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Various analyses are applied to physiological signals. While epistemological diversity is
necessary to address effects at different levels, there is often a sense of competition
between analyses rather than integration. This is evidenced by the differences in
the criteria needed to claim understanding in different approaches. In the nervous
system, neuronal analyses that attempt to explain network outputs in cellular and
synaptic terms are rightly criticized as being insufficient to explain global effects,
emergent or otherwise, while higher-level statistical and mathematical analyses can
provide quantitative descriptions of outputs but can only hypothesize on their underlying
mechanisms. The major gap in neuroscience is arguably our inability to translate what
should be seen as complementary effects between levels. We thus ultimately need
approaches that allow us to bridge between different spatial and temporal levels. Analytical
approaches derived from critical phenomena in the physical sciences are increasingly
being applied to physiological systems, including the nervous system, and claim to provide
novel insight into physiological mechanisms and opportunities for their control. Analyses
of criticality have suggested several important insights that should be considered in
cellular analyses. However, there is a mismatch between lower-level neurophysiological
approaches and statistical phenomenological analyses that assume that lower-level effects
can be abstracted away, which means that these effects are unknown or inaccessible to
experimentalists. As a result experimental designs often generate data that is insufficient
for analyses of criticality. This review considers the relevance of insights from analyses of
criticality to neuronal network analyses, and highlights that to move the analyses forward
and close the gap between the theoretical and neurobiological levels, it is necessary to
consider that effects at each level are complementary rather than in competition.
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“Any one will renovate his science who will steadily look after the
irregular phenomena. And when the science is renewed, its new
formulas often have more of the voice of the exceptions in them
than of what were supposed to be the rules.”

William James (1897)

INTRODUCTION
Life is said to occur at the border between order and chaos
(Macklem, 2008): it requires stability, traditionally expressed in
terms of homeostatic principles, with flexibility and adaptability
at the micro (molecular and cellular) and macro levels (networks,
organisms). Schrodinger (1944) defined life as the passage of
encoded material from parent to offspring, and the spontaneous
emergence of self-organized order. The former aspect is being
dealt with quite successfully by biochemistry and molecular biol-
ogy; the latter aspect is for physiology to address and it remains
open. Significant mechanistic insight has been obtained by reduc-
ing systems to their components (i.e., assuming proportionality
and superposition, that systems are sums of their parts). While
this approach has driven some major advances in genetics, devel-
opmental biology, and cellular physiology (obvious examples in

the nervous system are the Hodgkin–Huxley analysis of the action
potential and Katz’s quantal model of synaptic transmission), it
is unlikely to be successful at the systems physiology level where
outputs depend on non-linear interactions between components
parts. Despite advances, the reductionist/holism split continues,
and while the examples given above argue against the claim that
reductionism has not revealed much of the nature of biological
complexity (Pattee, 1979), it is the case that these analyses do not
explain higher-level functions.

Among physiological systems the brain in particular defies
explanation, at least to a point where we can explain normal
and abnormal behavior in mechanistic terms related to under-
lying cellular processes. Understanding the dynamics of nervous
system activity requires insight into effects occurring at multiple
spatial and temporal scales that differ by orders of magnitude.
In practical terms there are three spatial divisions: microscopic
(molecular/cellular/synaptic), mesoscopic (network and associ-
ated measures of local interactions), and macroscopic (whole
system or behavior). The criteria that need to be met to satisfy
definitions of understanding can differ depending on the level
of analysis. Microscopic analyses (molecular biology, single cell
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imaging, electrophysiology) provide insight into the properties
of single molecules, cells, or synapses but often give little insight
into their higher functional relevance; whereas mesoscopic or
macroscopic analyses [monitoring network activity (e.g., imag-
ing), EEG, PET, fMRI] provide insight into activity in different
brain areas relevant to different tasks but give little or no insight
into their underlying mechanisms. Despite their individual weak-
nesses analyses tend to focus on a specific level. The question of
how higher-level outputs (network activity, behaviors) are gen-
erated from lower-level properties (cells and synapses) has been
considered for decades and still exists. The major problem is link-
ing across levels in the nervous system, for example, in the way
that NAD and other enzymes are linked as functional compo-
nents of the Kreb’s cycle, which is in turn linked as a component
of metabolism. Where strong claims to these mechanistic links
have been made in the nervous system they are either demonstra-
bly in error or underdetermined by the data and reflect the belief
that the level of explanation given is sufficient (see Dudai, 2004;
Parker, 2006, 2010).

THE PROBLEM OF LINKING BETWEEN MICRO AND MACRO
LEVELS IN BIOLOGICAL NETWORKS
Take as an example a neuronal network, that is a population
of functionally heterogeneous neurons, connected to each other
through functionally heterogeneous cell-specific (i.e., not all-
to-all) synaptic connections, with the additional potential for
interactions resulting from electrical or chemical ephapses or
fields (Jefferys, 1995; Weiss and Faber, 2010). This reflects biologi-
cal but often not artificial neural networks. Similar considerations
apply to interactions between regions of the nervous system (e.g.,
Bullmore and Sporns, 2009), where each region is actually a
neuronal network but can be treated as a component. Assume,
following traditional neurobiological criteria, that understanding
implies the ability to explain the spatial and temporal aspects of
the networks activity in terms of the activity of its cellular and
synaptic components (see Selverston, 1980; Yuste, 2008; Parker,
2010). The fundamental first step according to these criteria is to
identify the network neurons: while this seems trivial, even this
initial step can be difficult as network neuron identification cri-
teria can introduce errors of inclusion or exclusion (see Parker,
2010), and non-neuronal elements (glia) may also contribute to
network function (Araque and Navarrete, 2010). Secondly, the
network connectivity must be determined. This requires the iden-
tification of monosynaptic (direct) connections between identi-
fied neurons, an approach that ideally needs the simultaneous
recording and manipulation of activity in the presynaptic and
postsynaptic neurons. Caution is needed here as synaptic func-
tion is complicated by various microlevel synaptic arrangements
(e.g., dendro-dendritic interactions, graded or electrical synapses,
ephapses, glial signaling), and the history of network connec-
tivity analyses highlights errors that can arise from approaches
still used routinely (e.g., temporal correlation) that erroneously
claim to unequivocally identify monosynaptic connections (see
Berry and Pentreath, 1976; Parker, 2010). Much is rightly made of
the need to describe network interactions (e.g., Yeh et al., 2010),
although there can be a mismatch between what is meant by
connectivity from lower-level synaptic analyses and higher-level

statistical approaches. Identifying the direct or indirect interac-
tions between components is essential to network understanding
as functional inferences are based on the assumed organization.
Thirdly, from this description of the network architecture the
functional properties of cellular and synaptic components must
be identified. This is a daunting task: there are in excess of
200 transmitter substances (Thomas, 2006) whose temporal and
spatial effects at the synapse are varied, activity-dependent, non-
linear, and cell specific. The voltage-dependent ion channels that
determine the non-linear resting and active properties of neu-
rons form a superfamily of at least 143 genes (Yu et al., 2006),
with further diversity and functional variability of cells resulting
from alternative splicing, posttranslational modifications, and
varying combinations of channel subunits (Gutman et al., 2005;
see Parker, 2010). This variability means that even neurons and
synapses considered as belonging to single populations or classes
on the basis of particular molecular or anatomical markers can-
not be reduced to a collection of functionally homogeneous units.
This makes the functional description of even small networks far
more difficult than a description of the network architecture.

This brief outline highlights several problems associated with
the analysis of neuronal networks. Firstly, it is currently impossi-
ble to perform a detailed microlevel characterization in systems
of more than a few tens of components: analyses become imprac-
tical as the number of components and interactions increase (the
“tyranny of numbers” and the “curse of dimensionality,” respec-
tively: see Koch (2012) for a recent concise review of analytical
complexities). Analyses thus have to change as systems increase in
size to focus on cellular (spiking) or system outputs and correla-
tions between active components rather than the details of these
components or interactions (e.g., Schneidman et al., 2006). This
is akin to statistical mechanics, and ignores component prop-
erties to examine global effects (i.e., parameter functions rather
than parameter values). However, global outputs reflect extensive
microscale analogue sub- and suprathreshold cellular and synap-
tic processing, and these effects do matter because the neuron is
not “simple” or “repetitive” (cf. West, 2010), lower-level prop-
erties are not hidden, irrelevant, or homogeneous (i.e., defined
populations cannot be reduced to single functional units), and
activity in single cells can have significant functional effects,
not only in smaller networks where they are endemic (e.g.,
Selverston, 2010), but also in systems where only population-
level responses were assumed (Houweling and Brecht, 2008). Even
though macroscopic or mesoscopic analyses can describe network
outputs, as similar outputs can result from markedly different
lower-level effects (Prinz et al., 2004; see Figure 1) these analyses
do not allow confident assumptions to be made of the network
organization or mechanisms, features that are essential for any
rational manipulation of real systems.

While lower-level analyses highlight the need for microlevel
information, even if it was universally accepted (which it is not)
that microlevel information was necessary for understanding, it
is not sufficient. A complete library of individual components
would not constitute understanding of a system that included
non-linear positive and negative feedback loops between com-
ponent parts and circular interactions between network activity
and activity-dependent cellular and synaptic properties. These
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cannot be understood by analyzing components individually or
in the absence of ongoing network activity, even if emergent or
ephaptic or field-like effects are ignored (Jefferys, 1995; Weiss and
Faber, 2010). If the latter effects are present even targeted per-
turbations of network components with much greater specificity
than is currently possible would not allow simple interpretations
of functional effects, as any perturbation will alter field effects and
change the properties of supposedly unaffected components.

One potential approach is to identify network motifs (Simon,
1962; Sporns et al., 2005; Koch, 2012) or “building-blocks”
(Getting, 1989), which chunk elements of the network into
defined functional units and thus reduces the number of com-
ponents to be analyzed (Koch, 2012). However, the identification
of a structural motif does not determine its function (e.g., Ingram
et al., 2006; Qian et al., 2011), as this also depends on the prop-
erties of the components and their connections (Selverston, 1980;
Getting, 1989; Parker, 2003; Song et al., 2005; Perin et al., 2011).
Sporns and Kotter (2004) using a statistical analysis of neu-
roanatomical data highlight that there is a small number of
structural motifs, and suggest that there will be great diversity of
functional motifs. This is something that is known from lower-
level analyses (e.g., Arshavsky et al., 1993; Elson et al., 2002;
Prinz et al., 2004), and shows that structural motifs alone cannot
infer a set function. Motif interactions may, however, follow rules
that allow inferences of connectivity and connection properties
(e.g., Perin et al., 2011). As neuronal and synaptic properties vary
widely within single classes and within and between networks
these properties will still need to be examined in specific cases.
Nevertheless, the identification of conserved motifs could at the
very least direct experimental analyses in systems that would oth-
erwise be intractable (see Koch, 2012). Several motifs are already
known: feedforward and feedback excitation can amplify effects
and increase excitation and synchronous firing among function-
ally related cells; feedback, reciprocal, or lateral inhibition can
underlie mutual inhibition responsible for selection or patterning
of activity; and cyclical inhibition can produce oscillatory activ-
ity, the number of phases depending on the number of cells in
the ring (Szekely, 1965). These structural motifs may have been a
necessary stage in the evolution of the nervous and other complex
systems (Simon, 1962), and as such may serve as useful guides
for analysis. However, all are subject to changes depending on the
functional properties of the components. Striking examples are
that reciprocal excitation can lead to inhibition rather than excita-
tion (Egelhaaf and Benjamin, 1982), and reciprocal inhibition can
lead to synchronous rather than alternating activity (Elson et al.,
2002). We must be careful when using terms like building-block
or motif that we avoid the inherent danger of reifying components
as fixed assumed units that sum to give a particular output.

These aspects emphasize the need for novel experimental and
analytical approaches in network analyses. Latest techniques are
often lauded as overcoming problems, but available experimen-
tal approaches still have to go far beyond the claimed capabilities
of even the most sophisticated techniques to understand even
modest-sized simpler networks (Parker, 2010). Useful insights
can come from the cross-fertilization of ideas between different
fields. Analytical approaches have often been inspired by the phys-
ical sciences. Below we discuss dynamical systems approaches and

their application to varied physiological systems, and highlight
the potential relevance of these insights to analyses of neuronal
networks.

THE DYNAMICAL SYSTEMS APPROACH TO NETWORKS
It has been argued that mechanistic (cellular and synaptic) expla-
nations in the nervous system can be replaced at higher levels
by dynamical systems theory (see Haken, 2006; Werner, 2007).
This substitutes analysis of component properties for predictions
based on appeals to the sufficiency of universality classes: if a
model describes a phenomenon and predicts future effects then it
is considered to explain the actual system (see Kaplan and Craver,
2011 for a critique of this view).

The dynamical systems approach in neuroscience has been
highlighted many times [for example, Turing (1950), Ashby
(1962), Friston (2000), Haken (2002), Freeman (2005), Tognoli
and Kelso (2009)]. Complexity has emerged as one of the main
analytical approaches (Simon, 1962; Pattee, 1979). Although there
has not, and may never be a generally accepted definition of
complexity (see Pattee, 1977), in the nervous system it has been
defined as the structure in a systems dynamics: complexity is high
in systems where different parts can act separately while still being
interdependent (Tononi et al., 1994). As complexity analyses aim
to examine how interactions between component parts generate
collective global behaviors, it could offer a bridge between micro
and macro level effects in suggesting how system parameters
influence system function. An advantage of looking at a problem
as a critical phenomenon is that insight can be obtained with the
help of one or a few order parameters. This offers an alternative
to network analyses using computer simulations, where although
larger, physiologically relevant, numbers of components are being
modeled in increasing detail (although in many cases parameters
are still often poorly defined, and reduced to mean, assumed, or
extrapolated values), and the simulations can recreate features of
the actual system, but as they become more detailed they can pre-
vent understanding of the underlying mechanisms (see Greenberg
and Manor, 2005).

COMPLEXITY IN NEURAL SYSTEMS
Physiological outputs are typically studied in relation to their
instantaneous frequency and amplitude. However, various scaling
techniques inspired by analyses in physical systems have revealed
long-range power-law correlations in apparently random fluc-
tuations that suggest that processes at particular temporal or
spatial scales are linked to those at other scales (scale-invariance;
Goldberger et al., 2002; West, 2010). Scale invariance is assumed
to be a natural property of self-organized systems and suggests a
memory-like process where outputs do not simply depend on the
recent state of the system but also on the state at earlier times (see
Huang, 1987). In equilibrium systems, scale-invariance appears
at the critical point of a second-order phase transition (Chialvo
et al., 2008). However, natural systems are out-of-equilibrium and
the common appearance of scale-invariance in such systems is still
not well-understood (Bailly and Longo, 2008; Yeh et al., 2010).

Self-organized criticality (SOC) is a fractal-related feature of
dynamical systems where the macroscopic behavior of a system
arises from the interactions of its component parts. This results
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in non-equilibrium phase transitions that depend on the intrinsic
dynamics of the system rather than requiring external tuning (Bak
et al., 1987). In its simplest form, a SOC system is a driven dissipa-
tive system consisting of a medium with disturbances propagating
through it that cause the medium to be modified in such a way
that it develops into a critical state (Flyvbjerg, 1995). SOC is con-
sidered a key concept underlying complexity in natural systems,
and was introduced to describe how dynamical systems intrinsi-
cally organize at critical states from which energy fluctuations of
all sizes occur.

SOC has been associated with various patterns of activity in
real and artificial neural systems (Usher et al., 1995; Linkenkaer-
Hansen et al., 2001; Beggs and Plenz, 2003; Eguiluz et al., 2005;
El Boustani et al., 2005; Freeman, 2005; see Werner, 2007, 2010
for a detailed list of effects and the variability between studies).
This suggests a state-dependent influence that extends far beyond
that usually considered in neuronal analyses. State-dependent
effects have generally received little attention (see Buonomano
and Maass, 2009), but the presence of long-range correlations
would make them far more difficult to identify and track, and a
consideration of these effects could require changes in the design
of conventional experimental approaches. While analyses of SOC
have generated some interesting insights (see below), in relat-
ing SOC to neuronal networks we are faced with a mismatch
in the language used to describe effects at the micro and macro
levels: the latter are statistical and mathematical (scaling expo-
nents, wave patterns, attractors, bifurcations, phase transitions,
Lyapunov exponents), the former biological (neuron, synapse,
spikes, transmitters). To link between these we will need to know
what to look for in neurobiology as an example of a Lyapunov
function or the scaling exponents of power-law relationships. The
latter are assumed to be related to underlying physiological mech-
anisms and network architectures, but these mechanisms are
not specified by the analyses. Long term correlations in various
aspects of cellular or network activity could reflect feedback
loops that adjust outputs as a function of previous activity, but
again the underlying mechanisms and functional relevance of the
correlations is unknown.

Despite these issues SOC could offer several advantages to
the analysis and function of perceptual, cognitive, and motor
networks. It could prevent entrainment that locks the system
into sub-critical activity (which limits potential responsiveness)
or supercritical activity (which limits control; see Kelso, 1991;
Fingelkurts and Fingelkurts, 2006), and long-range correlations
could facilitate the rapid state transitions needed for the process-
ing of neural signals that may span several orders of magnitude.
SOC may also help nervous systems to overcome the “stability-
plasticity dilemma” (Abraham and Robbins, 2005), the appar-
ently conflicting requirement of stability (order) with flexibility
and plasticity. This requires that changes occur while the system is
kept within certain limits, a property that exists with higher prob-
ability in systems operating at or close to criticality (see Aldana
et al., 2007). Finally, SOC may allow interacting components to
organize into functional systems according to local system rules
rather than requiring the prior specification or external tuning of
each component. This could make systems fault-tolerant as aber-
rant changes in component values during development or as a

result of injury or random cell loss could be compensated for by
changes in other components (for examples from neurobiology
see Prinz et al., 2004; Marder and Goaillard, 2006; see West, 1990
for a formal analysis of how scale-free effects prevent the propa-
gation of the errors that would be associated with classical scaling
effects).

In causing parameters to be near critical values the system
is always near a phase transition. To understand network orga-
nization and function the critical points and associated order
parameters (e.g., the correlation length) that cellular and synap-
tic components work toward need to be identified rather than
the components themselves, thus potentially reducing the com-
putational demands on neuronal network analyses (Koch, 2012).
However, in terms of linking to lower-level mechanisms the focus
on critical points simply pushes the question back: again, what
is the physiological basis of a critical point or attractor? These
properties need to be reflected in the features of neuronal net-
works: that is, identified classes of neuronal and non-neuronal
elements connected to each other through specific monosynap-
tic and polysynaptic pathways; that act with defined cell-specific
cellular and synaptic properties; potential field-like effects aris-
ing from global or local activity within the network; and the
potential for activity or transmitter-mediated modulation of these
functional properties. Effort spent relating analytical terms to
potential neuronal mechanisms and organizations would be a
significant step toward closing the gap between these levels of
analysis.

Support for the idea that nervous systems and neuronal net-
works are critical systems comes from the seemingly ubiqui-
tous power-law scaling from the molecular to behavioral levels
(see Werner, 2010). However, this conclusion remains contro-
versial and data obtained using similar experimental and ana-
lytical approaches can produce contradictory results (e.g., Klaus
et al., 2011; Dehghani et al., 2012). Scaling exponents that are
assumed to reflect underlying physiological mechanisms and net-
work architectures (but do not specify these features) can also
differ in analyses of supposedly single phenomena. For exam-
ple, in a study of epilepsy patients Worrell et al. (2002) showed
that scaling exponents differed for each individual, thus predict-
ing different underlying mechanisms. As targeting treatments will
require insight into these mechanisms or their causes, the descrip-
tion alone could be argued to provide little insight. Conversely,
similar scaling exponents can be generated for diverse phenom-
ena with different underlying mechanisms (Ivanov et al., 2009;
Stanley, 1999). Despite these issues, the power-law is claimed as
one of the few universal mathematical laws of life, and references
have been made to a new “law of nature” and “universal archi-
tecture” that link complex systems across the natural, social, and
engineering sciences (Wolf et al., 2002). While the endemic nature
of power law distributions could suggest a fundamental property
of multicomponent systems, the ease with which they can be fit-
ted to experimental data has led to doubts over their function
and origin: thus, power-law relationships have been suggested
to be artefacts due to thresholding effects applied to stochastic
processes or a combination of exponential processes (Reed and
Hughes, 2002; Bonachela et al., 2010; Touboul and Destexhe,
2010; Stumpf and Porter, 2012).
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Stumpf and Porter (2012) highlight the need for caution and
empirical support for analytical results applied to physiological
systems, as the theories underlying power-law behavior derive
from infinite systems, but the systems and data examined are
finite. They state, “as a rule a candidate power law should exhibit
an approximately linear relationship on a log-log plot over at least
two orders of magnitude on the x and y axes,” a requirement
they say that rules out most data sets, and almost all data from
biological analyses. Varotsos et al. (2011) have recently shown
that dynamic features of complex systems can be derived from
their time series in terms of a “natural” time (χk = k/N), an
index for occurrence of the kth event in a time series comprising
N events. They derived κ1 from the Taylor expansion of the power
spectrum, as the variance of the natural time and demonstrated
that when κ1 converges to 0.07 a variety of dynamical systems
approach criticality where, for instance, a typical time depen-
dent correlation length ξ would behave as ξ ∝ χ1/z where z is the
dynamic critical exponent. While this has been applied to crit-
ical phenomena from geophysical systems and 2D Ising models
that exhibit SOC, it will be necessary and instructive to investi-
gate these effects in biological systems where constraints on data
series are more significant. Techniques to analyze phase transi-
tions in statistical mechanics also generally have reversibility at
the microscopic level and irreversibility at the macroscopic level.
Statistical mechanics seeks to establish connections between these
two scenarios, and also describes the approach to equilibrium.
The question is how do we ensure that these two requirements
are fulfilled? Statistical mechanical approaches generally appeal
to the ergodicity principle but the latter ceases to hold in systems
in a critical state. This does not mean that statistical mechanics
fails when systems are in a critical state, or the above mentioned
two requirements stop being necessary. If statistical mechanics
is done by setting up “master (or rate) equations” then the two
requirements are fulfilled, and critical systems can be handled
(see Kadanoff and Swift, 1968). Statistical mechanics typically
deals with systems containing large numbers of a single or a few
types of randomly interacting components, whereas biological
systems contain relatively few copies each of multiple components
with specific interactions (Hartwell et al., 1999), and assump-
tions of homogeneity in component properties are not supported
(see Soltesz, 2006). It may thus be worthwhile attempting master
equation approaches to biological systems.

Non-equilibrium approaches may also be better applied
to biological systems, even though fundamental uncertainties
remain over their application (Yeh et al., 2010). A core prob-
lem is that it is not clear how the organization and operation
of neuronal networks relate to the terms used in these anal-
yses. Even when a fit is robust the lack of direct insight into
the actual network architecture and function remains problem-
atic (see Fox-Keller, 2005). Work on criticality does show that
certain system properties can be understood without involving
the details of the system, but not what properties. Watts (2003),
who has extensively used statistical analyses of various networks,
has said, “For any complex system, there are many simple mod-
els we can invent to understand its behavior. The trick is to
pick the right one. And that requires us to think carefully—to
know something—about the essence of the real thing” (cited in

Fox-Keller, 2005). This highlights a familiar circularity to experi-
mental analyses of neuronal networks: the interpretation of effects
obtained using experimental tools (e.g., gene knockouts) requires
prior knowledge (or more often assumptions of knowledge) of
system components, of what the techniques do, and of what the
data shows: the results obtained using these assumptions are then
used as evidence to support the initial assumption (see Parker,
2010).

COMPLEXITY AND DISEASE
The control of physiological systems to ensure their proper func-
tioning is a principal goal of medicine. Complexity is claimed to
be a better indicator of physiological functions in health and dis-
ease (West, 2010), but does it offer new insight or a new descrip-
tion? That it is the former is clearly suggested by the findings
in several systems that disease states reflect a loss of complex-
ity, not the loss of regularity. This is encapsulated in the idea of
“dynamic disease” (Mackey and Glass, 1977), and could reflect the
reduced interaction between network elements (Pincus, 1994).
The breakdown of complexity is generally associated with reduced
variability, a constant dominant frequency (mode-locking), and
highly regular periodic activity [this has been shown in series
of heartbeat intervals and breathing (e.g., Cheyne-Stokes); see
Goldberger et al., 2002], but can also be associated with increased
variability and with a loss of long-term correlations (i.e., ran-
dom rather than correlated fluctuations; Hausdorff et al., 1998).
The nervous system is arguably unique in having so many func-
tional disorders that despite decades of investigation lack discrete
anatomical or physiological markers (generally truer for psychi-
atric rather than neurological disorders). This could support a
focus on disease states where changes in control parameters rather
than in component properties lead to abnormal dynamics (Stam
and van Straaten, 2012). The appearance of long-range correla-
tions on different time scales in various physiological systems has
encouraged analyses that have shown similar long-range effects
in neurological and psychiatric disease (Linkenkaer-Hansen et al.,
2005). The presence of these correlations is potentially problem-
atic for neuroscience as commonly used analytical approaches
are not sufficient for modeling discontinuous, non-homogeneous
and irregular processes in self-organizing systems (see Freeman,
2005).

Consider Parkinson’s disease, a prevalent neurological disor-
ders that exhibit great variability between and within individ-
uals. It is associated with a classical triad of symptoms that
include tremor, bradykinesia, and akinesia (slowness or loss of
motor function). The cardinal pathological feature is degenera-
tion of dopaminergic neurons in the substantia nigra pars com-
pacta (Hornykiewicz, 2006). However, there are no symptoms
of Parkinson’s disease until approximately 80% of the dopamin-
ergic neurons are lost (Bezard et al., 2003). The non-linear
relationship between dopamine levels and symptoms could sug-
gest either degeneracy or redundancy in the dopaminergic system
(this seems unlikely given the energetic demands of developing
and maintaining cell populations), or that the system is able to
compensate for differences in dopaminergic inputs to maintain
function up to a critical level (i.e., fault tolerance) before the com-
pensation breaks down. Parkinson’s disease is suggested to reflect
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the simplification of a complex dynamic process from a critical
to an ordered state (Hausdorff, 2009). In this scheme akinesia
(inability to perform movements) reflects a switch to a fixed point
of a basin of attraction that restrains behavioral flexibility, and
tremor reflects a change from the small aperiodic normal rest-
ing tremor to pathological regular large amplitude tremor due
to changes in a dynamical regime produced by multiple feedfor-
ward and feedback loops between basal ganglia and possibly other
networks (Bezard et al., 2003; Hausdorff, 2009).

If disease reflects a loss of network complexity, then it would
require an understanding of network-level dynamical disease pro-
cesses rather than the focus on changes in single components
(e.g., dopamine levels), and treatments would need to manipulate
complexity arising from dynamic interactions rather than sin-
gle components (again, dopamine levels in Parkinson’s disease).
Deep brain stimulation and transcranial magnetic stimulation are
the latest treatments being applied to neurological and psychi-
atric conditions (see Goodman and Insel, 2009). However, there
is significant heterogeneity in their efficacy and a narrow window
between beneficial and adverse effects of stimulation. In a meta-
analysis of deep brain stimulation in Parkinson’s disease there
was a mean improvement rate of 52% (this primarily reflected
improvements in physical function not quality of life; Kleiner-
Fisman et al., 2006). The variable success rate may reflect intrinsic
differences in patient or disease properties (severity, duration,
drug treatment history), but it may also reflect a requirement for
better understanding and application of dynamic inputs rather
than current stimulation regimes that use fixed values of ampli-
tude, width and frequency adjusted for each patient (Volkmann
et al., 2006). Dynamical approaches have been introduced in
intensive care: an inverse power-law spectrum rather than a fixed
regular artificial respiration rate was used to drive a variable ven-
tilator rhythm with a resulting increase in arterial oxygenation
(Mutch et al., 2000), supporting the utility of this approach.

COMPLEXITY, VARIABILITY, AND HOMEOSTASIS
Healthy physiological systems are assumed to homeostatically
reduce variability and settle into constant equilibrium-like states,
but in many cases even under steady-state conditions physio-
logical outputs are not constant but fluctuate about some mean
value (Buchman, 2002; Goldberger et al., 2002). Non-stationary
and non-equilibrium systems are not suitable for the analyti-
cal approaches typically applied to the nervous system, which
assume linearity, stationarity, and equilibrium-like conditions
and use probabilistic averaging methods to exact solutions (e.g.,
mean, variance, power spectra analyses). Experimental proce-
dures that incorporate averaging (fMRI, interevent-interval spike
histograms) are also insensitive to the time structures often
present in neural activity. The idea that disease states repre-
sent a loss of complexity rather than regularity has led to call
for a radical revision of physiological analyses, and to a cri-
tique of the homeostatic principles that have guided explana-
tions of physiological systems for most of the twentieth century
(West, 2010). The claim is that homeostasis emphasizes Gaussian
effects where negative feedback loops act to reduce variability
and clamp systems at equilibrium and average rates, and has
led to a “fix the number” approach to disease (Buchman, 2006),

where attempts are made to restore the system to a fixed mean
value. However, treatments based on this approach can lead to
worsening rather than an improvement of conditions (Buchman,
2006; West, 2010). In contrast, complexity suggests variability
and long-term correlations rather than quiescence at equilib-
rium, and that averages and central tendencies are replaced by
the slope of power law functions. While this has offered impor-
tant insight that has already had beneficial practical applications
clinically (Mutch et al., 2000), the critiques of homeostasis that
have been made are to some extent directed at a straw man that
has developed as homeostasis has erroneously been reduced to
its simplest form of the negative feedback control of fixed set-
points (West, 2010). In introducing the concept of homeostasis
Cannon (1932) said: “The word does not imply something set
and immobile, a stagnation. It means a condition—a condition
which may vary, but which is relatively constant.” Ashby (1958)
also suggested that any controller or adaptive system needs a “req-
uisite” level of variability to cope with the variable demands it may
face, an idea embodied physically in his mechanical homeostat.
Homeostasis is thus not synonymous with negative feedback, but
can include internal feedback, feedforward prediction, parametric
feedback, and hierarchical control that can reflect marked changes
at lower levels, including positive feedback and amplification of
perturbations, to maintain higher level functions. Many aspects
considered “non-homeostatic” and new terms (e.g., homeody-
namics, homeorhesis) were thus encompassed by the original
view of homeostasis.

The loss of complexity rather than regularity as a marker in
several disease conditions (West, 2010), and that physiological
variability is correlated over different time scales and may reflect
the degree of complexity of a system and the degree of its con-
trol and adaptability, are all important insights from analyses of
criticality that have potentially significant implications for neuro-
physiological analyses. While variability is gradually being recog-
nized (see Soltesz, 2006), its nature and relevance remain unclear
at the neuronal or network level. We currently lack the insight into
its underlying mechanisms to experimentally manipulate vari-
ability without also evoking changes in mean values (Aradi and
Soltesz, 2002), assuming this is possible at all, making it difficult
to relate experimental effects to changes in variance. Variability
could reflect random noise, changes introduced by plasticity asso-
ciated with different contexts or the history of the system (i.e.,
state-dependent differences), or actively programmed intrinsic
variation in system or cell parameters that allow the system to
select variable responses to variable inputs (Ashby, 1958, 1962).
An important consideration is noise-induced variability: random
noise can degrade or enhance signals (Smeal et al., 2010), whereas
with the long range correlations associated with complexity order
arises from noise. Whether noise is random or reflects long-range
correlated signals is thus of significance to experimental analyses.
In the former case it can be eliminated by averaging, and the vari-
ance decreases as the sample size increases. In the latter case the
sample mean does not necessarily reduce to the population mean
as the sample size increases (as expected by the central limit theo-
rem), but can increase or decrease as more values are measured or
the scale of the measurement is altered. A change in the mean does
not necessarily reflect a change in the underlying processes, a basic
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tenet of experimental analyses of neuronal and other networks.
Variance can also increase as additional data is analyzed. Thus, the
mean and variance obtained over a certain scale will not be suffi-
cient to characterize neuronal network parameters if networks are
complex systems, and the analysis of signal fluctuations inspired
by analyses of criticality may be more important than the char-
acterization of their mean or variance. Consideration of this to
neuronal network analyses would necessitate a marked change in
experimental design (see Stumpf and Porter, 2012). This includes
a focus on variability, which has often been filtered out in various
ways by the design, selection, or interpretation of experimental
data (see below), as well as demands on the data set.

COMPLEXITY IN MOVEMENT AND CENTRAL PATTERN
GENERATING NETWORKS
Fractal or multifractal scaling has also been demonstrated in
human locomotion, (Hausdorff et al., 1997). In healthy adults
there are changes in gait (stride interval) that fluctuate about a
mean value with long-range correlations that suggest that stride
intervals are related to those occurring hundreds of strides ear-
lier. This effect is independent of the speed of walking and is
suggestive of a fractal property where stride interval is regulated
over multiple gait cycles. These correlations were abolished when
subjects walked to a metronome-controlled beat, suggesting a
supraspinal influence on the fractal walking pattern, although the
mechanisms underlying this effect are unknown. Scaling expo-
nents differed between children and adults of different ages, and
also in adults with varying severity of neurological disorders
(Parkinson’s disease, Huntington’s disease, motor neuron (MN)
disease), where walking became more random as long-range cor-
relations were lost (see Hausdorff, 2009). This is highlighted as
being indicative of different underlying mechanisms in the nor-
mal and abnormal motor systems, which on its own is a far from
surprising conclusion.

What can the correlations of activity patterns over a wide range
of frequencies say about the underlying effects? In a simple form
movement needs pools of neurons controlling flexion and exten-
sion at different joints and limbs on the left and right sides of
the body, and some way of regulating the activity in these pools
to allow a co-ordinated global output. Flexion/extension and
left/right coordination in the limbs occurs over various frequen-
cies, both at the behavioral and at the cellular levels. The design
principle revealed by the basic walking pattern, while not negat-
ing it as a useful or important parameter, does not tell you how or
even why the system works the way it does, just what the system
does: we again need insight into the mechanisms of these corre-
lations. Correlations in step cycle duration have been mimicked
in a modeling study of a spinal cord central pattern generator
(CPG; see Hausdorff et al., 2001). A spinal CPG is a neuronal
network that coordinates the patterned motor output to the mus-
cles required for locomotion. In general terms a CPG consists of
separate half-centers composed of specific cell classes and inter-
actions that control antagonistic muscle groups (e.g., flexors and
extensors). The half-centers are coupled by some form of mutu-
ally inhibitory connection that ensures their antiphasic activity.
This was outlined over a century ago without consideration of
the underlying cellular mechanisms (Brown, 1911). While there is

some insight into the organization of these networks, the details
are incomplete for even the simplest spinal CPG (lamprey; see for
example Grillner et al., 2005; where despite the mantra that the
network has been “defined experimentally,” much of the claimed
experimental data does not exist and the characterization claimed
is in fact a hypothesis; see Parker, 2006, 2010 for discussion).

Although details of actual spinal networks were not included
in the modeling study of Hausdorff et al., the variability in
the modeled motor output is of interest. Experimental analyses
of actual spinal central pattern generating networks in vitro in
response to pharmacological activation in lower vertebrate and
mammalian systems (“fictive locomotion”) assume regular activ-
ity as the norm, and this has influenced analytical strategies that
seek to confirm this assumption. For example, in a study that
compared glutamate-evoked fictive activity in the isolated lam-
prey spinal cord with locomotor activity in swimming animals
only regular activity was considered for analysis (it was stated
that “the sequences selected for analysis in each preparation were
those that appeared least variable”; Wallen and Williams, 1984).
The selection was necessary because fictive activity is often irreg-
ular (Ayers et al., 1983; Parker et al., 1998; Parker and Bevan,
2007), and data are often searched for regions of regular activ-
ity or preparations are taken until one shows regular (“normal”)
activity (it could be claimed that the quality of fictive activity
shown is directly proportional to the number of experiments per-
formed). This is a reflection of the belief that activity should be
regular to resemble normal locomotion and that variability in
the pattern is somehow abnormal, which counters the findings
of the Hausdorff et al. (1997). If the situation is the same as the
heartbeat, where regular interbeat intervals were also erroneously
assumed to be the norm (Goldberger, 1996; Ivanov et al., 1999),
it should instead be considered if rather than a model of nor-
mal function, highly regular fictive locomotor activity actually
reflects a pathological loss of complexity. This could reflect the
reliance for the activation of fictive locomotion on a fixed level
of tonic bath applied glutamate receptor agonists, an approach
that ignores the normal spatial and temporal variability of gluta-
mate release. It could also reflect the removal of descending inputs
from the brain and sensory feedback (see Cohen et al., 1996). This
will reduce the interaction of the spinal CPG with other com-
ponents of the motor system, an effect that can lead to a loss of
complexity in dynamical systems (Pincus, 1994). That assump-
tions based on experimental analyses of fictive activity in isolated
spinal cords needs re-consideration has been raised by Li et al.
(2009) in the tadpole spinal cord, albeit not in terms of dynami-
cal systems effects. Fictive locomotion may reflect a generic state
(mathematically in the interior of a region corresponding to a
given behavior): systems in such a state are considered struc-
turally stable (Bienenstock and Lehmann, 1998) and do not show
high susceptibility to external influences. Support for this is that
when evoked by NMDA receptor activation, fictive locomotion
in lamprey is less susceptible to modification by sensory feed-
back or descending inputs from the brain (see Fagerstedt and
Ullén, 2001). Fictive locomotor activity is also more variable with
the brain attached than in the isolated spinal cord, which is sug-
gested to reflect the greater dynamical stability of the intact system
(Cohen et al., 1996; Wang and Jung, 2002).
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SPINAL CORD NETWORKS AS MODEL SYSTEMS FOR
COMPLEXITY ANALYSES
The shift from regular to irregular activity with long-term cor-
relations suggested by analyses of complexity in various systems
highlights the need to consider the role of complexity in spinal
central pattern generating networks where features relevant to
criticality have been ignored or avoided (e.g., CPG variability dur-
ing fictive locomotion). Spinal cord networks have a long history
as model systems for understanding integrative function in the
nervous system, and thus could provide useful models in which
to attempt to relate system outputs and fractal analyses of net-
work and cellular processes. The output (either fictive or actual)
is simple to measure, and there is a wealth of cellular data that
even though it has not yet offered an explanation of even sim-
pler system outputs, does at least show the potential to address
system outputs in cellular terms (Buchanan, 2001; Brownstone
and Bui, 2010; Jankowska and Edgley, 2010; Roberts et al., 2010).
These systems also emphasize the necessity of considering lower-
level mechanisms in higher-level analyses rather than treating
them as black-boxes full of hidden variables. Consider the simpli-
fied system in Figure 1, which reflects current views of the basic
architecture of a spinal cord CPG network.

The two identical networks (half-centers) can control antago-
nistic muscle groups (e.g., flexor-extensor, left-right) through the
sequential activation of MNs. The E neurons provide the excita-
tory drive to other neurons within each half-center, and receive
inhibitory input from the I neurons. The crossing inhibitory and
excitatory neurons (CI and CE, respectively) are the focus of this
example as they have relatively direct assumed functional effects,
alternation and synchronization of activity, respectively. Spinal
cord networks have both types of neuron: the inhibitory class
has dominated in concepts of spinal cord locomotor network
schemes, but the relative roles of the two types of cell remain
unclear (Kjaerulff and Kiehn, 1997; Berg et al., 2007). The basic

FIGURE 1 | A simplified scheme of a basic organization of spinal cord

locomotor networks. The two boxes represent antagonistic networks
(“half-centers” that control, for example, activity on the left and right sides
of the body). The circles represent neuronal populations, and the lines
synaptic connections. The small open circles indicate excitatory
(glutamatergic) synaptic connections, the filled circles inhibitory
(glycinergic) connections. E, excitatory interneuron; MN, motor neuron; I,
inhibitory interneuron; CI, crossing inhibitory interneuron; CE, crossing
excitatory interneuron.

idea is that given some tonic excitation, one side (e.g., the left
side) becomes activated, the E neurons drive activity in MN
on that side, and typically in conceptual schemes of this sort
the CI neurons. This allows left side activity while ensuring the
inhibition of right side activity. There will then be some burst
termination factor that will end activity in the E cells (for this
illustration these won’t be detailed, but both cellular and synap-
tic mechanisms have been identified that could contribute): this
will terminate activity of neurons in the active half-center and
thus remove the CI drive. The previously silent right hand side
can then become active through the tonic excitation and iden-
tified cellular rebound mechanisms that allow an escape from
inhibition (Roberts and Tunstall, 1990). Given some tonic back-
ground excitation this system can generate repetitive cycles of
antiphasic activity. However, the same output would be gen-
erated with crossed excitation from the CE to the inhibitory
neurons within each half-center (I) that in turn feedforward to
inhibit the E cells. Not only could both of these schemes gen-
erate the same output but both schemes would also exhibit the
same effect to pharmacological blockade of inhibition, the rou-
tine approach used to show mutual inhibition between two sides
and which is largely taken as support for crossed inhibition.
Conversely, the inhibition between half-centers may not lead to
alternating activity, but can lead to synchronous activity depend-
ing on the functional properties of the inhibitory connection
(Elson et al., 2002). These examples illustrate the problem of
inferring function from a consideration of higher-level analyses
of outputs alone, as it cannot separate the markedly different
organizations of crossed inhibition or excitation, and also the
difficulties of inferring functional roles from a description of net-
work motifs, of which reciprocal inhibition is arguably one of
the prime examples. In terms of designing an artificial system
either approach would work, but for intervening in the actual
system the appropriate components would need to be consid-
ered (or their relative effects). If you tried to artificially mimic
the effect of crossing neurons pharmacologically, say in a patient
in which they had been lost or damaged, then you would need
different approaches to substitute for the appropriate transmit-
ter system (inhibitory or excitatory) and in a way that mimics
the properties needed to evoke the functional effect desired. And
if you wanted to modify the effects of the existing coupling
between the two sides then in the crossed excitation case it may
be better to follow an approach that targets excitation rather than
inhibition.

Despite its advantages for experimental analyses, there have
been few analyses of critical effects in spinal cord networks.
Examples of this approach are Jung and Wang (2003) who showed
long-term correlations for the burst interval during fictive loco-
motion in the lamprey, effects that were lost when inputs from
the brainstem were removed, and Chang et al. (2004) who showed
fractal correlations in bladder control that was lost in spinal cord
injury; see also Rodríguez et al. (2011). While these analyses have
only characterized the system output, they illustrate that useful
insight for experimental analyses can be generated from statis-
tical approaches. The loss of long-range correlations when fictive
locomotor activity was examined after the spinal cord was isolated
from the brain obviously suggests a role for either the feedforward
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descending pathway to the spinal cord alone, or the feedback
interaction from the spinal cord to the brain, and highlights the
need to avoid the tacit or expressed claims in several systems
that fictive activity is a direct correlate of normal behavior (cf.
Ayers et al., 1983; Li et al., 2009; see Parker, 2010). This matches
the observation that fractal patterns in human gait are abolished
when walking to a metronome beat, an input that will constrain
the descending input to the spinal cord (Hausdorff et al., 1997),
and suggests a conserved functional arrangement at the level of
the spinal cord and its descending systems.

Importantly, these effects raise questions of components that
are not “hidden” variables, but that are open to being addressed
experimentally. Criticality has been examined at the behavioral,
network, cellular, and synaptic levels in different systems (see
Werner, 2010 and references therein) but not at all levels in a sin-
gle system, thus making it difficult to make direct links between
the different observations. Effects at the behavioral level (e.g.,
swimming, walking) can be compared with fictive locomotion
in the isolated brainstem-spinal cord (to remove sensory inputs)
and in the isolated spinal cord (to remove descending inputs; see
Jung and Wang, 2003), allowing a separation of spinal locomo-
tor network and sensory/descending influences on the long-range
correlations in locomotor behavior, and analyses of what aspects
of the spinal cord-sensory-brain feedforward or feedback loops
are important for generating fractal effects on locomotion. These
feedback loops could then suggest motifs underlying the net-
work output and any critical phenomena. The analysis can then
move to successively lower levels to examine the functional effects
occurring in these motifs and also evidence for further exam-
ples of critical phenomena [e.g., fluctuations in the amplitude
of timing of summed activity in locomotor network neurons,
in the spiking in identified classes of cells (network neuron,
sensory, and descending neurons; Buchanan, 2001), and of fluc-
tuations in the amplitude and interval of synaptic inputs, which
can be taken to the next level by comparing effects from identi-
fied monosynaptic connections (sensory, network, or descending;
Parker, 2007)].

Some way will be needed of linking between effects as with-
out this we will just be cataloguing and correlating effects at
different levels. The correlative approach, where single compo-
nent effects are examined at one level and manipulations of this
effect are correlated with changes at the network or behavioral
output, has not been sufficient to claim understanding of basic
network function (Dudai, 2004; Parker, 2006, 2010). These corre-
lations rely on or introduce several logical errors (Parker, 2006),
and they will not be sufficient to identify the mechanisms under-
lying the development of critical effects. A focus on network
motifs may be the best initial approach, as various levels can
be peeled back to reveal the necessary components underlying
criticality, and when these have been identified analyses can pro-
ceed to both higher and lower levels to identify the functional
properties and translations that are needed for the generation
or emergence of critical effects (if they are present). This will
require changes in routinely used experimental designs in order
to examine evidence for long-range correlations indicative of
criticality (for example, the sufficiency of biological data sets
to support power-law relationships (Stumpf and Porter, 2012;

Varotsos et al. (2011), assumptions of linearity, stationarity, and
equilibrium-like conditions and probabilistic averaging methods
over certain scales (e.g., mean, variance, power spectra analyses)
will not be suitable for non-stationary and non-equilibrium sys-
tems), while from the theoretical side acceptance that lower-level
properties should be considered in dynamical systems approaches
rather than dismissed as hidden, simple, enslaved, or abstracted
components).

CONCLUSIONS
While it remains an open question whether the nervous system
is critical (e.g., Bedard et al., 2006; Werner, 2010), neuronal net-
works do contain features of critical systems, and as outlined
above, it seems appropriate that they should function at the crit-
ical phase and be organized according to local rules that mean it
is neither locked into a rigid functional state nor susceptible to
random activity (Turing, 1950). The highlighting of variability in
physiological systems; that correlations over different time scales
may reflect the degree of complexity, control, and adaptability of
a system; the move away from the caricature of homeostasis as
equal to negative feedback driven clamping of a set point; the
implications of fractal effects to the mean and variance in data
sets; and the loss of complexity not regularity as a marker in sev-
eral disease conditions are all important features derived from
dynamical systems approaches that should inform experimental
analyses of neuronal networks. These analyses may in turn help to
identify the mechanisms that constitute a SOC system (Flyvbjerg,
1995), and thus to address whether SOC is a fundamental net-
work property, an attempt to reduce neurophysiological processes
to a level that can be formalized and described mathematically, an
epiphenomena of statistical analyses applied to systems of multi-
ple interacting components, or a reflection of the fractal nature
of (and response to) natural signals (Voss and Clarke, 1975; Teich
et al., 1990, 1997).

Many experimental and analytical approaches can be followed
in network analyses. Given our level of understanding it is hard
to say that any approach is not potentially useful, but there is a
sense of competition between analyses. Relations between levels
in a dynamical system entail changes of scale, display new proper-
ties, and obey new laws (Anderson, 1972; Werner, 2007): changes
in scale thus define new ontologies. This brings in the philosoph-
ical problem of emergence (Kim, 1999), and has led to claims that
knowledge of higher functions can be decoupled from studies
of cellular components, that lower-level properties are enslaved
and can be abstracted away to provide quantitative descriptions
of system-level effects (Haken, 2002, 2006; Werner, 2007). If this
were the case then one would expect higher-level processes to be
relatively unaffected by changes in lower level properties. This is
obviously not the case; drugs, anesthetics, alcohol, all act on lower
level properties, and all alter or disrupt higher level processes
precisely because they affect specific cellular and synaptic events.
A focus on the macroscopic level finds macroscopic effects. To
say that this makes that lower-level properties irrelevant begs the
question. Dynamical systems approaches do, however, offer tools
for describing complex systems, and these phenomenological
descriptions can provide predictive diagnostic markers (e.g., heart
disease or neurological disorders; see above). While the limits
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of even detailed cellular analyses are often highlighted by these
approaches and cannot be ignored, quantitative descriptions of
system-level effects fail to explain how system-level behavior is
generated, a requirement for any rational intervention. If, as
claimed, circular interactions between lower-level mechanisms
and higher-level functions drive brain activity (Haken, 2002;
Freeman, 2009), then insight is needed at both levels for genuine
understanding. Thus, explaining how higher function “emerges
out of electrical impulses and neurochemistry” (Chialvo et al.,
2008) is impossible if electrical impulses and neurochemistry are
excluded. The difficulty lies in knowing how to incorporate the
data from different analyses: as outlined above it is not enough
to correlate experimental manipulations of single effects to net-
work or higher function (Dudai, 2004; Parker, 2006, 2010). There
need not be competition between analyses as microlevel informa-
tion will not necessarily replace or negate abstract descriptions.
An obvious example is the Hodgkin–Huxley equation for the
squid action potential (Hodgkin and Huxley, 1952), arguably
the prime example from neuroscience of how phenomenological
analyses can explain function despite the lack of direct analysis of
the underlying mechanisms. Although simplifying assumptions
were made (that the axon was a perfect cylinder), the equa-
tion predicted (and still does) effects in a range of systems and
provided insight that led to lower-level details being filled in
when technology allowed (Hodgkin and Huxley originally sug-
gested “activation particles” as the mechanism of how voltage
changes alter membrane conductance). This additional lower-
level details on channel gating and structure (Hille, 2001; Jiang
et al., 2003) did not alter the power of their original equations,
but revealed details of the underlying mechanisms that added to
our understanding of cellular excitability and its modification.

Rather than competition, a complementary approach
where the strengths and weaknesses of lower and higher-level
approaches are considered and attempts are made to close the
gap between them and provide a more complete description.
To stop at the level of statistical analyses leads to the assump-
tion that description equals explanation (Wigner, 1964). It
may be impossible to link effects across levels in emergent
systems, but we need to know much more about properties
and translations at each level before we follow functionalist-
like suggestions that network outputs cannot be explained
in terms of lower-level properties. If they either cannot (or
need not) then we need to understand why this is, and the
implications this has to our ability to intervene rationally in the
system.

While discussions of the merits of different analytical
approaches are becoming more sophisticated (e.g., Ivanov et al.,
2009; Gao et al., 2006; Rodríguez et al., 2011) and the issue of
the specific applications to biological systems has been raised
(“extended criticality”; Bailly and Longo, 2008), it is impor-
tant to work to develop a dialogue between the analytical and
experimental sides so that the explanatory gap that makes it
difficult to translate between the experimental and theoreti-
cal sides can be narrowed. Even if higher-level function can
be divorced from lower-level mechanisms, it cannot harm the
analyses to place effects in neurobiological contexts. Given the dif-
ficulties of explaining how groups of neurons interact in networks

to generate specific outputs and the limitations of even the lat-
est experimental approaches to help address this issue (Parker,
2006, 2010), there is a lot to recommend abstract approaches.
Even though biological details are lost in these analyses through
various assumptions (for example, binary effects, nearest neigh-
bor or all-to-all interactions, and homogeneity), suggesting how
they are related to neurobiological mechanisms opens up the
possibility of examining effects at the lower-level. Yeh et al.
(2010) offer a good example: in discussing the problems of
employing maximal entropy models by highlighting the differ-
ential success of these models in the retina and cortex, they
describe a third-order coupling constant as the situation where
“two input neurons would drive a third neuron over thresh-
old only when both inputs were simultaneously active.” The
former term is opaque in terms of neurobiology, the latter state-
ment clear and prescriptive. At a minimum, some clarity in
what various dynamic patterns represent in terms of biologi-
cal substrates would be useful. For example, chaotic effects can
be claimed to represent few variables that act interdependently
through global rather than local non-linear positive and nega-
tive feedback loops; critical effects reflect many variables acting
interdependently through local rather than global feedback loops;
random effects reflect many independent variables that lack feed-
back mechanisms; and periodic effects reflect a few variables
with linear interactions. Just this level of detail can be enough to
place effects in a neurobiological context and inspire experimental
investigations.

The benefit can go both ways as neurobiological princi-
ples may help to improve model performance (see Yeh et al.,
2010). Given the massive increase in computational demands
placed on models when even modest increases in network size
or parameter additions are made (see Nowotny et al., 2007;
Yeh et al., 2010), insight that constrains the theoretical mod-
els would be beneficial. An example of this is given by Levina
et al. (2007): models can replicate neuronal avalanche behav-
ior in cortical slices that have been used to support criticality
(Beggs and Plenz, 2003), but in the abstract models these only
occurred when parameter values were fixed precisely. Levina et al.
show that incorporating simple biologically inspired dynami-
cal properties to the modeled connections they were able to
generate self-organized critical behavior that resembled exper-
imental effects and thus overcame the limitations of previous
models. Without knowledge of these simple principles of synap-
tic dynamics this would not have been possible, and there may
be similar biological details that advance other higher level
analyses.

It may seem remarkable that nervous systems and artifi-
cial systems show the same network organization when exam-
ined from a dynamical systems approach (see Bullmore and
Sporns, 2009), and that the brain, which is given special
status, can be described in relation to something so mun-
dane. However, ignoring lower-level properties begs the ques-
tion that no special property is present at lower levels. It
should be realized that even single neurons do not lack
detail, but are themselves complex dynamic structure with
markedly heterogeneous properties that differ under different
contexts of network activity (patterns, frequency, duration)
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and in terms of the history of the system. Despite claims to the
contrary, the neuron cannot be considered as simple and repeti-
tive (cf. Zhigulin, 2004; West, 2010). There may not be a ghost in
the machine, but the devil may be in the detail.
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