frontiers in
PHYSIOLOGY

FRONTIERS COMMENTARY
published: 18 March 2013
doi: 10.3389/fphys.2013.00049

&

Self-renewal of neural stem cells: implications for future

therapies

Susanna Raitano’, Catherine M. Verfaillie'” and Anna Petryk®***

" Stem Cell Institute, KU Leuven, Leuven, Belgium

2 Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
3 Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA

*Correspondence: petry005@umn.edu

T These authors have contributed equally to this work.

Edited by:
Thimios Mitsiadis, University of Zurich, Switzerland

A commentary on

Flexibility of neural stem cells

by Remboutsika, E., Elkouris, M., Iulianella,
A., Andoniadou, C. L., Poulou, M.,
Mitsiadis, T. A., Trainor, P. A., and Lovell-
Badge, R. (2011). Front. Physiol. 2:16. doi:
10.3389/fphys.2011.00016

In 2011, Remboutsika et al. (2011) pub-
lished an elegant paper in which they
demonstrated the unique importance of
Sox2 in self-renewal of neural stem cells
(NSC) in vitro and in vivo. They demon-
strated that Sox2 helps maintain the cor-
tical identity of NSC ex vivo as evidenced
by the expression of Pax6 and the nestin-
linked epitope RC2. Only the Sox2™ cells
isolated from SoxP~#°/* neurospheres
were capable of generating secondary neu-
rospheres while the Sox2~ fraction could
not, confirming that only the Sox2™ cells
can self-renew in vitro. Sox2* neuro-
spheres differentiated towards Tuj1™ cells
with long axons like cortical neurons,
while wild type and SoxP~8°/* neuro-
spheres derived-neurons developed short
axons, showing that these cells had dis-
tinct developmental and differentiation
potential.

When transplanted into mouse and
chick embryos, wild type and SoxP—8¢/+
cells generated neural crest cells while
Sox2t cells did not. Moreover, Sox2
overexpression in the neuroepithelium
of chick embryo prevented neuroep-
ithelial ~delamination and migration
and restricted the contribution of neu-
roepithelium to the neural tube only,
suggesting that Sox2 inhibits
crest cell generation by blocking NSC
differentiation.

neural

WHAT ARE NEURAL STEM CELLS, AND
HOW CAN THEY BE DERIVED AND
MAINTAINED IN CULTURE?

NSCs (also named neural progenitor cells-
NPCs) are multipotent stem cells gener-
ated during development when the neural
plate folds to form the neural tube. NSCs
give rise to all cells of the central nervous
system. At the beginning of neurogene-
sis, neuroephitelial cells are replaced by
radial glia, cells that can divide asymmetri-
cally and differentiate into neurons, astro-
cytes and oligodendrocytes (Campbell and
Gotz, 2002). Radial glia cells also act as a
scaffold upon which neurons can migrate
to specific locations in the developing
brain (Rakic, 1972). In the adult brain,
NPCs reside in the subventricular zone of
the lateral ventricular zone and in the den-
tate gyrus of the hippocampus (Zhao et al.,
2008).

NSCs/NPCs can be isolated from the
cortex of mice and cultured ex vivo in
non-adherent plates where they will aggre-
gate and form neurospheres, composed of
a mixture of stem cells, progenitors and
differentiated cells. It is also possible to
generate NPCs from mouse and human
pluripotent stem cells (PSCs) (Uzzaman
et al., 2005), using either adherent or sus-
pension culture. Usually, factors that pro-
mote neural differentiation are added to
the medium like retinoic acid (RA), Bone
morphogenetic protein inhibitors (such
as Noggin) and supplements such as N2
and B27.

The most common problem of in vitro
neural differentiation is that it leads
to a heterogeneous population of cells
even when they are forced to a spe-
cific neural fate by specific growth
factors. Therefore, various groups have

developed methods to obtain pure pop-
ulation of NPCs. For instance, NPCs
present in differentiating hPSCs that
are CD1847CD2717CD44~CD24+ can
be selected by fluorescence activated
cell sorting (FACS) (Yuan et al.,, 2011).
Alternatively, homogenous NPCs can
be isolated based on the expression
of polysialic acid-neural cell adhesion
molecule (PSA-NCAM) (Kim et al,
2012). Yet another method is the use
of molecular beacons, i.e., sequences
that recognize specific regions of Sox2
mRNA, to FACS sort Sox2* cells from
mESCs as well as from neurospheres
(Larsson et al., 2012). Remboutsika et al.
(2011) described a novel approach using
Sox2 lineage selection as a method to
generate homogenous population of
cortical NSCs.

THE ROLE OF Sox2 IN NEUROGENESIS
The Sox genes of the group Bl (Soxl,
Sox2, and Sox3) are expressed widely in
the central nervous system, and are impli-
cated in neural development (Bergsland
et al., 2011; Uchikawa et al., 2011). Sox2
is required for neural lineage commitment
(Thomson et al., 2011; Wang et al., 2012)
as it controls the proliferation and dif-
ferentiation of fetal NPCs (Pevny et al.,
1998; Wegner and Stolt, 2005). There is
also evidence that Sox2 is expressed in dif-
ferentiated cells of the adult brain (Kang
and Hebert, 2012).

Genome-wide studies have shown that
a significant number of Sox2 binding
sites are unique to ESCs, and located
in the vicinity of genes expressed in
ESCs. In addition, a large number of
binding sites are occupied by Sox2/3 in
both ESCs and NPCs, located nearby
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neural genes and associated with biva-
lent histone domains. This is consis-
tent with the notion that Sox2 in ESCs
is a pioneer transcription factor that
establishes transcriptional competence in
ESCs for subsequent neural differentiation
(Bergsland et al., 2011).

According to recent studies, adult
somatic cells can be reprogrammed to
mature cells or progenitor cells of non-
related cell lineages. Ectopic expression of
Sox2 leads to the generation of induced-
neural like cells (iNCs) from human cord
blood (CB) derived CD133" cells, a pro-
cess augmented by co-expression of c-
Myc (Giorgetti et al., 2012). The CB-iNCs
can fire action potentials and engraft the
hypocampus in vivo. Likewise, fibroblasts
and other somatic cells can be converted
into induced neural stem cells (iNSCs) by
transducing Sox2 alone or in combination
with other transcription factors (Shi and
Jiao, 2012).

The study by Remboutsika et al.
was one of the first to demonstrate
the importance of Sox2 in maintaining
NSC undifferentiated, creating homoge-
nous neurospheres, containing cells with
the same spatiotemporal identity. This
study and many others subsequently have
detailed the role of Sox2 in establish-
ing (through differentiation from ESC or
de-differentiation from somatic cells) and
maintaining cortical NSC features.

THE FUTURE OF NSC RESEARCH

Over the last 20 years, studies have been
mostly focused on understanding which
molecules and signaling pathways regulate
differentiation, proliferation and migra-
tion of NSCs with an ultimate goal
of applying cell replacement therapy for
treatment of chronic neurologic diseases.
The translational phase of this remarkable
research has already begun. Several phase
I/IT clinical trials have been performed
using purified NSCs for the treatment
of amyothrophic lateral sclerosis, stroke,

Batten disease, Pelizaeus-Merzbacher dis-
ease, high-grade gliomas (Trounson et al.,
2011), spinal cord injury (Baker, 2011),
cerebral palsy (Chen et al., 2013), and
retinal diseases (Cramer and Maclaren,
2013). Even though it is still premature to
say whether these therapeutic approaches
will be effective, so far they appear to
be safe. Further investigations are war-
ranted to harness the full potential of
NSCs.
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