. Contact was maintained
for 8 sec, after which the cantilever was retracted at a constant
pulling speed (3, 9, 15, and 21 pm/s). The tether force was iden-
tified with the width of the steps of the discontinuities in the
force-elongation curve. Several hundred step-like events were
recorded using 20-30 cells, with each cell subjected to multiple
pulling experiments. Data analysis was carried out with Igor Pro
6 (WaveMetrics, Lake Oswego, OR) and Origin Pro 8 (OriginLab
Corporation, Northampton, MA).

FLUORESCENT PIP2 IMAGING

Fluorescent images were acquired using a Bio-Rad Radiance 2000
confocal system (Carl Zeiss Microimaging, Thornwood, NY). Cell
shape and distribution of fluorescent PIP2 as function of choles-
terol treatment was also visualized with Differential Interference
Contrast (DIC) microscopy. Images were acquired using the DIC
imaging module on the Zeiss LSM 510 Meta NLO 2-photon con-
focal (Carl Zeiss, Thornwood, NY) with a 60X 1.4 NA Zeiss Plan
Apochromat water immersion objective.

STATISTICAL ANALYSIS

Data were expressed as mean =+ standard error of the mean
(SEM). Analysis of covariance was performed to compare the
results of tether-pulling experiments under different conditions
using OriginPro 8.0 (OriginLab Corporation, Northampton,
MA). A value of P < 0.05 was used to establish statistical
significance.

RESULTS

LOCALIZATION OF PIP2

PIP2 intracellular distribution in fibroblasts and endothelial
cells was visualized by transfecting the cells with PH-PLC-GFP
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construct known to bind specifically to PIP2. In earlier stud-
ies on fibroblasts it was found that PH-PLC-GFP is strongly
and uniformly localized along the plasma membrane (Raucher
et al., 2000). As shown in Figure 1A, our own measurements
on HSF support these earlier findings. This pattern is consis-
tent with the ability of PH-PLC-GFP to sequester PIP2 and the
latter’s involvement in the linkage of the membrane with the
cortical actin cytoskeleton. As Figure 1B indicates, this is in con-
trast with our findings in PH-PLC-GFP-expressing BAEC: strong
localization around the nucleus, punctate distribution along the
cell membrane and homogeneous dispersion throughout the cell.

SEQUESTRATION OF PIP2 DOES NOT AFFECT THE TETHER FORCE IN
BAEC

Next, we compared how membrane-cytoskeleton adhesion is
affected by changes in PIP2 in BAEC with PH-PLC-GFP expres-
sion. For this we used AFM force spectroscopy to measure the
magnitude of the tether force needed to extract membrane tethers
from the cell. Whereas our own measurements on HSF supported
the earlier observation that expression of PH-PLC in fibroblasts
leads to a considerable drop in the magnitude of the tether force

FIGURE 1 | Confocal imaging of PH-PLC-GFP expression pattern in HSF
and BAEC. (A) Characteristic PH-PLC-GFP expression in HSFE.
(B) Characteristic PH-PLC-GFP expression in BAEC. Scale bars: 20 um.

(Raucher et al., 2000; Figure 2A), we found contrasting results
in BAEC. Expression of PH-PLC-GFP in BAEC did not alter the
tether force (Figure 2B). This finding is inconsistent with the
role of PIP2 being a direct regulator of membrane-cytoskeleton
cross-linking in BAEC.

INCREASE IN PIP2 LEVEL DOES NOT ALTER
MEMBRANE-CYTOSKELETON ADHESION IN BAEC

If PIP2 acts as a membrane-cytoskeleton cross-linker, increase in
its cellular level is expected to result in the increase in membrane-
cytoskeleton adhesion and thus in the tether force. However, upon
exogenously increasing the PIP2 level in BAEC (with the PIP2-
shuttle kit) we found no change in tether force (Figure 3).

CHOLESTEROL CONTROLS THE DISTRIBUTION OF PIP2 IN BAEC

The above findings suggest that in BAEC membrane-cytoskeleton
interactions are insensitive to changes in PIP2 level. On the other
hand earlier work pointed to the peculiar role of cholesterol
in the modulation of endothelial membrane-actin cytoskeleton
association (Sun et al., 2007). To clarify how these observations
may possibly be compatible with each other we subjected BAEC
to membrane cholesterol depletion (with MBCD) followed by
delivery of exogenous PIP2. Cholesterol depletion resulted in
drastic changes in the localization of fluorescent PIP2. Along
with the decrease in the number of discrete patches (as can be
visually observed by comparing Figures 4C,D), a more uniform
distribution across the cell appeared. In addition, the measured
tether force in BAEC depleted in cholesterol and enriched with
exogenous PIP2 was significantly larger than in cells depleted in
cholesterol and enriched with shuttle alone (Figure 5). The dif-
ference can be quantified in terms of the slopes of the curves in
Figure 5, which provide the values of 1. The slope of two curves
(2mnp) is 3.08 pN-s/jum and 2.02 pN-s/um, respectively, for the
Dep+PIP2+-Shuttle and the Dep+Shuttle.
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FIGURE 2 | Effect of PIP2 on the tether force. (A) Change in the
magnitude of tether force upon PH-PLC-GFP transfection at 15um/s
tether extraction speed. In HSF the negative value of the change
corresponds to a drop in tether force, whereas in BAEC the change is
within the experimental error. (B) Tether force versus pulling speed in
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BAEC transfected with PH-PLC-GFP. Cells treated with GFP alone
were used as control. The two curves are statistically indistinguishable
(p > 0.05). (The slope of two curves, 2nney, is 1.60 pN-s/um and 1.67
pN-s/um, respectively, for the GFP treated cells and cells transfected with
PH-PLC-GFP). Error bars represent SEM.
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FIGURE 3 | Effect of exogenous PIP2 on the tether force. Tether force
vs. pulling speed in BAEC treated with PIP2-Shuttle. Cells treated with the
Shuttle alone were used as control. The two curves are statistically
indistinguishable (p > 0.05). (The slope of the curves, 24, is 1.97
pN-s/um and 2.04 pN-s/um, respectively, for the cells treated with Shuttle
alone and cells loaded with exogenous PIP2+Shuttle). Error bars represent
SEM.

Dep+PIP2

FIGURE 4 | Exogenous PIP2 localization. Panels on the left and right,
respectively, refer to images acquired with Differential Interference
Contrast and confocal microscopy. (A,C) PIP2-loaded BAEC. (B,D)
Cholesterol-depleted BAEC loaded with exogenous PIP2. Scale bars:
20 pm.

DISCUSSION

A major objective of this work was to elucidate the role of PIP2,
as a membrane-cytoskeleton cross-linker in endothelial cells. This
objective was motivated by earlier findings on the consequences
of cholesterol depletion of the plasma membrane, leading, respec-
tively, to the increase and decrease of membrane-cytoskeleton
adhesion in BAEC (Sun et al., 2007) and fibroblasts (Kwik et al.,
2003). Since the effect of cholesterol depletion in fibroblasts is
mimicked by inactivation of PIP2 (Kwik et al., 2003) (both lead-
ing to decrease in membrane-cytoskeleton adhesion), we sought
the molecular basis of cholesterol depletion-induced stiffening of
BAEC also in the mechanism of PIP2 action. For this end, we first
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FIGURE 5 | Effect of exogenous PIP2 on the tether force upon
cholesterol depletion. Tether force versus pulling speed in BAEC treated
with MBCD followed with the delivery of PIP2-Shuttle or only Shuttle. The
two curves are statistically different (p < 0.05). (Values of the slopes are
given in the text). Error bars represent SEM.

investigated the cellular distribution of PIP2 in endothelial cells by
transfecting BAEC with PH-PLC-GFP, a PIP2 sequestering agent,
and observing its expression pattern in the cell. The PH-PLC-GFP
expression pattern was found to significantly differ from that in
HSE. In particular, instead of the uniform expression along the cell
membrane in HSF (Figure 1A), in BAEC a more punctate pattern
was found (Figure 1B). In addition, whereas in HSF PIP2 seques-
tration led to the decrease in membrane-cytoskeleton adhesion
energy [Figure 2A (Raucher et al., 2000)], in BAEC it resulted in
no change (Figures 2A,B).

Next, we considered the effect of exogenous PIP2. If PIP2 is
a regulator of membrane-cytoskeleton cross-linking then it is to
be expected that loading the cell with PIP2 would result in the
increase in this cross-linking. Contrary to this expectation we
found no change, as assessed by measuring the tether force in
PIP2-loaded BAEC (Figure 3).

The above results suggest that whereas PIP2 is an important
membrane-cytoskeleton cross-linker in fibroblasts, it does not act
as such in endothelial cells: neither decrease (via sequestration) or
increase (via loading) in PIP2 concentration led to any detectable
change in the tether force in BAEC.

Motivated by earlier findings on the particular role of choles-
terol in BAEC (Byfield et al., 2004; Sun et al., 2007), we then
considered the effect of cholesterol depletion on the properties
of PIP2 in BAEC. Cholesterol depletion led to the uniform distri-
bution of exogenous PIP2 (Figure 4) and to the re-establishment
of PIP2’s function as a membrane-cytoskeleton cross-linker, again
assessed by measurement of the tether force (Figure 5).

The presented results provide strong indication that in
endothelial cells the role of PIP2 as a membrane-cytoskeleton
cross-linker is regulated by cholesterol. Furthermore, they
confirm the findings of earlier studies on the special role of
cholesterol in the regulation of endothelial cell biomechanical
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FIGURE 6 | Schematic illustration of the hypothesized cholesterol
regulation of PIP2 function in BAEC. Left: cholesterol induces the
formation of low-density lipid plasma membrane microdomains, such
as caveolae, and facilitates PIP2 hydrolysis and thus its loss of
cross-linker function. Right: cholesterol depletion destructs caveolae,
thus reduces PIP2 hydrolysis and restores PIP2's cross-linker function.

Note that membrane-cytoskeleton attachment via PIP2 is typically
complementary to other mechanisms such as those that involve
transmembrane proteins (e.g., cadherins, which couple to the F actin
network through protein complexes). Thus, even when the PIP2
pathway is abrogated the membrane and the cytoskeleton may remain
linked.

properties. They point to a possible specific molecular mecha-
nism for this regulation (presented schematically in Figure6).
The hypothesized mechanism is consistent with known informa-
tion on the role of cholesterol in the formation and maintenance
of caveolae and the localization of PIP2, and cholesterol deple-
tion leading to the inhibition of PIP2 turnover in these membrane
microdomains (Pike and Casey, 1996; Pike and Miller, 1998;
Sundaram et al., 2004). Accordingly, we hypothesize that choles-
terol induces the formation of caveolae in BAEC and facilitates
the hydrolysis of PIP2 into inositol 1,4,5-trisphosphate (IP3) and
diacylglycerol (DAG) resulting in the loss of PIP2’s function as a
membrane-cytoskeleton cross-linker. Cholesterol depletion leads
to the partial destruction of caveolae, thus to the partial inhibition
of PIP2 hydrolysis. This in turn results in the reinforcement of

PIP2’s role as a membrane-cytoskeleton cross-linker (Figure 6).
The results of this work may offer valuable information for
studies on cholesterol-dependent vascular pathologies, such as
atherosclerosis, that affect endothelial biomechanical properties
in general and the endothelial plasma membrane in particular.
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