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Spectral analysis is a widely used method to estimate 1/fα noise in behavioral and
physiological data series. The aim of this paper is to achieve a more solid appreciation
for the effects of periodic sampling on the outcomes of spectral analysis. It is shown
that spectral analysis is biased by the choice of sample rate because denser sampling
comes with lower amplitude fluctuations at the highest frequencies. Here we introduce
an analytical strategy that compensates for this effect by focusing on a fixed amount,
rather than a fixed percentage of the lowest frequencies in a power spectrum. Using
this strategy, estimates of the degree of 1/fα noise become robust against sample rate
conversion and more sensitive overall. Altogether, the present contribution may shed new
light on known discrepancies in the psychological literature on 1/fα noise, and may provide
a means to achieve a more solid framework for 1/fα noise in continuous processes.
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Over recent decades, there has been an increasing interest in
the time-evolutionary properties of psychological data series, and
the number of methods to quantify the degree-of-randomness in
time series data is rapidly expanding. It is becoming increasingly
acknowledged that the variation from one measurement to the
next rarely fluctuates randomly, as traditionally assumed in most
standard statistical methods (Gilden et al., 1995; Gilden, 2001;
Van Orden et al., 2003). Especially the presence of 1/f noise (also
called 1/f scaling or pink noise) in repeated performances is a
robust finding. The presence of 1/f noise implies that a data sig-
nal may not be accurately described without incorporating time
at the level of analysis. We will first explain the workings of
spectral analysis through a fictive example, and then we explain
how spectral analysis can be used to estimate the presence of 1/f
noise.

Consider a participant, performing a 500-trial simple response
task. The task instruction is, for instance, to press a button when-
ever a stimulus is presented. The dependent variable of interest for
the researcher is response time to the stimulus. This participant’s
average response time turns out to be 500 ms with a standard
deviation of 35 ms. However, this participant’s task performance
constitutes the unrealistic case where the pattern of response vari-
ability over time looks exactly like a sine wave (see Figure 1A).
Now, imagine another participant, who received the same task
instruction, and showed exactly the same response times but
in a different trial order (see Figure 1C). While both response
series have an identical mean and standard deviation, they show
a distinct pattern of responses over time.

Statistics based on central tendency measures are not sensitive
to the different pattern of variability observed in both partic-
ipants. If in one experimental group all participants were like
participant 1, and in another experimental group all participants

were like participant 2, a t-test for instance, would not dif-
ferentiate among both groups because the groups would yield
equal means and standard deviations. Yet, a different inherent
process likely produced the responses. Thus, a researcher may
wonder whether trial-to-trial fluctuations observed in an exper-
iment occur randomly or not, and ask whether there is anything
systematic about the observed temporal patterns of variation.

Spectral analysis is one of the available methods to estimate
the degree of randomness in a pattern of responses over tri-
als. Spectral analysis translates dependencies in the time domain
(i.e., a pattern of change in response time over trials) as sim-
ple features in the frequency domain using an operation called a
Fourier transform, which decomposes the data series containing
changes in response over trials into its constituent frequencies.
Next, the power (the square of the amplitude) at each frequency
in the decomposed signal is plotted in a so-called a power spec-
trum (also called power spectral density function). For instance,
a power spectrum of participant 1′ s response series (shown in
Figure 1B) reveals one peak at the dominant frequency of the
sine wave. Participant 2′ s responses do not yield a dominant fre-
quency in the time domain, and consequently a spectral analysis
does not reveal any peaks in the power spectrum (see Figure 1D).
Thus, while the performances of both participants are indis-
tinguishable using central tendency measures, the two different
temporal arrangements of the same responses are distinct in
the frequency domain. The power spectrum thus provides infor-
mation which effectively complements information from t-tests,
ANOVA’s, etc. (see Slifkin and Newell, 1998; Riley and Turvey,
2002, for more examples).

Spectral analysis can not only be used to detect simple period-
icities as in the example above, but can also be used to quantify
more complex and realistic patterns of variation in psychological
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FIGURE 1 | (A) Shows a fictive data series yielding response times oscillating
as a sine wave (in milliseconds, y-axis) over trials (x-axis). (B) Shows a power
spectrum of the fictive data series shown in (A); note the peak. (C) Shows

the same data series as in (A) after randomization. (D) Shows a power
spectrum of the randomized data series shown in (C); note the absence
of a peak.

data series. Consider, for instance, another participant in the
simple reaction task whose response times show a pattern of
variability called 1/f noise, as shown in Figure 2A. 1/f noise is a
complex sequence effect spanning over the entire time course of
an experiment, and comprises undulating “waves” of relatively
longer and then shorter response times that travel across the
series. In a 1/f signal, faster (high-frequent) changes in response
time are typically small, and embedded in overarching, slower
(lower-frequent) changes of higher amplitude. In only a few
simple steps, this characteristic pattern of response variability can
be observed through spectral analysis. First, a Fourier transform
translates the data series into the sum of sines and cosines
that best fits the data series. This is schematically represented
in Figure 2B. Next, the frequency and power (amplitude2) of
each of the fitted waveforms are plotted against each other in
a power spectrum (see Figure 2C). Figure 2D shows the power
spectrum on log-scales, which makes the 1/f noise pattern even
more visible; power is in inverse proportion to frequency. The
log–log power spectrum in Figure 2D yields a slope of −1 (hence,
1/f 1 noise).

Observing 1/f noise may run against standard statistical intu-
itions because the variability in psychological data is usually
assumed to fluctuate randomly from trial to trial. A data series
with random background noise (also called white noise, see
Figure 3A), however, does not yield a relationship among fre-
quency (f ) and a particular change of amplitude S(f ) in the signal
(see Figure 3B). A power spectrum of white noise variability has
a flat slope on log scales (yielding 1/f 0 noise).

A third category of noise is called Brownian noise (see
Figure 3C), and can be described as 1/f 2 noise (see Figure 3D;
the slope is −2). Brownian noise is also called a random walk,
because it can be produced by adding a random increment to each
sample to obtain the next. In contrast to white noise, which can
be produced by randomly choosing each sample independently,
Brownian noise yields persistence or memory in the data series.

1/f NOISE IN HUMAN PERFORMANCE
1/f noise has been observed in repeated responses in many cog-
nitive tasks. Examples include simple and choice reaction (Kello
et al., 2007), mental rotation (Gilden, 1997), visual search (Aks
et al., 2002), lexical decision (Gilden, 1997), word naming (Van
Orden et al., 2003), color and shape discrimination (Gilden,
2001), implicit associations (Correll, 2008), and self-reports of
self-esteem (Delignières et al., 2004), to name a few examples.
Apart from the ubiquitous presence of 1/f -like noise in cognitive
performances (Kello et al., 2007), 1/f noise has been observed
in temporal patterns of variation at all levels of neural (Werner,
2010) and physiological organization (West, 2010).

The origins of 1/f noise in human cognition remain a theo-
retical topic of debate, however, (Van Orden et al., 2003, 2005;
Wagenmakers et al., 2005; Torre and Wagenmakers, 2009; Diniz
et al., 2010). Nonetheless, the relative presence of 1/f noise (hence,
the slope −α) has empirically been shown to distinguish among
experimental conditions (Kello et al., 2007; Diniz et al., 2010; Van
Orden et al., 2011, are reviews). Therefore, the slope of a power
spectrum is an informative measure in psychological research.
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FIGURE 2 | (A) Shows a response series yielding 1/f noise. (B) Schematically represents a number of sine waves which are fitted to the data
series through a Fourier transform. (C) Shows the 1/f noise pattern in a power spectrum, which is shown on logarithmic scales in (D).

FIGURE 3 | (A) Shows an example of white (random) noise. The power spectrum of the white noise series is shown in (B). (C) Shows an example of Brownian
noise. The power spectrum of the Brownian noise series is shown in (D).
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The scaling exponent α in 1/f α noise usually varies between white
noise and 1/f noise (0 < α < 1), but sometimes also between
1/f noise and Brownian noise (1 < α < 2).

Intriguingly, empirical evidence has accumulated suggest-
ing that the relative presence of 1/f noise is related to the
coordination of cognitive and physiological processes. For
instance, deviations from 1/f noise (either toward white noise
or toward Brownian noise) have been found with epilepsy
(Ramon et al., 2008), heart failure (Goldberger et al., 2002),
fetal distress syndrome (Goldberger, 1996), major-depressive
disorder (Linkenkaer-Hansen et al., 2005), mania (Bahrami
et al., 2005), attention-deficit-hyperactivity-disorder (Gilden and
Hancock, 2007), developmental dyslexia (Wijnants et al., 2012b),
autism (Lai et al., 2010), Alzheimer’s disease (Abásolo et al.,
2006), Huntington’s disease (West, 2006), and Parkinson’s disease
(Hausdorff, 2007). In addition, the presence of 1/f noise cor-
relates, for instance, with the severity of depression symptoms
(Linkenkaer-Hansen et al., 2005), the success rate of recovery
from traumatic brain injury (Burr et al., 2008), and falling risk in
elderly (Hausdorff, 2007). Also, the presence of 1/f noise increases
with learning (Wijnants et al., 2009) and may decrease as task
demands increase (Clayton and Frey, 1997; Correll, 2008). In each
case the overly random or overly rigid behaviors showed a value
of α further from 1, compared to conditions allowing for more
flexibly stable and adaptive performances.

These studies confirm the importance of time series methods
like spectral analysis in psychological research. Interestingly, how-
ever, all of the examples above are based on the analysis of trial
series or interval series. In a trial series, each sampled data value
represents a measure of a discrete response or response interval,
as in the example of the simple reaction task mentioned earlier.
Many variables in psychological research, however, are contin-
uous in nature, rather than discrete. Continuous processes are
represented as a time series through periodic sampling. Periodic
sampling means that the continuous process x → (t) is digitized
as a sequence of discrete data values t1, t2, t3, tn . . . , where the
total number of data points depends on the chosen sampling rate.
Interestingly, however, the clear framework suggested by the role
of 1/f α noise in trial series has not (yet) found a univocal parallel
in the analysis of psychological time series.

Here, we investigate whether differences in sample rate con-
stitute an artifact which obscures comparisons across studies and
experimental conditions. The paper is organized as follows. First,
a number of details pertaining to analytical choices for spectral
analysis are discussed. Then, it is discussed in which way sam-
ple rate affects the frequency content of a time series, and it is
explained how this artifact is usually dealt with in psychological
studies of 1/f α noise relying on continuous processes. Next, we
show how this approach renders heterogeneous estimates of the
slope −α, and offer an alternative solution that circumvents the
artifact.

1/f NOISE AND PERIODIC SAMPLING
Psychologists are in general well-aware of the characteristics of
a desired sampling regime. That is, any signal that has been
periodically sampled can only be perfectly reconstructed if the
sampling rate corresponds to a frequency that is minimally twice

the highest frequency in the original signal (this is known as
the Shannon–Nyquist sampling theorem; Shannon, 1949). When
sampling more sparsely, a phenomenon called aliasing is likely to
occur. Aliasing means that fluctuations outside of the measured
frequency range are misinterpreted as different frequencies that
fall within the measured range of frequencies, yielding distorted
results (see Holden, 2005). Therefore, sample rate is an important
input parameter when applying spectral analysis to periodically
sampled data series. The estimated frequencies should not be
faster than half the sample rate. For example, when a given time
series is sampled at 100 Hz, the frequencies estimated in spec-
tral analysis (the x-axis in the power spectrum) should fall in the
range of 0–50 Hz to avoid aliasing.

The next input parameter for spectral analysis is the number
of frequencies to be estimated within the non-aliased frequency
range. This parameter will determine the number of data points
in the power spectrum. A spectral analysis with maximum fre-
quency resolution will estimate half as many frequencies as there
are data points, because the highest resolvable frequency oscillates
back and forth every other data point. In order to understand
why the regression fit over the 25% lowest frequencies covers
such a substantial portion of the power spectrum (as can be
seen in Figures 2D and 3C,D), note that a Fourier transform
evaluates the power of each frequency within the signal equidis-
tantly within the desired frequency range. After the log trans-
formation, however, the frequencies are no longer equidistant,
and exponentially more frequencies are observed in the high-
frequency range than in the low-frequency range of the power
spectrum.

When the goal of the spectral analysis is to estimate the α scal-
ing exponent (thus, the negative slope of the logarithmic power
spectrum, or the presence of 1/f noise), another choice concerns
the number of frequencies in the power spectrum over which the
slope is fitted. That is, the slope −α is rarely fitted over all fre-
quencies, because it is known that a power spectrum often gives
unreliable results in the highest frequency range. Specifically, the
right-hand side of a power spectrum often presents a flattening
(or whitening) of the slope (Holden, 2005; Holden et al., 2011).
Therefore, excluding the highest frequencies in the log–log regres-
sion is generally recommended (Beran, 1994; Eke et al., 2000,
2002; Holden, 2005). The linear fit is often limited to the 25%
lowest frequencies that compose the spectral slope (Eke et al.,
2000, 2002) or even 10% (Taqqu et al., 1995), to achieve more
reliable scaling estimates of the scaling exponent α.

THE ARTIFACT OF SAMPLE RATE
The aim of this study is to achieve a more solid appreciation for
the effects of periodic sampling on the outcomes of spectral anal-
ysis. Specifically, a researcher’s choice of sample rate is known to
change the estimated α exponents in a particular way (Carlini
et al., 2002; Eke et al., 2002), and this bias is usually not antic-
ipated. This is especially problematic when different studies are
compared, which employ a different sampling regime of similar
performances (i.e., comparing the outcomes of spectral analysis
of trial series with outcomes of spectral analysis of time series),
or which rely on periodic sampling but employ different sample
rates.
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Carlini et al. (2002) point out that higher sample rates yield
steeper spectral slopes, hence larger α scaling exponents, com-
pared with more sparsely sampled processes. “The amplitude of
the (highest frequency) oscillations themselves decreases sharply
(when sample rate increases)” (Carlini et al., 2002, p. 246, empha-
sis added for terminological consistency). Eke et al. (2002) add:
“Increasing fs [sample rate], . . . cannot continue beyond some
upper limit for exceeding it would increase the chance that high-
frequency estimates in the power spectrum would not reflect
physiology (or more generally, the process of interest)” (Eke et al.,
2002, p. 27, emphasis added).

These observations constitute the core measurement prob-
lem raised in this paper: the outcomes of spectral analysis hinge
on sample rate. This artifact is visually presented in Figures 4A
and B, which shows the relative roughness of two different time
series (Goldberger et al., 2000) that were downsampled so that
they yield different sampling rates. Relative roughness can be con-
ceived as an index of the suitability of the monofractal framework
(cf. Marmelat et al., 2012), and describes the relative contribution
of local variance to the global variance of a time series. Figures 4A
and B reveal that the relative roughness of a time series is reduced
when sampled more densely. Specifically, Figures 4A and B sug-
gest that faster sampling comes with lower amplitude at the
higher frequencies (making the series more smooth, thus reduc-
ing local variance), which may result in overall steeper slopes in
the power spectrum compared with processes that are sampled
more sparsely.

This line of reasoning so far is straightforward, but can make a
world of difference nonetheless concerning the utility of spectral
analysis when confronted with periodically sampled, continuous
processes. That is, the highest-frequency range in the spectrum
has lower amplitude when higher sample rates are employed,
and this artifact likely protrudes gradually into lower frequen-
cies as sample rate further increases. Correctly, some authors
have assumed that such an artifact does not affect the estimate
of α, given that the biased frequencies are not used to fit the

slope −α: “This would not be much of a problem if the upper
75% of the spectral estimates were to be discarded as recom-
mended and if these irrelevant estimates would fall into the
discarded range” (Eke et al., 2002, pp. 27–28). In other words,
the challenge is to focus on the range of frequencies that is not
contaminated by the artifact. If, however, the biased frequen-
cies exceed the highest 75% frequency range, the assumption
cited above would not be valid, and different values of α would
be obtained with different sample rates. Thus, the question is
whether the non-contaminated frequency range converges on the
25% lowest-frequency range.

To answer the question, we evaluated a Galvanic Skin Response
(GSR) time series that was sampled at either 200 Hz (yielding a
time series of 216 data points), 100 Hz (215 data points), 50 Hz
(214 data points), or 25 Hz (213 data points). For each sample rate
of the same time series, the frequencies in the power spectrum
range between 0 Hz and half the sample rate to avoid aliasing.
Then, following Eke et al. (2002), the linear regression fit was
plotted over the 25% lowest frequency range, to estimate α (see
Figures 5A–D; the discarded 75% frequency range is represented
as a horizontal line). Remarkably, Figures 5A,B show rather vari-
able estimates of the spectral slope −α for the same measured
process; α ranged between 1.56 and 2.57 depending on sample
rate. In other words, even with all precautions in place, sample
rate still distorts the estimate of α.

Here, we introduce an alternative solution to the problem that
outcomes of spectral analysis can hinge on sample rate. The logic
is to fit the slope −α over a fixed amount, rather than over a
fixed percentage, of lowest frequencies. This solution takes advan-
tage of, rather than being contaminated by, inherent differences
in sample rate. Since more frequencies are estimated overall from
more densely sampled time series, fitting the slope −α over a fixed
number of low-frequencies implies a fit over a lower percentage
of low frequencies when a time series is sampled more densely.
Thus, while the bias leaks into more of the lower frequencies for
higher sample rates, a lower percentage of low-frequencies is used

FIGURE 4 | (A) Shows the relative roughness of a respiration time series at various sampling rates. (B) Shows the change in relative roughness of an EEG time
series at various sampling rates.
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FIGURE 5 | Power spectra estimated from one Galvanic Skin

Response time series sampled at 200 Hz (A), 100 Hz (B), 50 Hz (C),

and 25 Hz (D). Spectral slopes are fitted over the lowest 25% of 215

(A), 214 (B), 213 (C), and 212 (D) estimated frequencies. Note that
most of the estimated frequencies fall in the high-frequency range of
the spectrum.

to fit the slope −α. At sparser sample rates, the bias extends over
a smaller portion of the low frequencies, and a larger portion
of estimated frequencies is used to fit the slope −α. The advan-
tages of the introduced strategy can be seen in Figures 6A–D,
which shows the same power spectra as shown in Figures 5A–D,
but with the spectral slope −α now fitted over a set number of
frequencies. In contrast to Figures 5A–D, robust estimates of α

are obtained regardless of sample rate.
Fitting over a fixed number of frequencies is notably differ-

ent from fitting over a fixed percentage of frequencies. With
regard to the high-frequency range, when the slope −α is fit-
ted over the 25% of lowest frequencies, the high-frequency range
of a power spectrum is treated equally regardless of the relative
presence of spurious high-frequencies, and thus, regardless of
sample rate. Specifically, the range of discarded high frequencies
remains equals across different sample rates. When the slope −α

is fitted over a fixed number of low frequencies, as proposed
here, the discarded frequency range changes as a function of
sample rate. Specifically, as sample rate increases the range of dis-
carded high-frequencies increases as well (hence, the horizontal
line in Figures 6A–D). As a result, the range of discarded fre-
quencies converges much more closely with the range of spurious
frequencies.

With regard to the low-frequency range, fitting over the 25% of
lowest frequencies implies fitting over a different low-frequency
range for different sample rates. Specifically, relatively higher

frequencies (hence, more biased frequencies) are incorporated in
the fit as sample rate increases. For instance, in Figures 5A–D, the
fitted frequencies range between 0 and 25 Hz, 0 and 12.5 Hz, 0 and
6.25 Hz, and 0 and 3.13 Hz for sample rates of 200, 100, 50, and
25 Hz, respectively. Fitting over a fixed amount of low frequencies
(50 frequencies in this example), in contrast, implies a fit over a
stable low-frequency range, regardless of sample rate. Hence, in
Figures 6A–D, the cut-off frequency is the same; the slope −α is
fitted between 0 and 0.31 Hz regardless of sample rate.

DOWNSAMPLING
This paper examines the artifact in the estimation of 1/f noise
parameters introduced by the choice of sample rate. We expect,
based on previous observations (e.g., Carlini et al., 2002; Eke
et al., 2002), that low-amplitude fluctuations are introduced in
the high-frequency range of the power spectrum as sample rate
increases. We examine this artifact by comparing α exponent over
a range of different sample rates using a variety of simulated
and empirical time series. That is, we compare empirical or sim-
ulated data signals with their downsampled copies. In essence,
downsampling is simply a post-hoc reduction in sampling rate
by an integer factor. For a time series x(n), when downsampling
by the constant factor M, the downsampled copy y(m) may be
represented as y(m) = x(nM), where y(m) is the downsampled
sequence, obtained by taking every Mth sample from the original
data sequence x(n), thereby discarding M − 1 samples for every
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FIGURE 6 | The same power spectra as shown in Figure 5, estimated from one Galvanic Skin Response time series sampled at 200 Hz (A), 100 Hz (B),

50 Hz (C), and 25 Hz (D). Spectral slopes are fitted over the lowest 50 of 215 (A), 214 (B), 213 (C), and 212 (D) estimated frequencies.

M samples. It is to be expected that this post-hoc reduction in
sample rate will effectively alter the spectral estimates for sampled
data signals.

If increasing the sample rate has indeed the effect of reducing
the amplitude of the signal at the highest frequencies, the over-
all estimated α exponent should increase as sample rate increases.
This bias should not affect the low-frequency range of the power
spectrum, and should become more pronounced when the spec-
tral slope −α is fitted over a wider frequency range. This is
investigated by fitting the spectral slope over 10, 25, or 100% of
the lowest frequencies in the power spectrum. The outcomes are
expected to be biased more strongly when the slope is fitted over
100% of the spectrum, and gradually become less biased as the
slope is fitted over 25% (cf. Eke et al., 2002) and 10% (cf. Taqqu
et al., 1995) of the lowest frequencies only. In contrast, when the
slope is fitted over the lowest 50 frequencies only, and is thus fitted
over a stable low-frequency range, with a stable cut-off frequency,
it would be natural to expect the bias to be absent.

THE RELIABILITY OF α
The empirical data series have been collected in a precision aim-
ing study. In the study, 15 participants were invited to draw
lines back and forth between two visual targets with a stylus,
as fast and as accurately as possible. Participants received no
instruction concerning pen pressure or pen tilt strategies. The
targets were presented on a printed sheet of paper, one at the
left side of the paper and one at the right side. The target width
was 0.4 cm and the distance between targets was 24 cm. One

block of 1100 trials was completed with the dominant hand.
When the last trial was reached, a tone signaled the end of the
experiment.

Pen pressure (in grams) and pen tilt (absolute deviation from
the center of the stylus, in cm) coordinates were recorded using a
digitizer tablet connected to a regular PC. The tablet samples at a
temporal rate of 171 Hz. In addition, a GSR signal was recorded
on the fingertips of the non-moving hand at 200 Hz. Also, arti-
ficial 15 white noise signals (1/f 0), 15 1/f noise signals (1/f 1),
and 15 Brownian noise signals (1/f 2) were generated with a series
length of 216 data points, using an Inverse Fourier transform
algorithm described by Lennon (2000).

After data collection, each time series was prepared to fit the
needs for the spectral analysis (cf. Holden, 2005). First, outliers
outside 3 × the standard deviation from the mean were removed.
Next, because the Fourier transform fits stationary sines and
cosines to the data series, simple drifts or long-term trends may
distort the results. Linear and quadratic detrending ensures that
the analyzed data series is in line with the idealized mathemat-
ics of spectral analysis. Thus, linear and quadratic trends were
removed for all data series (cf. Holden, 2005). Then, the origi-
nal time series were normalized, and truncated by removing the
data points at the beginning of the data series until 216 data points
were left. None of the empirical data series contained fewer than
216 data values.

Next, the original data series (216 data points) were down-
sampled by removing every next data point from the analysis,
so that the new data series length was 215. This procedure was
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iterated until only 210 data points were left, thereby reducing sam-
ple rate by a factor of 26. Then, for each of the resulting series, the
spectral slope was either fitted over 10, 25, or 100% of the lowest
frequencies, or over the 50 lowest frequencies.

RESULTS AND DISCUSSION
The results from the pen pressure, pen tilt, and GSR data are
shown in Figures 7A–C, which represents the fitted slope −α over
a range of different sample rates for each data set. The differ-
ent choices of fit are shown as separate lines in each Figure. It
can be seen that regardless of the percentage of low frequencies
used to fit the slope −α (10, 25, or 100%), the observed α val-
ues effectively change in function of sample rate. As predicted, α

exponents are higher at high sample rates. The artifact is most
apparent when fitting the slope over the entire power spectrum
and gradually becomes somewhat less dramatic as smaller por-
tions of the low-frequencies are used to fit the spectral slope −α.
When fitting over the 50 lowest frequencies, however (shown as
50Low in Figures 7A–D), the slope −α remains robust against
sample rate conversion.

Only the pen tilt data do not entirely confirm the expected arti-
fact. At the highest sample rates, α values derived from a fit over
the entire spectrum appear more robust than α values derived
from a fit over the 10 or 25% lowest frequencies. But also in this
example, α values derived from a fit over the 50 lowest frequencies
constituted the most robust solution.

The simulated noise patterns, however, reveal a very distinct
(hence, absent) effect of sample rate. The four choices of fit that
were evaluated are shown in Figure 7D for each category of noise
simultaneously. The random (α = 0), 1/f (α = 1) and Brownian
(α = 2) noise simulations reveal robust values of α, regardless the
choice of fit. This result confirms that the change in α arises from
differences in sample density rather than from the differences in
series length per se (with the 100% fit somewhat less reliable than
the other choices of fit, however).

These results demonstrate that the relatively arbitrary choice
of a sample rate dramatically alters the value of the α exponent
if the spectral slope −α is fitted over a fixed percentage of low-
frequencies. The bias is so strong that sample rate appears to
be more influential on the estimated exponents than the process
under scrutiny itself. This artifact is obviously problematic and
leaves researchers with difficult decisions concerning the reliabil-
ity of their analysis. The strategy of spectral analysis introduced
here results in scaling exponents that are robust against arti-
facts that come with dense sampling, and thus may solve those
questions.

THE SENSITIVITY OF α

A final confirmation of the introduced strategy for spectral analy-
sis would require an evaluation of the sensitivity of the estimated
exponents, in addition to their robustness against sample rate
conversion. Sensitive exponents are more likely to differentiate

FIGURE 7 | Average α scaling exponents from 15 pen pressure (A),

pen tilt (B), Galvanic Skin Response (C), and simultated 1/f 0, 1/f 1,

and 1/f 2 data series (D) are shown on the y-axis. The x-axis shows

sample rate for the empirical data series, and series length for the
simulated series that also were downsampled by a factor of 2 in each
step on the x-axis.
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among experimental conditions, and more clearly reveal the
relation among different variables, given that such relations are
present. In this case, we evaluate the correlation among different
streams of 1/f noise (pen pressure and pen tilt) that were collected
simultaneously in the previously introduced motor task.

The pattern of correlations between both streams of 1/f noise
(pen pressure and pen tilt) shown in Figure 8 is remarkably
heterogeneous over different sample rates, except for the strat-
egy introduced here. α exponents estimated from the original,
non-down-sampled data appear uncorrelated when relying on
conventional spectral strategies. The correlations among pen
pressure and pen tilt scaling exponents tend to grow stronger
as sample rate decreases (hence, when fewer “smoothed” high-
frequencies are introduced in the analysis). The introduced
method for spectral analysis (shown as 50Low in Figure 8),
in contrast, indicates strongly correlated streams of 1/f noise,
regardless of sample rate.

THE VALIDITY OF α

The results presented above suggest that if one follows the exact
same procedure in an experimental set-up, but uses a differ-
ent measurement device or device setting, one may end up with
vastly deviant outcomes if sampling artifacts are not anticipated.
Anticipating sampling artifacts can be as simple as fitting the
power spectrum over a set number of low frequencies (i.e., fit-
ting over a stable low-frequency range), rather than fitting the
regression line over a set percentage of frequency (i.e., fitting over
a variable low frequency range). This practice results in more reli-
able and more sensitive scaling exponents. Nonetheless, the goal
should not be to fit over a prescribed amount of low frequencies
(e.g., 50) per se. Importantly, as long as the slope does not change
in function of sample rate (i.e., after downsampling), any set
number will do reliability-wise. For instance; an idealized 1/f pro-
cess would reveal a linear slope regardless of the fitted frequency
range (hence Figure 7D).

FIGURE 8 | Correlation coefficients among α exponents estimated from

pen pressure and pen tilt data (y-axis, N = 15) over a range of sample

rates (in Hz; x-axis) using different strategies for spectral analysis.

Empirical data often show scale-invariance in a restricted
range only, however. In these cases an optimal number of frequen-
cies can be determined by performing a simple downsampling
test (i.e., Figure 7). When the scaling outcomes do not change
in function of sample rate the chosen frequency range to fit is
reliable. If the outcomes do change, the number of low frequen-
cies in the fit should be reduced until the outcomes remain robust
against sample rate conversion. In this process, one should obvi-
ously be aware of two final criteria: (1) the amount of frequencies
should be sufficient to yield reliable regression outcomes, and
(2) a linear range of the power spectrum is preferred given the
nature of the regression analysis.

With these less idealized examples of 1/f scaling, changing the
frequency range used for slope fitting may reveal ever changing
slopes over different frequency ranges, however. This would mean
one would want to ascertain the validity of an estimate in addi-
tion to its reliability over different sample rates, leading to the
question whether the scaling exponents derived using the sug-
gested fitting approach are representative for the process under
scrutiny.

To inquire the validity of the suggested fitting approach, we
simulated artificial series using the fBmW model (Thornton and
Gilden, 2005). This procedure produces series that compose a
scaling part α (i.e., a fractional Brownian motion with a known
exponent α) with white noise β (whose variance is β2) added
to it. Given that relative roughness decreases at higher sampling
rates (cf. Figure 4), it is fair to assume that the high-frequency
range of the spectrum is an artifact of sampling, and that the
valid information is to be found in the low-frequency range
i.e., the alpha put in the model. In addition, faster sampling
arguably is more susceptible to instrument noise that may distort
spectral outcomes at the higher frequencies. Thus, power spectra
produced by the fBmW-model present examples in analogy with
the sampling rate artifact, producing a well-defined elbow in the
power spectrum.

Four example power spectra produced by the model, with
α = 1.5 and β = 1.5, 1, 0.5, and 0, respectively, are shown in
Figure 9. We know from these parameters that a valid scaling
estimate should approximate 1.5; a reference point against which
different fitting strategies can be assessed. The x-axis in Figure 10
shows the number of low frequencies included in the regression
fit. The pentagram-shaped markers indicate the exponents esti-
mated when the spectra where fitted over 25% of lowest frequen-
cies. The inset reveals a region of convergence around roughly 50
frequencies, after which a point of expansion reveals the white
noise process added to varying degrees. This observation supports
the suggestion that a fit over the lowest 50 frequencies pro-
vides valid estimates of the “true” scaling exponent α (i.e., 1.5),
and questions the validity of estimates over the 25% of lowest
frequencies.

This simple simulation confirms the validity of the proposed
fitting strategy, but a better analogy to the empirical data is
possible, however. The produced series keep a number of vari-
ables stable that vary in the empirical series (e.g., series length,
number of frequencies in the spectrum, relative roughness). Also,
the resulting spectra are simple in the sense that they reveal a sin-
gle elbow, rather than the more complex staircase-like shape of
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FIGURE 9 | Four example spectra are shown, derived from the signals simulated using the fBmW-model.

FIGURE 10 | Average scaling estimates of ten simulated signals (length

is 216 data points), with α is 1.5, and β is 1.5, 1, 0.5, and 0, respectively,

fitted over a varying number of low frequencies. The pentagram
markers indicate the scaling estimates for a fit over the 25% lowest
frequencies. In the inset, it is shown that the estimates converge closely on
the modeled α parameter at around 50 low frequencies.

the empirical spectra seen in Figures 5 and 6. We therefore deter-
mined empirically the parameters that resemble the empirical
power spectra more closely.

In search for a more realistic representation, we constructed 10
series with α = 1.35 with a series length of 216, with white noise
added to it (β = 1.6). The series were smoothed with a moving
average filter with a span of 14 data points, to mimic the decrease
in relative roughness at higher sample rates. This procedure added
a steeper slope (i.e., lower amplitudes) at the high frequencies in
addition to the initial flattening due to the added white noise.
Then a portion of white noise was added again, to complete the
staircase-shape of the empirical power spectra (i.e., white noise at
the high-end of the power spectrum). Next, three times 10 series
were produced, reducing in each case the series length and the

number of overall estimated frequencies by a factor of two. Also
the β parameter and the span of the moving average filter were
reduced at each step. Examples of the resulting power spectra are
shown in Figure 11.

When fitted over a varying number of frequencies, the average
estimate of 10 simulated series for each set of parameters con-
verged on the “true” α of 1.35 at around 50 low frequencies. This
can be seen in Figure 12 (see inset), which also shows the scaling
estimates (as pentagram-shaped markers) when the lowest 25%
of frequencies were used to fit the slope. Note that Figure 12 is
restricted to 25% of low frequencies.

GENERAL DISCUSSION
When spectral scaling exponents are estimated without antici-
pating artifacts introduced by sample rate, the exponent values
themselves may fluctuate widely. The order of magnitude of these
discrepancies is dramatic: scaling exponents may differ in mag-
nitude by 1 or 2 depending on sample rate, while the order of
magnitude of reliable differences in exponents between experi-
mental groups and conditions are often in the range of 0.05–0.25
(e.g., Chen et al., 2001; Kello et al., 2007; Wijnants et al., 2009).
These discrepancies may account for known inconsistencies in
the psychological literature on 1/f noise, and perhaps, for the
lack of a comprehensive framework of 1/f noise in continuous
performance measures. Here we have introduced an empirical
solution to this problem. The proposed strategy for spectral anal-
ysis is robust against changes in sample rate and renders more sen-
sitive and valid α exponents compared with more conventional
strategies of analysis.

The artifact introduced in the high-frequency range of a power
spectrum by differences in sample rate is not due to the inherent
difference in data series length (hence, Figure 7D) but is rather a
natural consequence of the resulting differences in sample density.
That is, denser sampling implies a decrease in relative rough-
ness (i.e., because the highest frequencies in a measured signal
have lower amplitude) compared with more sparsely sampled
data. This artifact is important because it is implied that sub-
tle methodological choices, often choices of convenience, may
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FIGURE 11 | Four example spectra are shown, derived from the signals

simulated using the fBmW-model. These signals were subjected to a
moving average filter with a span of 14, 7, 4, and 2 data points, respectively,

to mimic the reduced relative roughness at high sample rates. To these
composites, another portion of white noise was added to mimic the
flattening at the high-end of the power spectrum, as in Figures 5 and 6.

FIGURE 12 | Average scaling estimates of four times 10 simulated

signals, with parameters presented in Figure 11, fitted over a varying

number of low frequencies. The pentagram markers indicate the scaling
estimates for a fit over the 25% lowest frequencies. In the inset, it is
shown that the estimates converge closely of the modeled α parameter
(1.35) at around 50 low frequencies.

radically alter the outcome of spectral analysis when sampling
artifacts are not adequately anticipated.

The proposed strategy for spectral analysis of continuous
processes is to determine the spectral slope −α over a fixed
number, rather than a fixed percentage of low-frequencies in
a power spectrum. Fitting the slope over a set number of low
frequencies implies a fit over a different high-frequency range
for different sample rates, but over a stable low-frequency range.
Fitting the slope over a fixed percentage of lowest frequencies,
however, implies a fit over a stable high-frequency range, but over
a different low-frequency range. Given that the artifact intro-
duced by sample rate specifically concerns the high-frequency

range of a power spectrum, it is obvious that the former strategy
is to be preferred. That said, the aim of the present suggestion
is not to exclude high-frequency range of a power spectrum
per se, but rather to exclude comparisons that are unreliable in
terms of frequency content (i.e., when a range of low frequencies
quiescently varies in function of sample rate). While this may
not solve the actual measurement problem (i.e., the outcomes
change in function of measurement procedure and choices of
data analysis), it does define the relation between observer and
observable more clearly than before (i.e., outcomes should be
independent of sample rate).

This suggestion follows the logic of Eke et al.’s (2002)
recommendation to discard the highest frequencies and to focus
on the lower frequencies, a recommendation that is consistent
with all example studies cited in the section “1/f noise in human
performance.” In the section “1/f noise and periodic sampling,”
we acknowledged nonetheless that 1/f scaling relations often are
observed within a finite range of scales only. The 1/f scaling
relation may thus break down at specific frequency ranges, and
usually at the highest frequencies. Interestingly, this basic fact
about power spectra of psychological data series has led some
scientists to inquire whether low- and high-frequency ranges
in a power spectrum may represent the variability of different
component mechanisms (Gilden, 2001; Delignières et al., 2008;
Torre and Delignières, 2008). The scope of the present paper did
not include an in depth discussion of that potential of spectral
analysis. The present evaluation of spectral analysis reveals no rea-
son to believe that such uses of spectral analysis are problematic
in any way when dealing with trial series or simulated data series.
Yet, the cautious implication is that estimating high-frequency
slopes is a rather delicate enterprise when confronted with time
series sampled at arbitrary sample rates.

The present investigation may shed new light on known
discrepancies in the literature on 1/f noise in psychological data.
For instance, an explicit demonstration of such a discrepancy is
described by Delignières et al. (2005) in the context of a study of
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relative phase in bimanual coordination. These authors estimated
the scaling properties of discrete relative phase, corresponding to a
cycle-to-cycle measurement yielding a trial series. The mean val-
ues of the estimated scaling exponent α ranged from 0.72 to 0.78,
while continuous relative phase (hence, the same performance
when treated as a time series), results in scaling exponents with
an average value of about 2.52 (Schmidt et al., 1991), far from
the scaling range typically observed in trial series. This example
confirms that different sampling regimes may effectively lead to
appreciably different conclusions about the nature of the observed
patterns of variability.

Also within a similar sampling regime (i.e., when an across-
study comparison yields only time series, rather than comparing
time series with trial series) different results may be obtained
with different choices of sampling. An example is provided by
studies of postural sway. “Postural sway typically exhibits frac-
tal scaling with exponents characteristic of fractional Brownian
motion (cf. Collins and De Luca, 1993), although prolonged,
unconstrained standing has suggested a pink [1/f ] noise structure

(Duarte and Zatsiorsky, 2001)” (Bonnet et al., 2006, p. 806).
These different results are methodologically interesting as well,
if one notes that Collins and De Luca (1993) sampled their
data at 100 Hz, while Duarte and Zatsiorsky (2001) sampled at
20 Hz. Here, we have shown that a comparison of these stud-
ies is only meaningful when the different sample rates of both
experiments are taken into account, hence, when the scaling
parameters are determined over an equivalent low-frequency
range.

The ability to reliably and sensitively estimate valid scaling
exponents, regardless of sample rate, and to compare these expo-
nents (whether among different streams of 1/f noise, across
experimental conditions or across studies) is undoubtedly a req-
uisite to achieve a coherent and comprehensive framework of 1/f
noise in continuous processes. The present contribution might
motivate an extension of the coherent framework of 1/f noise that
has emerged for trial series of repeated discrete responses (e.g.,
Diniz et al., 2010; Van Orden et al., 2011; Wijnants et al., 2012a,b)
to continuous performance measures.
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