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Endothelin-1 (ET-1) is a peptide signaling molecule serving diverse functions in many
different tissues such as the vasculature and the kidney. The primary mechanism
thought to control ET-1 bioavailability is the rate of transcription from the ET-1 gene
(EDN1), but recent research suggests that EDN1 expression is attenuated by microRNA
(miRNA)—mediated regulation. The action of specific miRNAs on EDN1 mRNA appears
to vary greatly in a tissue specific manner. This review provides a summary of our current
understanding of miRNA-EDN1 interaction.
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INTRODUCTION
Endothelin-1 (ET-1) is an intercellular signaling molecule
expressed in many different organ systems and tissues. Although
ET-1 is best known as a potent vasoconstrictor, ET-1 plays impor-
tant roles in the vasculature, kidney, humoral systems, nervous
system, and in the heart (for review see Kohan et al., 2011).
For example, in the renal collecting duct ET-1 is an effector of
open channel probability for the epithelial sodium channel (Bugaj
et al., 2008). Blocking ET-1 action by collecting duct specific
knockout of either ET-1 or the endothelin B receptor drives ele-
vated blood pressure with increased sodium load (Bugaj et al.,
2008, 2012). The ET-1 gene (EDN1)1 is equipped with an array of
transcriptional regulatory elements that are activated in response
to differing stimuli in a wide variety of cell types (Stow et al., 2011;
Welch et al., 2013). Again in the renal collecting duct, the Edn1
gene is regulated by aldosterone through the mineralocorticoid
and glucocorticoid receptors (Stow et al., 2009, 2012), and inde-
pendently by calcium via the nuclear factor of activated T-cells
(NFAT) (Strait et al., 2010). Regulation of EDN1 occurs primar-
ily at the level of transcription, however, it is becoming clear
that EDN1 mRNA is regulated at the post-transcriptional level.
This regulation is reflected in the relative instability of the EDN1
mRNA, with a measured half life of approximately 15 min (Inoue
et al., 1989).

The mechanisms providing this apparent lability appear to
be focused on the 3′ untranslated region (UTR) of the EDN1

1By convention the human endothelin-1 gene is written EDN1, while the rat
and murine endothelin-1 gene are written Edn1. In this review, the human
3′UTR will be used to provide sequence coordinates.

mRNA. In humans and other mammals, the 3′UTR represents
over 50% of the total mRNA length and contains long tracts
of highly conserved sequence. Alignment of 19 species of class
Mammalia yielded greater than 80% sequence identity between
EDN1 3′UTRs, and this conservation extends more broadly
among vertebrate species. The level of conservation by itself sug-
gests that there are elements in the 3′UTR that are critical for
tight regulation of EDN1 mRNA availability. The primary focus
of this review is to consider microRNA (miRNA) action related to
expression and function of ET-1.

Although the emphasis is miRNA-mediated regulation, there
are certainly other post-transcriptional mechanisms acting on
EDN1 mRNA. Mammalian EDN1 3′UTRs typically contain 3–7
AU-rich elements (AREs) depending on the species. Early work by
Mawji et al. (2004) identified one human ARE (position 978–987)
that facilitated mRNA turnover via the AUF1-proteosome path-
way. However, the AREs were not sufficient to fully destabilize the
EDN1 message. The importance of apparent ARE action was sup-
ported by additional studies implicating the same region in EDN1
lability (952–991) (Reimunde et al., 2005). While these studies
demonstrated that AREs play a role in EDN1 mRNA turnover,
they also suggested that the instability of the EDN1 mRNA was
not entirely dependent on the AREs.

miRNA REGULATION OF EDN1 EXPRESSION
The emergence of miRNAs as a major gene regulatory mechanism
provided a likely candidate for EDN1 mRNA control. miRNAs are
a family of small (18–24 nt), single stranded, endogenously pro-
duced, non-coding RNAs. The action of a miRNA is dependent
on its incorporation into the RNA induced silencing complex
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(RISC). A miRNA-RISC indentifies target mRNAs by imperfect
base pairing between the miRNA and the mRNA, most often in
the 3′UTR. As a result, miRNAs specifically regulate gene expres-
sion by blocking protein translation and/or inducing degradation
of targeted miRNAs (Figure 1). Clearly, miRNAs play important
roles in the regulation of metabolism in the healthy cell, and dys-
regulation of miRNA levels is associated with the pathogenesis
of many diseases (Feng and Feng, 2011; Abdellatif, 2012; Fish,
2012; Ho and Kreidburg, 2012). Examination of the human EDN1
3′UTR revealed many predicted miRNA binding sites within
conserved sequence segments (Figure 2), suggesting that multi-
ple miRNAs are likely to be targeting the EDN1 mRNA. Given
that ET-1 is expressed in many different tissues, it seems likely
that miRNAs may be involved in regulating basal EDN1 mRNA
expression in a tissue-specific manner. For example in a murine
kidney cell line (mIMCD-3), microarray analysis indicated that
12 miRNAs predicted to target Edn1 mRNA are expressed in high
abundance (Jacobs et al., manuscript in preparation).

An excellent example of tissue specific miRNA action on EDN1
expression can be seen in endothelial biology. Yeligar et al. (2009)
studied liver sinusoidal endothelial cells (rLSEC) derived from
ethanol-fed rats. These cells displayed large increases of Edn1
mRNA in comparison to non-ethanol controls. Two miRNAs,
miR-155 and miR-199, showed decreased expression in response
to ethanol treatment. A binding site for miR-199 (position 166)
was found in the human and rat 3′UTR of the EDN1 mRNA

(Figure 2). Overexpression of either miRNA completely inhibited
ethanol-induced EDN1 mRNA expression. Similar results were
obtained with human microvascular endothelial cells (HMEC-1).
Inhibiting miR-199 levels led to an increase in ET-1 protein levels
in the presence of ethanol. The data provided convincing evi-
dence that miR-199 regulates ethanol-induced ET-1 levels in both
rLSEC and HMEC-1.

Another study examined two miRNAs, miR-125a and miR-
125b, that are endogenously expressed in abundance in vascular
epithelial cells (Li et al., 2010). Both miRNAs are predicted
to target the EDN1 3′UTR at an element located at position
373 (Figure 2). 293A cells containing Luciferase-EDN1 3′UTR
reporter vectors were co-transfected with either miR-125a or
miR-125b overexpression plasmids. As expected for miRNAs tar-
geting EDN1 expression, both miRNA over-expression plasmids
suppressed luciferase expression in a dose-dependent manner.
Interestingly, in vascular epithelium the action of these miRNAs
are regulated by oxidized low-density lipoprotein (oxLDL), which
was shown to increase prepro-ET-1 production. miR-125a expres-
sion was enhanced by oxLDL treatment and miR-125b expression
simultaneously decreased. The authors suggested that this could
be an example of coordinate miRNA-mediated EDN1 mRNA
regulation.

Recently, Li et al. (2012a) proposed a novel role for miRNA
regulation of EDN1. Levels of miR-1 (Figure 2) increase dur-
ing cardiac and skeletal muscle development, while ET-1 protein
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FIGURE 1 | Pathway of miRNA-mediated action on EDN1 mRNA.
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FIGURE 2 | Predicted miRNA binding sites in the human EDN1 3′UTR.

Predicted miRNA target sites within the human EDN1 3′UTR (NM_001955)
were determined using microRNA.org (Betel et al., 2008). Depicted are target

sites of conserved miRNAs with high probability mirSVR scores (blue
arrows), and target sites for miRNAs empirically shown to interact with EDN1
mRNA (red arrows).

levels significantly decrease during differentiation of DMSO-
induced P19 teratoma cells to cardiomyocytes (Monge et al.,
1995). Several murine and human tissues and cell lines were
examined for levels of both miR-1 and EDN1 mRNA. In tis-
sues where miR-1 levels were high, such as cardiac and skeletal
muscle, EDN1 mRNA levels were low. In contrast, tissues that
had high levels of EDN1 mRNA expression, including the lung
and kidney, had low levels of miR-1 expression. The concept of
a negative correlation between miR-1 and EDN1 mRNA gained
additional support from a series of luciferase reporter assays
showing overexpression of miR-1 action on the EDN1 3′UTR
in 293 T cells. miR-1 may also be regulating EDN1 mRNA lev-
els in some hepatocarcinomas. miR-1 is known to act as a tumor
suppressor in several types of cancer (Rao et al., 2010; Hudson
et al., 2011). Additionally, silencing the miR-1 gene was shown to
induce proliferation of hepatoma cells (Datta et al., 2008). Li et al.
(2012b) demonstrated that miR-1 is down regulated in two dif-
ferent hepatocarcinoma cell lines, Hep2G and Hep3B, relative to
an immortalized human liver cell line (LO2). Interestingly, miR-1
overexpression inhibited proliferation in HepG2 and Hep3B cells,
and addition of exogenous ET-1after transfection increased cell
viability. In many malignant cells upregulation of ET-1 has been
shown to promote cell proliferation (Bagnato et al., 2011), so it
seems reasonable that the decrease in miR-1 levels in hepatocarci-
noma cells is a contributing factor in increased cell proliferation.

The studies described above successfully used a candidate
miRNA approach by examining miRNA binding sites predicted

to bind a target mRNA based on in silica analysis. Unfortunately,
prediction of a binding site and presence of a candidate miRNA
is not sufficient to assume miRNA action on the target mRNA.
For example, the let-7 family of miRNAs are highly abundant in a
murine inner medullary collecting duct cell line and have a highly
conserved putative binding site in the Edn1 3′UTR. Knockdown
of let-7c and let-7f with anti-miRs had no obvious effect on Edn1
mRNA levels (unpublished data). An anti-miR is a small synthetic
chemically modified single stranded RNA that base pairs to the
mature miRNA to block its action. This type of negative results
emphasize the need for empirical testing rather than reliance on
computer analysis in assessing miRNA action.

In diabetes, glucose has been shown to increase the levels of
several vasoactive factors, including ET-1(Feng and Chakrabarti,
2012). It has been suggested that the resulting elevation of these
factors contributes to the tissue damage seen in organs affected
by diabetic complications. An elegant study focused on the role
of miR-320 in diabetes (Feng and Chakrabarti, 2012). To deter-
mine if miR-320 was regulated by glucose, streptozotocin-diabetic
(STZ) rats were fed either a control or high glucose diet. One
month after the onset of diabetes there was a significant decrease
in miR-320 expression in STZ diabetic rat cortical tissue. Next,
human umbilical vein endothelial cells (HUVEC) were treated
with high levels of glucose and as expected EDN1 mRNA lev-
els increased. HUVECs were then transfected with a miR-320
mimic to specifically block miR-320 binding to target mRNAs. A
mimic is a small double stranded chemically modified synthetic
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RNA designed to bind to a target mRNA resulting in RISC-based
decrease in target mRNA expression. The level of EDN1 mRNA
and ET-1 was significantly decreased when HUVECs treated with
glucose were also transfected with a miR-320 mimic. This suggests
that miR-320 plays a role in post-transcriptional regulation of
ET-1 and other vasoactive factors. Thus, in diabetes, the downreg-
ulation of miR-320 may lead to the upregulation of those factors
contributing to the pathogenic state.

ET-1 IMPACT ON miRNA LEVELS
Up to this point, our focus has been on miRNA action on EDN1
expression. However, it is also becoming clear that ET-1 itself may
be causing changes that influence the miRNA content in cells.
For example, ET-1 has been shown to activate monocytes, lead-
ing to an increase the expression of the chemokine macrophage
inflammatory protein-1β (MIP-1β) (Gonsalves and Kalra, 2010).
Patients with sickle cell disease exhibit increased levels of cir-
culating proinflammatory cytochemokines. Work by Gonsalves
and Kalra (2010) examined the effect of ET-1 on miRNA expres-
sion in a human acute monocytic leukemia cell line (THP-1).
In this study, miRNAs with putative binding sites within the
MIP-1β 3′UTR that were known to be upregulated in cancer or
under hypoxic conditions were selected for investigation. In THP-
1 cells treated with ET-1, 60–80% reductions were seen in several
miRNAs, including miR-20, miR-194, and miR-195a, relative to
untreated cells. miR-195a was chosen for further examination
because of a highly conserved binding site in the MIP-1β 3′UTR.
Treatment of THP-1 cells with anti-miR-195a prior to ET-1
treatment resulted in a dramatic increase in MIP-1β levels, this
increase was reduced to basal levels when a miR-195a overexpres-
sion plasmid was transfected prior to ET-1 treatment. In primary
human blood monocytes only a modest increase was seen when
anti-miR-195a was transfected prior to ET-1 treatment, and this
increase was attenuated by a miR-195a overexpression plasmid.
This change in mRNA corresponded with a change in ET-1
induced-MIP-1β protein levels inTHP-1 cells. These findings sug-
gested that miR-195a is a negative regulator of ET-1-induced
MIP-1β mRNA and protein expression.

Another example of how ET-1 stimulus can affect miRNA lev-
els can be seen in a cardiac-specific miR-23a transgenic mouse
(Wang et al., 2011). These mice developed normally to adult-
hood and did not exhibit any substantial defects in cardiac
function or morphology. However, an exaggerated hypertrophic
response developed when animals were treated with phenyle-
phrine. They also displayed an increase in heart/body weight
ratio, increased cardiomyocytes size, and elevated levels of hyper-
trophic specific markers. The levels of miR-23a were shown to
significantly increase in response to ET-1 treatment, and knock-
down of miR-23a attenuated the hypertrophic responses induced
by ET-1. Additionally, miR-23a targets the transcription fac-
tor Foxo3a. Foxo3a inhibits cardiac hypertrophy, and ET-1 was
shown to induce a decrease in Foxo3a levels. Looking at a
downstream target of Foxo3a, magnesium superoxide dismutase
(MnSOD), ET-1-induced reduction of MnSOD was attenuated
by transfection of anti-miR-23a. These results led to the sugges-
tion that ET-1 initiates hypertrophy through a miR-23a-Foxo3a
pathway.

A unique relationship between ET-1 signaling and pri-
mary miRNA (pri-miRNA) regulation has been observed by
von Brandenstein et al. (2011). Under control conditions, high
nuclear levels of protein kinase Cα (PKCα) bind to pri-miR-15a
and prevent the release of miR-15a in the Caki-1 renal cell car-
cinoma cell line. However, ET-1 stimulation caused a drop in
nuclear PKCα levels and preliminary-miR-15a was exported from
the nucleus and processed into the mature form of miR-15a.
Blocking either endothelin receptor decreased nuclear levels of
PKCα and significantly decreased levels of mature miR-15a. miR-
15a regulation by PKCα is seen in several other ET-1 inducible
cell lines derived from malignant tumors, namely a melanoma
cell line (SKmel 28) and a breast carcinoma cell line (MCF-7).
Therefore, depression of miR-15a may represent an important
mechanism of action for ET-1 signaling in tumor biology.

FUTURE DIRECTIONS
The studies described here have laid the ground work demon-
strating that miRNAs act on EDN1 mRNA in many different
cells, such as principal cells of the renal collecting duct. However,
observations of miRNA action on ET-1 are isolated, reflecting the
function of individual miRNAs in a few selected cell types and
tissues. An area open to investigation is how changes in the cellu-
lar environment affect the miRNA content. What is the impact of
hormonal or mitogenic stimuli on the miRNA content in a cell?
In turn, how do the changes in the miRNA landscape affect EDN1
mRNA levels? We already know that stimulation of cells with ET-1
can cause changes in the expression levels of several different
miRNAs. Since ET-1 can function by an autocrine mechanism,
ET-1 has the potential to indirectly affect its own expression via
miRNA. Finally, caution needs to be taken in attributing miRNA
affects to a direct action, because one miRNA can target many
different mRNAs. This raises the specter of off target effects in
the use of miRNA overexpression and inhibition. It seems rea-
sonable to expect that the next generation of papers will adopt
more comprehensive technologies to investigate miRNA action
on expression of ET-1 and miRNA-mediated effects of ET-1.
Hopefully defining the relationship between ET-1 and miRNAs
will contribute to an understanding of the pathophysiology of
ET-1 dysregulation.

It has been well established that miRNAs contribute to the
development of a healthy kidney. Podocyte specific knockout of
Dicer results in proteinuria, and mutants progressed rapidly to
end stage kidney disease (Harvey et al., 2008). Deletion of Dicer
from the ureteric bud and its descendents resulted in severe uni-
lateral or bilateral hydronephrosis by 3 months (Pastorelli et al.,
2009). While it is clear that miRNAs are required for normal func-
tion of the kidney, it is equally apparent that alteration of miRNAs
occurs in many renal diseases. In polycystic kidney disease the
downregulation of miR-15a is thought to contribute to in vitro
cystogenesis by targeting the cell cycle regulator Cdc25A (Lee
et al., 2008). Interestingly, profiling renal biopsies from patients
with either immunoglobulin A nephropathy (Dai et al., 2008a)
or lupus nephritis (Dai et al., 2008b) using miRNA microarrays
showed that in both cases over 60 miRNAs were differentially
expressed, and in each case roughly half of those miRNAs were
downregulated. Work by Juan et al. (2010) identified a panel of
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35 miRNAs that can distinguish clear-cell type renal cell carci-
noma samples from patient matched normal kidney tissue with
high confidence. These studies highlight the need to define the
miRNA landscape, with the potential for developing molecular
markers for early detection and diagnosis.

Understanding the interplay between miRNAs and EDN1
mRNA has the potential for new clinical applications. Currently,
there are multiple clinical trials examining miRNA profiles in
many disease states with the aim of identifying miRNAs that could
be used for prognostic or diagnostic purposes (clinicaltrials.gov).
Other studies are examining the change in miRNA content in
response to therapy. Furthermore, in a recent study by Lanford
et al. (2010), treatment of hepatitis C virus (HCV)-infected pri-
mates with anti-miR-122 resulted in a long-lasting suppression of
hepatitis C viremia, a downregulation of interferon-related genes,

and improvement of HCV-induced liver pathology. Importantly,
there was no evidence of viral resistance or any side effects in the
treated animals. This represents a critical step toward develop-
ment of miRNA-targeted therapies. We are at the dawn of an age
of using our understanding of miRNA functions and interactions
as a guide for treatment. Elucidating the complex relationship
between miRNAs and ET-1 will contribute to the development of
targeted therapies where ET-1 dysregulation leads to pathological
phenotypes.
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