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Crop improvement efforts have benefited greatly from advances in available data,
computing technology, and methods for targeting genotypes to environments. These
advances support the analysis of genotype by environment interactions (GEI) to
understand how well a genotype adapts to environmental conditions. This paper reviews
the use of spatial analysis to support crop improvement research aimed at matching
genotypes to their most appropriate environmental niches. Better data sets are now
available on soils, weather and climate, elevation, vegetation, crop distribution, and local
conditions where genotypes are tested in experimental trial sites. The improved data are
now combined with spatial analysis methods to compare environmental conditions across
sites, create agro-ecological region maps, and assess environment change. Climate,
elevation, and vegetation data sets are now widely available, supporting analyses that
were much more difficult even 5 or 10 years ago. While detailed soil data for many
parts of the world remains difficult to acquire for crop improvement studies, new
advances in digital soil mapping are likely to improve our capacity. Site analysis and
matching and regional targeting methods have advanced in parallel to data and technology
improvements. All these developments have increased our capacity to link genotype to
phenotype and point to a vast potential to improve crop adaptation efforts.
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INTRODUCTION
From the 1960s to the 1980s, the Centers of the Consultative
Group on International Agricultural Research (CGIAR) pur-
sued research on genotype by environment interactions (GEI)
research with relatively unfettered budgets. Their mandate was
to produce new crop varieties, train people to use them, and
get the seeds to the world’s farmers. To this end, the Centers
produced great networks of testing sites all over the world (see,
e.g., Peterson and Pfeiffer, 1989; CIAT, 2001; Magorokosho et al.,
2007). Collaborators came from national government breeding
programmes and universities, wherever there was an interest.
Many of the results are archived, and can be very useful in stud-
ies of GEI and in suggesting where a new genotype might fit. The
collapse of the Berlin Wall saw a new era in funding for interna-
tional agricultural research and development (Pardey et al., 2006),
with developed nations reducing their contributions. The world’s
food supply problems were no longer of geopolitical importance.
Accordingly, the international cultivar testing programmes have
declined, hindering our capacity to supply farmers with improved
varieties adapted to their environments.

While crop improvement programmes are faced with reduced
funding for agricultural research, the use of models, maps and
computer tools can help boost efficiency in their development and
testing of cultivars for dissemination to farmers. Cultivar testing
and dissemination programmes need spatial analysis to help tar-
get genotypes to environments. By supporting GEI assessments,

maps and models can predict how well cultivars will respond to
particular environments. Ultimately, spatial analysis can help in
the dissemination of varieties to the farmers that need them.

How can spatial analysis be used to help breeders decide where
to test and disseminate varieties? Systematic sampling of sites can
help ensure coverage of a diverse range of environments where
farmers may take up the cultivar. A site testing design focusing on
one or several environments but leaving out many others could
miss areas where the cultivar might produce high yields. A breed-
ing programme with a fixed budget for testing may also want to
avoid duplication of sites in similar environments.

Several advances over the last few decades have improved the
capacity to apply spatial analysis to phenotyping and GEI analysis.
Vital to all these advances has been the development of computer
hardware and software that has allowed many types of analysis
that were impossible to carry out before. Advances in weather
and soil monitoring instruments have improved data collection,
and a key resource for spatial analysis in agriculture has been the
availability of climate data in digital formats. Global soil map-
ping efforts have been slow to develop—with little attention prior
to 1950. New soil mapping methods have improved on the stan-
dard Food and Agriculture Organization (FAO) global soil base
map at 1:5 million scale (FAO, 1996, 2008b). Agricultural cen-
suses and surveys have also added to the set of data resources
available. Related to these baseline datasets are derived data such
as climate maps, crop distribution surfaces, and socioeconomic
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information. These advances have led to agro-ecological zon-
ing maps (Bunting, 1987), weather generators (Hartkamp et al.,
2003), and sophisticated statistical analysis of GEI (e.g., Crossa
et al., 2004; Setimela et al., 2005). More recently, combinations
of crop simulation models and geographic information systems
(GIS) have improved our understanding of spatial and temporal
aspects of GEI (e.g., Loffler et al., 2005).

This paper reviews and discusses the development of spa-
tial analysis for crop improvement and how it can be used to
increase the efficiency of testing and deployment of genotypes.
First, advances in the development of spatial data for agricultural
applications are discussed, followed by how spatial analysis, and
GIS can be used to support geographic targeting of genotypes to
environments. The discussion includes the development of agro-
ecological maps and environmental change considerations in crop
improvement efforts. The paper concludes with a discussion of
trends in the use of spatial databases and GIS in crop improve-
ment programmes. Throughout the paper, references are made
to data, tools, and resources for applying spatial analysis to crop
improvement.

ADVANCES IN SPATIAL DATA
Several types of spatial analysis for crop improvement as con-
ducted today would have been difficult to carry out even 5 or 10
years ago. Perhaps the greatest advances have come in mapping
climate, although information on soils and other environmen-
tal parameters is now much more widely available than in the
past. Advances in data availability have substantially increased
the potential for spatial analysis to support the planning and
assessment of phenotyping and variety trials. Assessments should
ensure that a sufficient range of environments is tested, so as
to adequately study GEI. Improvements in data have more than

kept pace with advances in the methodology of spatial analysis
for phenotyping. This section surveys data development for spa-
tial analysis, and serves as a guide to spatial data acquisition for
the agricultural scientist using GIS for phenotyping. Table 1 lists
some key spatial data sets that are publicly available and can be
used in crop improvement efforts.

SOILS
Data on soil properties are a key category of information for
agro-ecological assessments. However, advances in the develop-
ment of soil datasets are hindered by the difficulty of mapping the
entire world. The main problem is that soils can be highly vari-
able even across short distances. Moreover, not all countries use
the same soil classification systems. The concept of the likelihood
or probability of finding a given soil property has been used to
reflect data uncertainty at a particular point when using maps like
the FAO 1:5 million soil map of the World (FAO, 1996, 2008b).
This map remains the most widely used soil map for continental
and global applications. Sanchez et al. (2003) derived soil con-
straint data in the context of the Fertility Capability Classification,
based on this FAO map. The International Soils Reference and
Information Center (ISRIC) also used the FAO soil map, adding
soil profile information to develop the World Inventory of Soil
Emission Potentials (WISE) database of derived soil parameters
(e.g., pH, drainage, organic carbon content) for the world at 5
arc minute resolution (Batjes et al., 2007; Batjes, 2009). However,
an initiative is underway to develop the Harmonized World Soil
Database (FAO et al., 2008). The project aims to merge different
soil maps and produce a new global map at a 1:1 million scale.
To date, the effort includes FAO’s regional Soil Terrain Database
studies (SOTER; FAO, 1995), the European Soil Database and
the Soil Map of China. The main gaps that need to be filled

Table 1 | Key spatial data sets that are publicly available.

Sourcea Application Resolution URL

FAO SOIL Soil analysis 1:5m http://www.fao.org/nr/land/soils/digital-soil-map-of-the-world/en/

ISRIC Soil analysis n/a http://www.isric.org/UK/About+Soils/Soil+data/

HWSD Soil analysis n/a http://www.iiasa.ac.at/Research/LUC/luc07/External-World-soil-database/HTML/

WISE Soil profile analysis n/a http://www.isric.org/UK/About+ISRIC/Projects/Track+Record/WISE.htm

CRU Climate 0.5◦ http://www.cgiar-csi.org/data/climate

IWMI World Water Atlas Climate; hydrology Various http://www.iwmi.cgiar.org/WAtlas/

NOAA GSODb Point data http://www.ncdc.noaa.gov/oa/gsod.html

Worldclim Climate 1 km http://www.worldclim.org

NASA POWER Climate 1◦ http://power.larc.nasa.gov/

TRMM Tropical rainfall 0.25◦ http://trmm.gsfc.nasa.gov/

SRTM Elevation 90 m http://srtm.csi.cgiar.org/

AgroMaps Crop distribution n/a http://www.fao.org/landandwater/agll/agromaps/interactive/page.jspx

Globcover Land cover 300 m http://ionia1.esrin.esa.int/

Biogeomancer Gazetteer n/a http://www.biogeomancer.org/

aISRIC, International Soils Reference and Information Center; HWSD, Harmonized World Soil Database; WISE, World Inventory of Soil Emission Potentials; CRU,

Climate Research Unit of the University of East Anglia; IWMI, International Water Management Institute; NOAA, National Oceanic and Atmospheric Administration;

NASA POWER, National Aeronautics and Space Administration Prediction of World Energy Resource; TRMM, Tropical Rainfall Measuring Mission; SRTM, Shuttle

Radar Topography Mission.
bGSOD, Global Surface Summary of the Day.
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include Central and West Africa, the Middle East and South Asia.
This data set should be updated in the coming years as new data
become available. Finally, CIAT (2009) has initiated the produc-
tion of a digital soil map of Africa. This new effort aims to create
high-resolution maps of better quality, based on innovations in
the remote sensing of soil properties and the management of
geographic information.

CLIMATE
Phenotyping programmes and GEI assessments can benefit from
broad-scale climate analysis to assess to what extent sites rep-
resent target environments. An important recent advance in
climatic analysis is the availability of ready-to-use climate data
available over the Internet or in software applications. Acquiring
climate data depended in the past on contacts between researchers
who developed climate datasets. The overall quantity of weather
station data has dropped compared to past decades (Ramirez-
Villegas and Challinor, 2012). More recently, software tools such
as CIAT’s FloraMap®, Homologue and MarkSim® provide cli-
mate data associated with specialized applications (Jones and
Thornton, 1993, 2000; Jones et al., 2002, 2007a). Other climate
tools include some of FAO’s standard data CD-ROMs and appli-
cations, such as their Local Climate Estimator (LocClim), and
datasets on CD-ROM from the International Water Management
Institute (IWMI) (FAO, 2005; IWMI, 2008). While some of these
tools lack the capability to extract global or regional climate sur-
faces, they were the first to provide broad-scale climate data for
agricultural science applications.

Two relatively new sources of data on the Internet have
broadened the capacity to incorporate climate information in
spatial analysis applications for agriculture. The University of
East Anglia’s Climate Research Unit data include key variables
needed for climate analysis, such as rainfall, temperature, relative
humidity, wind direction and speed, among others (New et al.,
2002; CGIAR-Consortium for Spatial Information (CGIAR-CSI),
2006). Another important data source is Worldclim (Hijmans
et al., 2005), which includes precipitation and temperature data
available at spatial resolutions of 1 km and coarser. Worldclim
has also derived some data sets from precipitation and tempera-
ture variables, including information on seasonality, temperature
ranges, and climate conditions in the wettest, driest, coldest,
and warmest months and quarters (Busby, 1991). Both of these
datasets draw on spatial interpolation methods to estimate cli-
mate parameters between weather stations.

Climate datasets derived from remote sensing hold some
promise for use in agro-ecological assessment. The Moderate
Resolution Imaging Spectroradiometer (MODIS) satellite plat-
form includes surface temperature data (NASA, 2008a). Rainfall
estimates (RFE) from satellite-based datasets are now widely
available. The Tropical Rainfall Measuring Mission (TRMM)
provides RFE for 3-h time periods for much of the world
(NASA, 2008b). The Climate Prediction Center MORPHing tech-
nique (CMORPH) dataset (Joyce et al., 2004) provides 3-hourly
RFE globally at a spatial resolution of 0.25◦. The RFE dataset
from the National Oceanic and Atmospheric Administration
(NOAA)/Climate Prediction Center (CPC) provides daily data
at a spatial resolution of 8 km (Herman et al., 1997; Xie et al.,

2002). These data have yet to be verified and validated to the
point that they are widely used for agro-ecological assessments,
although it should be noted that the RFE data form the basis of
several famine early-warning products 1 and FAO routinely uses
the CMORPH data in monitoring Desert Locusts2. Combining
ground weather data with remotely sensed information will be
a key area of research in the future.

ELEVATION
Elevation is another important data set for spatial analysis in agri-
culture and can be used to help establish the ecological niche of a
genotype. It can be used as an auxiliary variable in assessing cli-
mate or in analysing the role of topography in agriculture. Until
recently, global digital elevation models were derived from 1:1
million mapping efforts, such as the Digital Chart of the World
(ESRI, 1992). The now widely available Shuttle Radar Topography
Mission data set has 90 m spatial resolution, the best available
from coverage of the whole land surface (Jarvis et al., 2004;
CGIAR-CSI, 2008).

VEGETATION AND CROP GEOGRAPHY
Vegetation and crop geography assessments can be made from
remote sensing data, censuses, and surveys, and from combi-
nations of these. Remote sensing platforms provide vegetation
data as an additional dataset for agro-ecological characteriza-
tion, even though it has rarely been used in classification to
date. The Advanced Very High Resolution Radiometer (AVHRR)
and MODIS satellite platforms provide 1-km resolution data sets
going back to 1980. Satellite data at finer resolutions can also
produce vegetation data. The most common variables are the nor-
malized difference vegetation index (NDVI) and the enhanced
vegetation index (EVI).

Land cover maps derived from remotely sensed data can be
used to match potential crop environments with areas classified as
croplands. Several broad-area assessments have been conducted.
These include GeoCover, GLC2000 and Globcover (Bartholome
and Belward, 2005; Bicheron et al., 2006; Arino et al., 2008). Wood
et al. (2000) developed a map of cropland intensity for the year
2000, showing the percentage of a grid cell with cropland. The
Globcover dataset, a 2005 snapshot of land cover at 300 m resolu-
tion, is the most recent global land cover product. While global
land cover datasets all have their shortcomings with respect to
accuracy and discrimination of land cover types, their increas-
ing availability will lead to their increased use for agricultural
applications.

Research and development efforts have produced several
important datasets on the geography of key staple crops, includ-
ing cassava (Carter, 1987; Carter et al., 1992), sweet potatoes
[International Potato Center (CIP), 2006a,b, Hijmans, 2001;
Hijmans et al., 2001], beans (Wortman et al., 1998), maize
(Hodson et al., 1999), rice (Huke and Huke, 1997; Robison et al.,
1984), and wheat (Lantican et al., 2005; Hodson and White,
2007), among others. Unfortunately, these crop-specific mapping

1http://earlywarning.usgs.gov/adds/index.php?img1=rf&extent=af
2http://ingrid.ldeo.columbia.edu/maproom/.Food_Security/.Locusts/index.
html
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efforts often lack comparability between crops. They may have
widely different temporal and spatial frameworks, as well as using
different methods to produce the datasets. While this lack of stan-
dardization does not necessarily affect genotype targeting efforts,
standardized initiatives would go a long way toward improving
the quality of data for analysis.

Mapping programmes that include multiple crops could take
advantage of a common set of standards in data development.
Drawing on the support of United Nations (UN) member coun-
tries, FAO’s AgroMaps programme aims to map sub-national
agricultural production data from agricultural censuses and sur-
veys (FAO, 2008a). FAO plans to link the effort with national
level statistics from FAOSTAT—something that could improve
the quality of both datasets. Other efforts map sub-national
agricultural production at global, regional, and local levels but
AgroMaps is the only one that makes its data freely available
on the Internet. An inspection of the number of crops and the
resolution of administrative districts points out some substan-
tial limitations of AgroMaps—problems that will be difficult
to overcome without greater international efforts to promote
agricultural census-taking.

A recent trend in crop mapping is the combination of survey
and census data with remote sensing information. Crop produc-
tion data can be converted to grid cell maps to more precisely
characterize the spatial distribution of the crop (e.g., Leemans
and Van Den Born, 1994; Ramankutty and Foley, 1998; Leff et al.,
2004; Ramankutty, 2004; You and Wood, 2006; You et al., 2009).
The conversion allocates production to small grid cells where the
likelihood of the presence of the crop is greatest, eliminating for-
est, urban, pasture and other types of land cover where we would
not find the crop. While the conversion of production data to a
grid cell framework raises concerns with ecological fallacy and
the modifiable areal unit problem (MAUP), the coarseness of
most production datasets requires grid maps (Openshaw, 1984;
Freedman, 1999). Improving these grid maps requires, first and
foremost, better input data. Researchers need greater spatial and
temporal resolution of crops statistics and remotely sensed data.
Even so, there is great scope for improving allocation algorithms
used in making grid cell maps.

TRIAL SITES DATA
Efforts to target genotypes to environments may also take advan-
tage of locating genetic resources data in terms of their respec-
tive development and testing sites or the location of pedigree
accessions, including wild relatives of food crops (Jarvis et al.,
2005). Many genebanks lack well-documented information on
the spatial location of the materials they manage (Hijmans et al.,
2000). When genetic resources data do have coordinate infor-
mation, it is often incorrect, requiring an effort to georeference
the data (Hijmans et al., 1999; Biogeomancer, 2007). Several
efforts are now underway to address these issues and provide
improved access to georeferenced genebank data. The Focused
Identification of Germplasm Strategy (FIGS) system for Bread
Wheat accessions is one example3.

3http://www.figstraitmine.org/index.php?dpage=11

Maps of variety trial sites are essential for linking phenotyp-
ing to spatial analysis. International yield trials networks, such
as the bean, Musa, maize and wheat initiatives (Peterson and
Pfeiffer, 1989; Jones and Tezenas du Montcel, 1994; CIAT, 2001),
have tended to develop reasonably good maps of their trial net-
works. Usually, the locations of trial sites are held outside of the
public domain. In many cases, information on these trial sites
is outdated or poorly documented. Another problem is that the
location information is often imprecise, leading to the generation
of errors in spatial analysis.

The greatest deficiency with respect to trial site data is the lack
of weather and soil information. In some cases, these data sim-
ply were not collected. In other cases, they remain unpublished,
either in journal publications or in gray literature. One solution
to acquire these data is to find them through international climate
and soil databases, either in GIS formats or by locating the near-
est point location. For example, the WISE database may include
some soil profiles taken from experiment stations where trials
are conducted. Station climate data from NOAA’s Global Surface
Summary of the Day (GSOD)4 can be used to match a site to the
nearest site to a weather station. Weather information for any site
could also be acquired from the National Aeronautics and Space
Administration (NASA) Prediction of World Energy Resource
(POWER) dataset, which provides daily rainfall and temperature
data for the last 12 years (NASA, 2009). However, using secondary
data from GIS databases—data that was not actually derived at the
trial site—may increase errors substantially. Whenever these sec-
ondary data are used, the researcher should mention its’ reliability
and should include any available error estimates.

A whole series of other socioeconomic data sets could be used
to target genotypes to environments. These might include human
population data sets (Center for International Earth Science
Information Network (CIESIN) et al., 2004), accessibility and
transportation infrastructure data (Nelson, 2008), and human
welfare data (e.g., CIAT, 2006). However, these would be use-
ful more for logistics planning of germplasm deployment, rather
than for testing. Sites with high rural populations and accessi-
bility and with substantial poverty may be attractive relative to
isolated sites outside of areas that would be likely targets for vari-
ety dissemination. These types of data could be used when a
breeding programme is near the end of the variety development
cycle, to search for sites that can be used to support germplasm
deployment. Building on efforts since the 1980s to collect this
type of information, dedicated programmes aimed at global map-
ping have improved the availability of these socio-economic and
agricultural production data.

SITING AND REGIONAL TARGETING OF GENOTYPES
Targeting genotypes to environments has developed substantially
since the middle of the last century. Early breeding efforts led sci-
entists to use their knowledge of a crop to speculate on how well
their varieties might perform in new locations, and they could
experiment in a range of sites to test GEI. Eventually, international
trial networks were set up to provide scientifically rigorous testing
regimes (e.g., Peterson and Pfeiffer, 1989; CIAT, 2001).

4ftp://ftp.ncdc.noaa.gov/pub/data/gsod
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Most early breeding efforts sought to develop cultivars with
wide adaptation (e.g., Braun et al., 1996). Later efforts aimed to
target niche environments with unique abiotic or biotic stresses
(e.g., Wilhelmi et al., 2002; Annicchiarico et al., 2005). The latter
approach led to greater demand for mapping the agro-ecology of
a crop, supporting the breeders’ targeting of a genotype to specific
conditions.

An understanding of the target environment and the extent of
GEI are essential elements of all breeding programmes. GEI take
several forms but of major concern are the crossover interactions,
where the GEI result in a change in the rank of the genotypes
between environments and hence influence the nature, magni-
tude, and predictability of the selection response achieved by any
breeding programme (e.g., Cooper, 1999).

Using multienvironmental trials, breeders draw on statistical
techniques developed to measure GEI (Finlay and Wilkinson,
1963). The statistical tools developed have centered on the use
of 88 linear–bilinear models and mixed models (Crossa et al.,
2004), and have permitted a better understanding of crossover
GEI. These tools permit the identification of clusters of sites or
genotypes that show little or no crossover GEI. As a result, a
smaller number of globally representative key locations can be
identified that assist breeders in the selection of widely adapted
germplasm. Ultimately, these statistical methods and GIS can be
used to recommend cultivars for specific locations (Annicchiarico
et al., 2005, 2006).

For wheat, analyses of several major international trial nurs-
eries of CIMMYT (Centro Internacional de Mejoramiento de
Maiz y Trigo; International Maize and Wheat Improvement
Center) have been undertaken using these statistical approaches
(e.g., Trethowan et al., 2001, 2002, 2003; Lillemo et al., 2005).
Analysis of sites and variety performance builds on an exten-
sive literature related to multienvironment trial networks (DeLacy
et al., 1996; van Eeuwijk et al., 2001).

Plant breeders can use soil and climate information of
the trial sites to classify these point locations into more or

less homogenous environment types (DeLacy et al., 1994;
Mgonja et al., 2002; Setimela et al., 2003, 2005; Maideni, 2006;
Roozeboom et al., 2008). Grouping trial sites can be useful in
designing field testing plans for plant breeding programmes, but
may not tell us ultimately where genotypes can perform well
because the sites only represent a limited number of point loca-
tions. Therefore, linking individual trials sites to larger regions for
which they are representative opens up numerous possibilities for
phenotyping work and, ultimately, for introducing varieties into
environments where they are expected to perform well (DeLacy
et al., 1994; Gauch and Zobel, 1997). The following sections
discuss environment-matching methods and crop-specific agro-
ecological mapping, and their use for targeting genotypes to
environments.

SITE ANALYSIS AND MATCHING
Environmental data on the sites of variety trials or potential
future trials can give us key information for targeting genotypes
to environments. Any number of sites can be compared to each
other to determine their similarity in terms of climate and soils.
Researchers may use a number of different methods to make these
comparisons. A few examples are given here to illustrate some of
the issues in comparing sites.

Measuring site similarity requires methods to be able to com-
pare climate data at different locations. Since climates vary with
latitude and season, similar levels of rainfall or temperature can
occur at different times of the year. One way to account for these
differences is to express climate data in terms of their relationship
to climate extremes, removing reference to the date of the data.
For example, the BIOCLIM method uses data on rainfall and
temperatures in the wettest, driest, warmest, and coldest months
(Busby, 1991). A more common method is to transform the data
to “standard” time scale. Figure 1 illustrates rainfall of a hypo-
thetical climate in the northern hemisphere and an identifical one
in the southern hemisphere. In order to standardize these climate
patterns, Jones and Thornton (1993) describe a 12-point Fourier

FIGURE 1 | Two hypothetical pluviographs exhibiting identical rainfall patterns (Source: http://gisweb.ciat.cgiar.org/marksim/).
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transform to rotate the data to a standard season. Other methods
are variations on the same process of standardizing the seasons so
that climates at different latitudes can be compared.

Once climate data have been standardized, comparisons can
be made to evaluate the degree of similarity between any set
of stations. The use of the climate-matching software CLIMEX
illustrates this concept5. The software utilizes a large database of
climate stations with 30 years of weekly data. CLIMEX displaces
data to standardize them according to latitude. Difference equa-
tions are applied to create indices of similarity for maximum,
minimum, and average temperature, rainfall, and rainfall pat-
tern, humidity and soil moisture. Table 2 shows the results of

Table 2 | The similarity of locations to Valparaiso, Chile: Temperature,

rainfall, and similarity indicesa.

Location Tmin Tmax Rtot I-Tmin I-Tmax I-Rtot CMI

Valparaiso,
Chile

8.3 22.2 506 1.00 1.00 1.00 1.00

Kingscote,
Australia

8.2 24.8 485 0.87 0.86 0.97 0.88

San Francisco,
USA

7.2 20.6 463 0.90 0.75 0.92 0.87

Wingfield,
South Africa

7.2 26.1 509 0.82 0.68 0.99 0.86

Shahhat, Libya 4.4 28.3 608 0.69 0.59 0.87 0.79

aTmin, minimum temperature; Tmax , maximum temperature; Rtot , total rainfall;

I-Tmin, I-Tmax, and I-Rtot are the similarity indices. The CMI is a combination of

similarity indices. For a description of the method, see Sutherst and Maywald

(1991).

5http://www.hearne.com.au/products/climex/

a climate similarity analysis between Valparaiso, Chile, and four
other stations in Mediterranean climates. Included here are sta-
tions with some of the highest similarity indices in the United
States of America (USA), Australia, and the northern and south-
ern extremes of Africa. Temperature and rainfall values are shown
together with the similarity indices calculated by CLIMEX. The
composite match index (CMI) combines the six climate parame-
ters mentioned above. The corresponding map (Figure 2) shows
the CMIs for over 2000 weather stations throughout the world.
Higher CMI values indicate greater similarity.

Similarity analyses can be extended from weather station data
to cover a continuous surface through spatial interpolation of
climate data. For example, Figure 3 shows the result of the
Homologue model for Bambey, Senegal. Homologue eliminates
the need for input weather station data by interpolating climate
data between stations6. The mapped results cover a continuous
surface. The Bambey, Senegal station is similar to environments
across the Sahel region of sub-Saharan Africa, and has been
important in French efforts in agricultural research throughout
West Africa. The map shows many areas that are right at the edge
of very dry areas marginal for agriculture, such as northeast Brazil
and the southern African area bordering the Kalahari desert.

The tools described above can be used for planning variety tri-
als but lack information on the crop of interest. As discuss below,
linking locations to the ecological niches of the crop of interest
provides a more reliable basis for considering where a genotype
could be targeted.

AGRO-ECOLOGICAL MAPPING
Maps of the systems characteristics, production, and ecology of
crops can support the task of targeting genotypes to environments

6Contact article author Glenn Hyman (g.hyman@cgiar.org) to request,
Homologue software.

FIGURE 2 | The composite match index (CMI) showing the similarity of locations to Valparaiso, Chile.
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for both testing and deployment. Agricultural system maps draw
on qualitative and quantitative information to depict regions of
similar farming characteristics (Whittlesey, 1936; van Lanen et al.,
1992; Pollack and Corbett, 1993; Dixon et al., 2001). We have
already described the development of crop production maps.
Maps of the ecology and environment of a particular crop are
especially useful in targeting genotypes to environments.

In the latter part of the 1980s, an FAO workshop and resul-
tant publication indicated a growing interest in environmen-
tal and agro-ecological mapping by the international agricul-
tural research and development community (Bunting, 1987).
Examples of this type of mapping work include CIAT’s agro-
ecological maps of cassava (CIAT, 2003) and rice (Jones, 1984).
Such work often focused on regions instead of crops, and
CIAT used these maps to define its research domain in Latin
America (Jones et al., 1990). They were also used to assess

the geographical distribution of environments that were the
target of research in the Brazilian Cerrados (Jones et al.,
1992).

Methods for making these maps vary with respect to the
type of data used and the statistical analyses employed. A cas-
sava agro-ecology map is based on key precipitation, soil and
elevation thresholds that define regions according to moisture
conditions, soil acidity, and altitude (Figures 4 and 5; Carter,
1987; Carter et al., 1992; CIAT, 2003). For this classification sys-
tem, cassava specialists identified key environmental thresholds
for distinguishing between seven cassava agro-ecological regions.
In a different approach, the Brazilian Cerrados was mapped using
climatic and soils data in a cluster analysis (Jones et al., 1992).
Clusters were mapped directly from the data and then gener-
alized into homogenous regions within the Cerrados. A similar
approach was carried out to map wheat agro-ecologies in Algeria

FIGURE 3 | The Homologue model showing areas similar in climate to Bambey, Senegal.

FIGURE 4 | Edapho-climatic map of cassava (CIAT, 2003).
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FIGURE 5 | Diagram showing the classification scheme for CIAT’s cassava agro-ecology map (CIAT, 2003).

using an unsupervised classification of GIS data layers (Delli et al.,
2002).

The agro-ecological maps described above include knowledge
of the crop but are not based on actual trial data. The discussion
below turns to the CIMMYT methodology for mapping mega-
environments, an approach that starts with the results of cultivar
trials.

CIMMYT’s MEGA-ENVIRONMENT APPROACH FOR MAIZE AND WHEAT
For maize, and specifically in the highly variable drought-prone
environments of southern Africa, similar statistical techniques
to multilocation yield trial data were applied, combined with
environmental factors derived from GIS (Setimela et al., 2003,
2005; Maideni, 2006). Cluster analysis grouped the regional trials
into seven groups with seasonal maximum temperature, pre-
cipitation, soil pH, and nitrogen stress identified as the factors
accounting for repeatable GEI. Six final mega-environment zones

were derived based on seasonal maximum temperature and pre-
cipitation, because available soil pH data were considered too
unreliable for inclusion. Hence, maize germplasm in any mega-
environment would have a requirement for evaluation under both
low and high nitrogen and low and neutral pH. This combina-
tion of approaches has resulted in a better understanding of target
environments in southern Africa (Bänziger et al., 2004) and has
assisted in the identification of breeding strategies and key loca-
tions for regional variety testing. The stress factors responsible
for GEI at the global scale were extrapolated and fine-tuned for
southern Africa through feedback from experts (Figure 6).

For wheat, CIMMYT has developed mega-environments that
have as a foundation the extensive network of international wheat
testing sites, comprising over 800 unique sites. Wheat experts clas-
sified trial sites according to the predominant mega-environment
and, subsequently, GIS was used to extract the underlying climatic
and edaphic factors, resulting in quantitative criteria for mapping
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FIGURE 6 | Maize mega-environments.

the mega-environments (Hodson and White, 2007). Long-term
mean minimum temperature in the coolest quarter (i.e., three
consecutive coolest months of the year) proved effective in distin-
guishing among the winter-grown spring, winter/facultative, and
summer-grown spring wheat types. This temperature criterion
was also useful for separating favorable, irrigated spring wheat
environments from environments that are similar but where heat
tolerance is required.

The climatic basis of both the maize and wheat mega-
environments, and other agro-ecological mapping efforts, relies
on long-term normal data such as Worldclim, described in
the introduction (Hijmans et al., 2005). While the approaches
have improved the understanding of general crop agro-ecologies,
they ignore temporal variation due to year-to-year variation in
climatic conditions. Trethowan et al. (2005) showed how spe-
cific locations may fluctuate between high or low rainfall wheat
mega-environments depending on seasonal conditions. Such lim-
itations are now being addressed by work on frequencies of
environment types.

In practical terms, the real nature of the problem from the
point of view of GEI is that testing environments may represent
the wrong balance of stress intensity or timing, so selection will
not address optimally the needs of the target population of envi-
ronments (TPE). In highly variable environments, the degree of
mismatch between the sample from multienvironment trials and
the TPE is likely to be high, and could lead to decreased or even
reversed genetic gain (Cooper et al., 1996).

Considerable advances are being made in the area of improved
characterization of TPE, environment types, and frequencies of
environment types. These advances are largely due to the cou-
pling of crop simulation models with long-term weather records
in order to generate seasonal sequences of stress that can subse-
quently be used to determine frequencies of stress environment
types (Chapman and Barreto, 1996; Hartkamp et al., 1999, 2001;
Chapman et al., 2000a, 2002, 2003; Loffler et al., 2005; Putto
et al., 2009). This type of information, in combination with

multienvironment trial data, can be used to weight data from
different trials according to how representative they are of the
TPE and so improve selection, especially in variable environments
(Chapman et al., 2000b).

Loffler et al. (2005) used the crop simulation and GIS approach
to classify the major maize environments in the Corn Belt of the
USA. Even in this highly productive maize environment, the spa-
tial and temporal dimensions of environmental variation in the
TPE were highly significant. For each of the six major environ-
ment types identified, relative frequencies of each of the envi-
ronments varied greatly from year to year and significant hybrid
by environment interaction variance was observed. Stratification
of environments sampled by the multienvironment trials by the
temporally specific environment type explained a significant por-
tion of the GEI for observed grain yield. This methodology is
therefore likely to improve the predictability of cultivar perfor-
mance in the TPE. These new approaches have only been reported
from the USA or Australia but future application to highly vari-
able environments such as Africa have the potential to produce
significant breeding gains.

SPATIAL ANALYSIS OF ENVIRONMENTAL CHANGE
Projections of environmental change are motivating greater
emphasis on future constraints to agricultural production. The
pace of population, climatic, and environmental change has
compelled the crop improvement community to consider those
stresses that are likely to result in significant yield declines (Cassel-
Gintz et al., 1997). Spatial analysis is already playing a role
in assisting breeding programmes to respond to environmental
change. The rapid changes in soils and climate will likely increase
this role in the coming decades.

Intensive land use and agricultural development erode, leach,
and degrade our soils. In the absence of improved agronomic
practices and land management, cultivars of the future will prob-
ably need to be tolerant of aluminium toxicity, low nutrient
status and other chemical changes that make soils less fertile.
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Salinisation of soils will demand salt-tolerant cultivars. New vari-
eties will have to survive in poorly structured soils with low
water-holding capacity. Crop improvement to overcome abiotic
soil constraints will focus on these difficult soil environments.
Crop improvement specialists can map accessions of wild relatives
overlaid on environmental stresses to provide clues about which
accessions may be adapted to a given stress. More cultivar testing
needs to be carried out in those soil environments where a par-
ticular production constraint is representative of the growing soil
problems we shall face in the future. However, improved agro-
nomic practices will play a vital mitigating role and these need to
be an integrated part of crop improvement.

Of more immediate concern for crop improvement are the
effects of climate change (Jones and Thornton, 2003; Lobell et al.,
2008). Improved cultivars have a product life cycle (research,
development, testing and use) of 46 years on average (Jones et al.,
2007b). Therefore, the development of new cultivars should aim
for adaptation in the climate we will find in 30–50 years from
now. For example, an analysis of testing sites for biofortification
programmes found that many of the current maize testing sites
in Africa do not represent the likely environments for maize in
2055 (Jones et al., 2007b). Another important consideration for
crop improvement is the conservation of wild relatives and lan-
draces that may otherwise become extinct due to climate change.
Jarvis et al. (2003) found that of 17 wild Arachis species in South
America, 12 could be extinct in 50 years time due to climate
change. If we do not conserve these genetic resources now, future
efforts may lack valuable material needed for crop improvement.

New data and tools are facilitating spatial analysis of cli-
mate change. Downscaled weather data from General Circulation
Models are often used in modeling climate change impacts
on agriculture (Jones and Thornton, 2013). The Worldclim
data set now includes downscaled projections of future climate
for three popular climate models from the Intergovernmental
Panel on Climate Change (IPCC) family of climate change
scenarios 7. These data can be used directly in GIS software

7http://www.worldclim.org/futdown.htm

packages such as DIVA (Hijmans et al., 2001). Initial efforts have
been made to incorporate future climate projections in CIAT’s
Homologue and Marksim tools. Researchers of the CGIAR have
downscaled the 21 IPCC model scenarios for climate change
to 1-km climate surfaces, some of which have not been pub-
licly released to date. These recent developments suggest that the
prospects for using spatial analysis for studies of genetic resources
and climate change are improving.

CONCLUSION
Methods to target genotypes to environments are evolving. Plant
breeders used a “hit-or-miss” approach for many years, sim-
ply testing their cultivars in as many environments as they
could. The development of agro-ecological mapping (as per
Bunting, 1987) gave them a better idea about the target envi-
ronments. Developing maps from large international yield tri-
als, as in CIMMYT’s mega-environment approach, improved on
agro-ecological mapping. Spatially explicit crop modeling has
improved targeting studies over the last decades. Recent efforts
to account for changes in year-to-year environmental condi-
tions have further improved our understanding of how to more
efficiently reach our goal of getting the right genotype to farmers.

Geographic information science and technology has played a
valuable role in the evolution of genotype targeting approaches.
It has provided high-resolution spatial and temporal data to
help breeders unravel GEI. Spatial synthesis of model and sta-
tistical outputs has improved our capacity to map out target
environments and the frequencies of environments, an effort that
ultimately leads to a more effective deployment of germplasm.
Greater collaboration between breeders, crop improvement spe-
cialists, and the climate change modeling community are needed
now more than ever.
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