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The cardiac voltage-gated sodium channel, Nav1.5, plays a central role in cardiac excitability
and impulse propagation and associates with the dystrophin multiprotein complex at the
lateral membrane of cardiomyocytes. It was previously shown that Nav1.5 protein content
and the sodium current (INa) were both decreased in cardiomyocytes of dystrophin-deficient
mdx5cv mice. In this study, wild-type and mdx5cv mice were treated for 7 days with the
proteasome inhibitor MG132 (10 μg/Kg/24 h) using implanted osmotic mini pumps. MG132
rescued both the total amount of Nav1.5 protein and IN a but, unlike in previous studies, de
novo expression of dystrophin was not observed in skeletal or cardiac muscle. This study
suggests that the reduced expression of Nav1.5 in dystrophin-deficient cells is dependent
on proteasomal degradation.
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INTRODUCTION
The cardiac voltage-gated sodium channel, Nav1.5, plays a central
role in cardiac function as it is responsible for the depolariza-
tion of the cardiac action potential and propagation of cardiac
electrical impulses (Nerbonne and Kass, 2005). Mutations in the
sodium channel gene, SCN5A, are found in patients with a vari-
ety of cardiac diseases, such as congenital long QT syndrome
type 3 and Brugada syndrome (Wang et al., 1995a,b; Antzele-
vitch, 2001; Moric et al., 2003). Recent studies have associated
mutations in SCN5A with dilated cardiomyopathy (Mcnair et al.,
2004; Hesse et al., 2007; Mann et al., 2012). Many investigators
have characterized naturally occurring SCN5A mutations, but
little is known about the regulation of expression of Nav1.5
in cardiac cells. Recent studies that have reported on Nav1.5
interacting partners have suggested that Nav1.5 may be part of
distinct multiprotein complexes that differ between one cellu-
lar compartment and another, and that multiprotein complexes
may be involved in the regulation of channel activity, cellu-
lar localization, and protein degradation (Tan et al., 2003; van
Bemmelen et al., 2004; Mohler and Bennett, 2005; Albesa et al.,
2011; Petitprez et al., 2011). Given the important role of Nav1.5
in cardiac function, alterations of its regulatory mechanisms
could be involved in cardiac diseases of unknown etiology, e.g.,
only 20% of Brugada syndrome cases have been associated with
SCN5A mutations (Wilde et al., 2002). Nav1.5 associates with the
dystrophin multiprotein complex (DMC) at the lateral mem-
brane of cardiomyocytes, as well as to the SAP97 protein at
the intercalated disk of cardiac cells (Gee et al., 1998; Gavillet
et al., 2006; Albesa et al., 2011; Petitprez et al., 2011). Dystrophin
is a 427 kDa cytoplasmic protein which forms a complex at
the plasma membrane (Im et al., 1996). In muscle cells, the

DMC is thought to strengthen the sarcolemma during contrac-
tion by providing a link between the extracellular matrix and the
cytoskeleton (Barnabei and Metzger, 2012). Mutations in the dys-
trophin gene result in Duchene and Becker muscular dystrophies
(DMD and BMD), as well as X-linked dilated cardiomyopathy
(XLDCM; Towbin et al., 1993). Using the dystrophin-deficient
mouse model mdx5cv , we previously demonstrated that the
absence of dystrophin in cardiomyocytes led to a ∼50% decrease
in the total amount of Nav1.5 protein, which was associated
with a ∼30% decrease in the cellular sodium current (INa). In
addition, conduction velocity recordings revealed atrial and ven-
tricular conduction slowing, consistent with a ∼30% reduction
of INa (Gavillet et al., 2006). In parallel, we also demonstrated
that in the HEK293 cell line the Nav1.5 channel is down-regulated
consequently to its ubiquitylation via the ubiquitin ligase activ-
ity of Nedd4-2 (van Bemmelen et al., 2004; Rougier et al., 2005).
Moreover in mouse cardiac tissue the ubiquitylation of Nav1.5
channel has also been shown suggesting a key role of the ubiq-
uitin proteasome system in the regulation of Nav1.5 channel
in vivo (van Bemmelen et al., 2004)

The aim of this study was to elucidate the implication of
the ubiquitin proteasome system in the regulation of the Nav1.5
channel in control and dystrophin-deficient mdx5cv mice. Both
strains were treated with the proteasome inhibitor MG132 for
7 days to investigate the potential implication of the proteasome
in the down-regulation of Nav1.5 channel observed in mdx5cv

mice. MG132 treatment rescued Nav1.5 expression and INa in
the cardiomyocytes of mdx5cv mice to levels similar to that of
the control mice. Proteasome inhibition did not restore dys-
trophin expression in the skeletal or cardiac muscle of mdx5cv

mice.
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MATERIALS AND METHODS
ANIMALS
Wild-type (WT) C57BL/6 mice (Janvier, Le Genest St Isle, France),
and C57BL/6Ros-5Cv (mdx5cv) mice (Jackson laboratories, Bar
Harbor, Maine) were raised at the department of pharmacology of
the University of Lausanne. Male mice aged 12–16 weeks were used
in this study. All animal procedures were performed in accordance
with Swiss and Cantonal laws.

MINI PUMPS
Osmotic mini pumps (ALZET model 1007D, Alzet Osmotic
Pump Company, Cupertino, USA) were implanted in the ante-
rior back region of the mice. Pumps were filled up with either a
MG132 solution or with the vehicle alone (0.9% NaCl), accord-
ing to the ALZET filling procedure. MG132 (C2211, SIGMA,
Buchs, Switzerland) was delivered at a dose of 10 μg/Kg/24 h.
Two millimolars MG132 aliquot were added to dimethylsulfoxide
(Merck, Damstadt, Germany), before being further diluted to the
appropriate concentration in 0.9% NaCl.

MICE VENTRICULAR MYOCYTE ISOLATION
Seven days after implantation of the osmotic pump, the mice
were heparinized with 100 μl of heparin (Liquemin 5000 IU/ml,
Roche, Basel, Switzerland). They were then euthanized with an
intraperitoneal injection of pentobarbital. The hearts were excised,
rinsed in Krebs solution, mounted on a Langendorff apparatus
and subjected to collagenase retroperfusion. The procedure for
mice ventricular myocyte isolation was previously described in
detail (Gavillet et al., 2006). Approximately 10% of the isolated
myocytes were plated on a laminin coated dish and used for patch
clamp measurements; the remaining myocytes were frozen in pel-
let form. The frozen pellets were subsequently used for mRNA or
protein extraction.

PROTEIN EXTRACTION
The gastrocnemius muscles were removed, washed with ice cold
PBS1X and frozen in liquid nitrogen. Frozen myocytes and skeletal
muscle were transferred into lysis buffer (50 mM TRIS pH 7.5,
150 mM NaCl, 1 mM EDTA, 1 mM PMSF, and Complete® protease
inhibitor cocktail from Roche). Tissues were then homogenized
using a Polytron. Triton Tx-100 was added to a final concentration
of 1% and solubilization occurred by rotating for 1 h at 4◦C. The
soluble fraction obtained after 15 min of centrifugation at 13,000 g
(4◦C) was used for the experiments. In order to load each lane
of the SDS-PAGE with equivalent amounts of total protein, the
protein concentration of each lysate was measured in triplicate by
Bradford assay using a BSA standard curve.

WESTERN BLOTS
The western blotting conditions have been previously described
(Gavillet et al., 2006). The polyclonal dystrophin antibody
directed against the protein N-terminus (Dys12) was provided
by M. Schaub (University of Zurich). The monoclonal dys-
trophin antibody (MANDYS8) and polyclonal actin antibody
(A2066) were obtained from SIGMA. The polyclonal Nav1.5
antibody (ASC-005) was purchased from Alomone (Jerusalem,
Israel).

MICE VENTRICULAR MYOCYTE mRNA EXTRACTION
mRNA was extracted from frozen myocytes using the RNeasy Mini
Kit, according to the manufacturer’s protocol (Qiagen, Hom-
brechtikon, Switzerland). cDNA was synthesized from 1 μg of
RNA using the MU-MLV reverse transcriptase, according to the
manufacturer’s protocol (Q-Biogene EMMLV100, Irvine, USA).
Fifty nanograms of cDNA combined with 1x TaqMan Universal
Master Mix (Applied Biosystems, Foster, USA) and 1 μl of probe
were loaded into each well. The SCN5A probe (Mm00451971),
the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) probe
(Mm99999915), the SCN1B probe (Mm00441210) and the
Nedd4-2 probe (Mm00459584) were obtained from Applied
Biosystems. The 96 well thermal plate was cycled at 50◦C for
2 min and 95◦C for 10 min, followed by 40 cycles at 95◦C for
15 s and 60◦C for 1 min. GAPDH was used as a reference gene
to normalize the data. The comparative threshold cycle rela-
tive quantification method was used to compare the amounts of
mRNA in control and mdx5cv mice. Samples were measured in
duplicate.

PATCH CLAMP EXPERIMENTS
Only rod-shaped myocytes with distinct edges were selected for
patch clamp experiments. The whole-cell configuration of the
patch-clamp technique was used to record INa. Experiments were
performed at room temperature (22–23◦C). Current recordings
were performed using a VE-2 (Alembic Instruments) ampli-
fier. Borosilicate glass pipettes (tip resistance 1–2 MΩ) were
filled with a solution containing 60 mM CsCl, 70 mM cesium
aspartate, 1 mM CaCl2, 1 mM MgCl2, 10 mM HEPES (4-(2-
hydroxyethyl)-1-piperazineethanesulfonic acid), 11 mM EGTA
(ethylene glycol tetraacetic acid), and 5 mM Na2ATP (pH adjusted
to 7.2 with CsOH). Myocytes were bathed with a solution contain-
ing 10 mM NaCl, 120 mM NMDG-Cl (N-methyl-D-glucamine
chloride), 2 mM CaCl2, 1.2 mM MgCl2, 5 mM CsCl, 10 mM
HEPES, and 5 mM glucose (pH adjusted to 7.4 with CsOH).
Holding potentials were −120 mV and current densities (pA/pF)
were obtained by dividing the peak INa by the cell capaci-
tance obtained using the transient capacitive current caused by
a +5 mV pulse from the holding potential. Peak currents were
measured during a current voltage protocol. To quantify the
voltage-dependence of steady-state activation and inactivation,
data from individual cells were fitted with the Boltzmann rela-
tionship, y(V m) = 1/1 + exp[(V m − V 1/2)/k], in which y is the
normalized current or conductance, V 1/2 is the voltage at which
half of the available channels are inactivated, k is the slope factor,
and V m is the membrane potential.

STATISTICAL ANALYSES
Data were represented as mean values ± SEM. Two-tailed Student’s
t-test was used to compare means. Statistical significance was set
at P < 0.05.

RESULTS
THE PROTEASOME INHIBITOR MG132 RESCUES NAv1.5 PROTEIN
LEVELS AND THE SODIUM CURRENT IN mdx5cv MICE
The cardiac voltage-gated sodium channel, Nav1.5, is part of the
DMC in mouse cardiomyocytes (Gavillet et al., 2006). The Nav1.5

Frontiers in Physiology | Cardiac Electrophysiology March 2013 | Volume 4 | Article 51 | 2

http://www.frontiersin.org/Cardiac_Electrophysiology_/
http://www.frontiersin.org/Cardiac_Electrophysiology_/archive


“fphys-04-00051” — 2013/3/23 — 10:15 — page 3 — #3

Rougier et al. MG132 rescues Nav1.5 in mdx-mice

protein content and the INa were both decreased in mdx5cv mice,
in which dystrophin is not expressed (Gavillet et al., 2006). In
addition, it was shown that the sodium channel could be ubiqui-
tylated by ubiquitin protein ligases of the Nedd4 family, thereby
regulating the density of the channel at the cell membrane (van
Bemmelen et al., 2004). In order to determine whether the ubiq-
uitin proteasome system is implicated in the diminution of the
sodium channel in the cardiomyocytes of dystrophin-deficient
mice, control and mdx5cv mice were treated with the proteasome
inhibitor MG132. Osmotic mini pumps were implanted subcuta-
neously and delivered MG132 at a dose of 10 μg/kg/24 h over a
7-day period. Western blot experiments were performed using car-
diomyocyte lysates of mdx5cv and control mice, both treated with
either MG132 or saline solution (0.9% NaCl). The protein content
of Nav1.5 in the cardiomyocytes was quantified by digital density
measurements of several Western blots, such as the one represented
in Figure 1A. The total amount of Nav1.5 protein was decreased by
49 ± 3% in the ventricular myocytes of mdx5cv mice treated with
the saline solution, as compared to control mice (Figures 1A,B).
The MG132 treatment increased the protein level of Nav1.5 in

mdx5cv cardiomyocytes to a level similar to that in control mice
(Figures 1A,B). The proteasome inhibitor had no effect on the
Nav1.5 protein content in control mice (Figures 1A,B). Finally,
Nav1.5 mRNA quantification was performed using real time quan-
titative PCR. No significant difference of the Nav1.5 transcript
between mdx5cv and control mice was observed in either treatment
(Figure 1C).

The INa was decreased by 29 ± 6% in mdx5cv mice, as com-
pared to that in the controls (Figures 2A,B). The proteasome
inhibitor had a strong effect on the INa of mdx5cv cardiac cells,
increasing the current to a level similar to that found in con-
trol mice (Figures 2A,B). The effect of MG132 treatment on INa

was restricted to an increase in the current density, since nei-
ther the voltage-dependence of activation nor the steady-state of
inactivation were affected by the treatment (Figure 2C).

MG132 TREATMENT DOES NOT RESCUE DYSTROPHIN EXPRESSION IN
SKELETAL OR CARDIAC MUSCLES
Bonuccelli et al. (2003) previously reported that the systemic treat-
ment with 10 μg/Kg/24 h of MG132 rescued the expression of

FIGURE 1 | Effects of MG132 treatment on Nav1.5 protein content and

mRNA level. (A) Representative Western blot of ventricular myocyte lysates
of control and mdx5cv mice treated with MG132 or 0.9% NaCl as indicated.
Eighty micrograms of lysate were loaded in each lane. (B) Bar graph
representing the amounts of total Nav1.5 protein in control and mdx5cv

ventricular myocytes quantified by digital density measurements. (C)

Quantitative real time PCR experiments. Bar graph representing the amounts
of Scn5a mRNA in control and mdx5cv ventricular myocytes, analyzed by real
time PCR (Taqman®), as described in the Material and Methods. The number
of mice used for quantification is indicated in the bars. *P < 0.05.
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FIGURE 2 | Effects of MG132 treatment on the sodium current properties

and mRNA level. (A) Current density-voltage relationship of INa in control
and mdx5cv mice treated with MG132 or 0.9% NaCl, as indicated. The
protocol is indicated in inset. (B) Bar graph quantifying the amounts of
sodium current in control and mdx5cv ventricular myocytes. Four cells were
patched for each mouse and the number of mice used for quantification is

indicated in the bars. The “normalized current” represents the maximum
current density recorded at a given voltage (−25 mV). (C) Steady-state
activation and inactivation curves. The protocol is indicated in inset. The
number of mice used for quantification is indicated in the bars. Results are
expressed as normalized mean signal intensity. *P < 0.05, n.s. not
significant.

the dystrophin protein in skeletal muscle of the “original” mdx
mouse strain. In the present study, Western blots of mdx5cv

gastrocnemial muscle lysates were performed in order to deter-
mine whether dystrophin is expressed in skeletal muscle upon
treatment with MG132. The dystrophin antibody used for the
Western blots was directed against the actin binding site in
the N-terminus. The mdx5cv mouse strain has a mutation in
exon 10, which leads to a premature stop codon in the full-
length transcript (Im et al., 1996). One can assume that if a
shorter dystrophin form had been produced in mdx5cv mus-
cles upon MG132 treatment, it may have been detected. As

expected, dystrophin expression was undetectable in cardiac and
skeletal muscle lysates of mdx5cv mice treated with 0.9% NaCl
(Figures 3A,B). However, contrary to that described with the
“original” mdx mice, MG132 treatment did not rescue the dys-
trophin expression in mdx5cv skeletal muscle or cardiomyocytes
(Figures 3A,B).

Nedd4-2 AND THE β1-SUBUNIT mRNA AMOUNTS ARE NOT MODIFIED
BY MG132 TREATMENT
Nav1.5 was shown to be regulated by the ubiquitin ligase pro-
tein Nedd4-2, which is expressed in the heart (van Bemmelen
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FIGURE 3 | Dystrophin is not expressed in skeletal muscle and in cardiomyocytes of mdx5cv mice treated with MG132. Western blots of mouse
ventricular myocytes (A) and gastrocnemius muscle (B) lysates of control and mdx5cv mice treated with MG132 or 0.9% NaCl, as indicated.

FIGURE 4 | MG132 treatment does not modify the mRNA

expression level of SCN1B and Nedd4-2 genes. Bar graph
representing the amounts of SCN1B (A) and Nedd4-2 (B) mRNA in
control and mdx5cv ventricular myocytes, analyzed by quantitative

real time PCR (Taqman®) as described in the Material and Methods.
The number of mice used for quantification is indicated in the bars.
Results are expressed as normalized mean signal intensity. n.s. not
significant.

et al., 2004; Rougier et al., 2005). The β-subunits of Nav1.5 were
shown to modulate channel activity (Yu et al., 2005). In addi-
tion, the β1-subunit of Nav1.5 (encoded by the gene SCN1B) was
described to be down-regulated in the skeletal muscle of DMD
patients (Haslett et al., 2002). In order to determine whether these
proteins play a role in the regulation of Nav1.5 in mdx5cv mice
treated with MG132 or 0.9% NaCl, real time quantitative PCR
experiments were performed to quantify the relative amounts
of mRNA. Figures 4A,B illustrate that there are no differences
between the different tested conditions, suggesting that these pro-
teins are not likely involved in the modulation of Nav1.5 upon
MG132 treatment.

DISCUSSION
Treatment of “original”dystrophin-deficient mice with the protea-
some inhibitor MG132 was shown to rescue dystrophin expression
in their skeletal muscle (Bonuccelli et al., 2003). The authors
did not, however, investigate the effect of MG132 on cardiac
muscle (Bonuccelli et al., 2003). In the mdx5cv mouse strain,
the Nav1.5 protein content is decreased by ∼50% and the
INa by ∼30% (Gavillet et al., 2006). Studies using heterologous

expression systems have demonstrated that ubiquitylation of
Nav1.5 could trigger its internalization and decrease INa (van Bem-
melen et al., 2004). In the present work, control and mdx5cv mice
were treated with MG132 in order to investigate the implications
of the ubiquitin proteasome system on the regulation of Nav1.5 in
cardiac cells. The main findings of this study are: (1) the protea-
some inhibitor MG132 rescues the sodium channel Nav1.5 and INa

in mdx5cv cardiomyocytes, and (2) MG132 does not rescue the dys-
trophin expression in either cardiac or skeletal muscle in mdx5cv

mice.
The proteasome is a proteolytic complex which rapidly

degrades ubiquitylated proteins (Rock et al., 1994). MG132 is a
molecule which reversibly blocks protein degradation by the pro-
teasome (Rock et al., 1994). The results of the present work suggest
that the decrease of Nav1.5 observed in mdx5cv mice could be either
directly or indirectly mediated by the proteasome. It is more likely
that the proteasome is indirectly implicated in the regulation of
Nav1.5 since membrane proteins are primarily degraded by the
lysosomal apparatus in eukaryotic cells, whereas the proteasome is
involved in the proteolysis of cytosolic proteins (Lee and Goldberg,
1998). The activity of endocytic proteins is regulated by ubiquitin
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signals and the proteasome could control the degradation of
these ubiquitylated proteins (Longva et al., 2002). Components
of the endocytic machinery that undergo ubiquitylation are, how-
ever, primarily monoubiquitylated and the proteasome recognizes
polyubiquitylated proteins. It has been suggested that endocytic
proteins might be transiently polyubiquitylated and degraded by
the proteasome (Salghetti et al., 2001). Altogether, these results
suggest that the proteasome indirectly regulates Nav1.5. Additional
experiments using endocytosis or lysosome inhibitors should be
carried out to help identify the proteolytic pathways involved in
the degradation of Nav1.5.

Unlike Bonuccelli et al. (2003), this study did not use the “orig-
inal” mdx mouse strain which carries a premature stop codon
in exon 23, since this strain was shown to have revertant fibers
due to exon skipping events (Danko et al., 1992). This study used
the mdx5cv mouse strain which carries an A to T mutation in
the middle of exon 10 that produces a new splice donor site and
generates a premature stop codon in full-length transcripts (Im
et al., 1996). MG132 treatment of mdx5cv mice did not rescue
dystrophin expression in skeletal or cardiac muscle. The differ-
ent effects of MG132 treatment on the two mouse strains could
be due to the nature of the dystrophin mutations. The mutation
on the dystrophin gene of mdx5cv mice may produce an unsta-
ble transcript which is not translated, whereas the “original” mdx
strain may produce an unstable protein that accumulates upon
MG132 treatment. This interpretation is supported by the study

of Assereto et al. (2006) on the DMC composition of DMD and
BMD muscle explants following in vitro treatment with 20 μM
MG132. Only some of the DMD and BMD explants showed signs
of DMC rescue after MG132 treatment, probably due to the nature
of the dystrophin mutations.

In conclusion, it was observed that the proteasome inhibitor
MG132 rescued the total amount of Nav1.5 protein and the INa

in cardiomyocytes, but did not rescue dystrophin expression in
dystrophin-deficient mdx5cv mice. Moreover these results suggest
that the proteasomal pathway is implicated in the degradation of
Nav1.5 channel in dystrophinopathies. We have yet to determine
if the proteasome is directly or indirectly involved in the degra-
dation of polyubiquitylated Nav1.5 channel or if it regulates the
endocytic machinery which controls the density of the sodium
channel at the plasma membrane. Additional experiments on the
mechanisms of Nav1.5 channel degradation and regulation in WT
and dystrophin-deficient cardiac cells are needed to better under-
stand the pathways involved in the maintenance of the Nav1.5
channel in specific pools.
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