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A secreted glycoprotein YKL-40 also named chitinase-3-like-1 is normally expressed by
multiple cell types such as macrophages, chondrocytes, and vascular smooth muscle cells.
However, a prominently high level of YKL-40 was found in a wide spectrum of human
diseases including cancers and chronic inflammatory diseases where it was strongly
expressed by cancerous cells and infiltrating macrophages. Here, we summarized recent
important findings of YKL-40 derived from cancerous cells and smooth muscle cells during
tumor angiogenesis and development. YKL-40 is a potent angiogenic factor capable of
stimulating tumor vascularization mediated by endothelial cells and maintaining vascular
integrity supported by smooth muscle cells. In addition, YKL-40 induces FAK-MAPK
signaling and up-regulates VEGF receptor 2 in endothelial cells; but a neutralizing antibody
(MAY) against YKL-40 inhibits its angiogenic activity. While YKL-40 is essential for
angiogenesis, little is known about its functional role in tumorassociated macrophage
(TAM)-mediated tumor development. Therefore, significant efforts are urgently needed to
identify pathophysiological function of YKL-40 in the dynamic interaction between tumor
cells and TAMs in the tumor microenvironment, which may offer substantial mechanistic
insights into tumor angiogenesis and metastasis, and also point to a therapeutic target for
treatment of cancers and other diseases.
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INTRODUCTION

YKL-40 is a 40-kDa secreted glycoprotein discovered as a heparin-
binding protein and belongs to the chitinase gene family that
binds to chitin-like oligosaccharides (Shackelton et al., 1995; Hu
et al., 1996; Fusetti et al., 2003). However, it does not have chiti-
nase/hydrolase activity because of the substitution of an essential
glutamic acid with leucine in the chitinase-3-like catalytic domain
(Renkema et al., 1998; Fusetti et al., 2003). YKL-40 is normally
expressed by a number of different cell types including chon-
drocytes (Hu et al., 1996), synoviocytes (Nyirkos and Golds,
1990), vascular smooth muscle cells (Shackelton et al., 1995),
macrophages (Rehli et al., 1997), and neutrophils (Kzhyshkowska
et al., 2007), and it has been recognized as a growth factor capa-
ble of stimulating connective tissue cell growth and endothelial
cell migration, and inhibiting mammary epithelial cell differen-
tiation (Malinda et al., 1999; De Ceuninck et al., 2001; Recklies

Abbreviations: VEGEF, vascular endothelial growth factor; Flk-1, VEGF recep-
tor 2; PDGE, platelet-derived growth factor; EGE, epidermal growth factor; bFGE,
basic fibroblastic growth factor; mAY, neutralizing anti-YKL-40 antibody; FAK,
focal adhesion kinase; MAPK, mitogen-activated protein kinase; Erk, Extracellular
signal-regulated kinase; PI3K, phosphoinositide 3-kinase; AKT, protein kinase B;
JNK, c-Jun N-terminal kinase; TAM, tumor-associated microphage; GBM, glioblas-
toma; GSDC, glioblastoma stem-differentiated cells; HMVEC, human microvascu-
lar endothelial cells; VE-cad, vascular endothelial cadherin; N-cad, neural cadherin;
ER, estrogen receptor; PR, progesterone receptor; Her2/neu, human epidermal
growth factor receptor 2; MMP, metalloproteinase; shRNA, mall hairpin; HS,
heparan sulfate.

et al., 2002; Scully et al., 2011). However, the pathophysiological
function of YKL-40 is still not fully understood.

Growing evidence has indicated that expression levels of
YKL-40 are elevated in multiple human diseases including type
2 diabetes (Persson et al., 2012), obesity and insulin resistance
in children (Kyrgios et al., 2012), Alzheimers’ diseases (Perrin
et al., 2011), heart failure (Harutyunyan et al., 2012), and other
cardiovascular disorders (Kjaergaard et al., 2010). In addition,
elevated YKL-40 was found in a vast array of inflammatory dis-
eases that contain bacterial infections (Kronborg et al., 2002),
rheumatoid arthritis (Nielsen et al., 2011), osteoarthritis (Volck
et al., 2001), hepatic fibrosis (Pizano-Martinez et al., 2011), and
hepatitis (Johansen et al., 2000; Fontana et al., 2010), asthma and
chronic obstructive pulmonary diseases (Park et al., 2010), neu-
roinflammation (Bonneh-Barkay et al., 2010), and bowel lesion
(Vind et al., 2003). In the chronic inflammatory diseases, YKL-40
is appreciated to mediate infiltration, differentiation, and mat-
uration of macrophages, the primary leukocytes in response to
inflammation (Boot et al., 1995; Rehli et al., 1997; Renkema
et al., 1998; Rehli et al., 2003). The cytokines colony-stimulating
factor-1 and granulocyte macrophage colony-stimulating factor,
essential for macrophage recruitment, displayed the ability to
induce 180-200 fold higher levels of YKL-40 mRNA transcripts
in macrophages, thus rendering infiltrating macrophages mature
(Hashimoto et al., 1999; Suzuki et al., 2000). Studies with YKL-40
deficient mice offered strong evidence supporting the role of
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YKL-40 in macrophage activity, as these mice exhibited markedly
diminished antigen-induced Th2 inflammation and impaired
macrophage activation and differentiation (Lee et al., 2009).
Over the past decades, multiple independent studies have
demonstrated that high serum levels of YKL-40 are correlated
with metastasis and poor survival in a variety of human car-
cinomas such as breast cancer (Jensen et al., 2003), colorectal
cancer (Cintin et al., 1999), ovarian cancer (Hogdall et al., 2003),
leukemia (Bergmann et al., 2005), lymphoma (Hottinger et al.,
2011), and glioblastoma (GBM) (Pelloski et al., 2005), suggesting
that serum levels of YKL-40 serve as a diagnostic and prog-
nostic cancer biomarker. YKL-40 is expressed by both tumor
cells and their surrounding tumor infiltrating macrophages also
named tumor-associated macrophages (TAM) that produce var-
ious tumor-promoting factors including angiogenic factors [vas-
cular endothelial growth factor (VEGF), epidermal growth factor
(EGF), basic fibroblastic growth factor (bFGF), platelet-derived
growth factor (PDGF)] (Chong et al., 1999; Ganapathy et al,,
2010), cytokines (IL-1, IL-6) (Wang et al., 2009; Pini et al,
2012), and chemokines (CCL-2, CCL-18, CXCL-12) (Dubinett
et al., 2010; Chen et al., 2011a,b,c; Fridlender et al., 2011; Boimel
etal,, 2012). Although the overall pathological role and molecular

mechanisms of YKL-40 in tumorigenesis remain to be established,
an angiogenic feature has been reported to regulate tumor devel-
opment in breast cancer, colon cancer, and GBM (Shao et al,
2009; Francescone et al., 2011; Kawada et al., 2012). Here, this
review primarily focused on the angiogenic signature of YKL-
40 derived from tumor cells and smooth muscle cells, as a
model is illustrated in Figure 1, while a potential distinct role of
YKL-40 in TAM-mediated tumor development warrants further
investigation.

AN ANGIOGENIC SIGNATURE OF YKL-40

Due to lack of its chitinase activity, the pathological role
of YKL-40 in cancer development has not been substantially
explored yet. Gp38k, a YKL-40 homolog, was found to induce
endothelial cell migration, indicative of angiogenic activity
(Nishikawa and Millis, 2003). To evaluate if YKL-40 possesses
the same angiogenic activity in cancer, a breast cancer line MDA-
MB-231 and colon cancer lines HCT-116 and SW480 were engi-
neered to express ectopic YKL-40 (Shao et al., 2009; Kawada
et al., 2012). Xenotransplantation of YKL-40-expressing tumor
cells gave rise to 4-8 fold larger tumors than ones formed from
their corresponding control cells, while acquired expression of
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FIGURE 1 | A scheme for YKL-40-induced tumor angiogenesis. YKL-40
secreted from tumor cells stimulates vascular endothelial cell activation to
induce tumor angiogenesis through membrane receptor coupling of
syndecan-1 with integrin. YKL-40 regulates VEGF in tumor cells and both may
synergistically promote endothelial cell angiogenesis. YKL-40 derived from
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smooth muscle cells also controls vessel stability and permeability via inducing
association of N-and VE-cad with B-catenin (B-cate) expressed by smooth
muscle cells and endothelial cells, respectively. TAMs participate in the vascular
development probably through YKL-40, which warrants further investigation.
Green balls indicate secreted YKL-40 and brown triangles represent VEGF.
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YKL-40 did not predispose these cells toward increased prolif-
eration in the cultured condition. Immunohistochemical studies
indicated that levels of blood vasculature formed in YKL-40-
expressing MDA-MB-231, HCT-116, and SW480 tumors were
1.8-2.0 fold greater than those in control tumors, suggesting that
YKL-40 acts as an angiogenic factor to promote vessel forma-
tion and tumor growth. Such an angiogenic capability of YKL-40
was also validated in GBM (Francescone et al., 2011), the most
lethal primary brain tumor characterized by vigorous vasculariza-
tion (Wen and Kesari, 2008). For example, YKL-40-directed gene
knockdown in GBM-derived U87 cells notably suppressed tumor
angiogenesis, as the vessel density of YKL-40 shRNA tumors was
decreased to 44% of vasculature relative to control tumors and
tumor volume was accordingly reduced to approximately 30%
of control counterparts (Shao et al., 2009). All of these multi-
ple in vivo approaches demonstrate the angiogenic signature of
YKL-40 in the tumor development, based on these xenografts car-
rying different levels of YKL-40. However, this angiogenic pheno-
type may also involve tumor-promoting function of host-derived
cells in the tumor microenvironment, as increased infiltrating
macrophages were observed in the YKL-40-expressing tumors,
but not in the control tumors (Kawada et al., 2012). It will be
interesting to know if these macrophages also increase to produce
YKL-40 that enhances the angiogenesis induced by tumor-derived
YKL-40.

To monitor its direct effects on vascular endothelial cells, con-
ditioned media derived from both MDA-MB-231 and HCT-116
cells ectopically expressing YKL-40 or vector were introduced
to human microvascular endothelial cells (HMVEC) and tested
for endothelial cell angiogenic activity in vitro. Analogous to the
findings in animals, both YKL-40-producing tumor cells induced
endothelial cell migration and tube formation (Shao et al., 2009).
Likewise, SW480 over-expressing YKL-40 also enhanced migra-
tion and tube formation of human umbilical vein endothelial
cells by 1.4-2 fold greater than the control cells expressing vector
(Kawada et al., 2012). YKL-40 gene knockdown abrogated these
angiogenic activities. In addition, conditioned medium of U87
cells expressing YKL-40 shRNA inhibited the angiogenic activ-
ities of HMVEC vs. control cell medium (Francescone et al.,
2011). To further support these in vitro data and firmly estab-
lish the angiogenic signature for YKL-40, recombinant YKL-40
was created and characterized for the angiogenic activity. YKL-40
stimulated endothelial cell migration and tube formation approx-
imately 3—4 fold greater than control cells, the angiogenic capa-
bility identical to VEGE one of the most potent angiogenic
factors (Shao et al., 2009). It was noted that most of these
cultured concentrations of YKL-40 between 100 and 200 ng/ml
were based on serum levels of YKL-40 observed in cancer
patients (Jensen et al., 2003; Johansen et al., 2003). However,
it is unclear if these concentrations indeed reflect YKL-40 lev-
els in the local tumor, because the serum levels are probably
derived from multiple organs and also involve the dilution effect.
Therefore, a cautious interpretation from these cultured systems
should be considered in stimulating YKL-40’s action in vivo.
Nevertheless, all these animal and cultured data suggest that
YKL-40 acts as an angiogenic factor to trigger tumor vascular
development.

RELATIONSHIP BETWEEN YKL-40 AND VEGF

In the tumor microenvironment, a significant amount of angio-
genic factors are secreted from tumor cells and activate adja-
cent vascular endothelial cells to induce angiogenic responses
by means of a paracrine loop (Hanahan and Weinberg, 2010).
YKL-40 and VEGF are believed to be mainly derived from tumor
cells and both display strong angiogenic activities in tumor
development, but their regulatory relationship has not been
revealed until recently. YKL-40-induced endothelial cell angio-
genic responses in culture were VEGF-independent, as an anti-
VEGF neutralizing antibody failed to impede YKL-40-induced
migration and tube formation of HMVECs (Shao et al., 2009).
This data suggests that YKL-40 and VEGF individually promote
endothelial cell angiogenesis. U87 brain tumor cells were found
to express high levels of YKL-40 and VEGF (Francescone et al.,
2011). When YKL-40 expression was inhibited via small hairpin
RNA (shRNA), a reduction of VEGF was subsequently obtained
in these tumor cells, indicative of a regulatory role of YKL-40 in
VEGF production. In light of a potential similar role of VEGF
in YKL-40 expression, transient neutralization of VEGF using a
neutralizing anti-VEGF antibody for 24 h did not have impacts
in YKL-40 production. Interestingly, inhibition of VEGF for 1
week noticeably induced expression of YKL-40, the unexpected
event identical to the documented evidence using VEGF shRNA
in U87 cells (Saidi et al., 2008). These results imply that VEGF
does not regulate YKL-40, but a long-term blockade of VEGF
may result in angiogenic compensative activities of tumor cells
by inducing YKL-40. It is most likely that a long course of the
stress caused by blockade of one growth factor and/or angio-
genic factor commits the cells to induce expression of other potent
angiogenic factors in order for cell survival and function. It was
noted that these tumor cells such as brain tumor cells express a
high level of angiogenic factors able to promote vascular devel-
opment (Junker et al., 2005a,b; Francescone et al., 2011). This
phenomenon was identically observed in a number of tumor
models treated chronically with a single anti-angiogenic drug,
the event known as angiogenic rebound (see below). However,
it needs to determine if this angiogenic switch is unique for
highly angiogenic tumors, but not for other non-angiogenic
tumors.

Apart from their relationship defined earlier in cultured can-
cer cell lines, studies on human cancers also suggest the similar
association of YKL-40 with VEGF in tumor angiogenesis. Tumor
specimens from 12 cases of patients with GBM were used to
test the relationship between YKL-40 and VEGF (Francescone
et al., 2011). Expression of YKL-40 and VEGF in tumor sam-
ples displayed a trend toward positive correlation (p = 0.062),
but a larger sample pool sufficient to establish their relationship
is required. In context with the findings in vitro, all the evidence
suggests that YKL-40 regulates VEGF in tumor cells and both may
exert a synergistic impact in tumor vascularization (Figure 1).

A chronic course of angiogenic blockade in either YKL-40
or VEGF may not receive a full elimination of tumor angio-
genesis; instead, an unexpected compensation by the other fac-
tor may lead to an opposite outcome including resistance to
the single-factor treatment and angiogenic rebound. Indeed,
the theme of this anti-angiogenic bypass upon a chronic single
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treatment has been supported by a number of strong evidence
documented in pre-clinical and clinical trials. For instance, indi-
vidual anti-angiogenic treatment with bevacizumab (anti-VEGF
antibody, Avastin), DC101 (anti-VEGF receptor antibody), or
sunitinib (anti-VEGF receptor kinase inhibitor) can elicit vas-
cular rebound and tumor cell invasiveness and metastasis in
several animal models (Casanovas et al., 2005; Ebos et al., 2009;
Paez-Ribes et al., 2009). In clinical trials, the benefit of anti-
angiogenic agents (e.g., sunitinib, bevacizumab) appears to be
transitory in the treatment of several types of advanced can-
cers, as drug resistance, tumor regrowth, and extensive vascular
recovery rapidly develop, once the therapy is terminated (Bergers
and Hanahan, 2008; Burstein et al., 2008; Verhoeff et al., 2009;
Wick et al., 2010). In addition, it is noteworthy that bevacizumab
has been removed by the Food and Drug Administration from
monotreatment of metastatic breast cancers, based on insuffi-
cient amelioration of patient overall survival. While it is emerging
that a monotherapy against a single factor could unexpectedly
result in conflicting outcomes, it is still enigmatic if YKL-40
acts as a major factor to contribute to the angiogenic rebound
in these patients that are treated with one drug such as beva-
cizumab. Nevertheless, to prevent either anti-VEGF or possible
anti-YKL-40 resistance, it should be taken into account for a
combined regimen with anti-VEGF and anti-YKL-40 therapies in
cancer patients.

MOLECULAR MECHANISMS OF YKL-40 IN ENDOTHELIAL
CELLS AND TUMOR CELLS

Although membrane receptors specific for YKL-40 binding
remain to be identified, heparin-binding affinity of YKL-40 seems
to be essential for its activity, resembling the heparin-binding
property of other secreted proteins such as extracellular matrix
protein vitronectin and angiogenic factors bFGF and VEGF
(Bernfield et al., 1999; Beauvais et al., 2004). The heparin bind-
ing affinity is at least approximately 100-fold lower (disassociation
constant Kd ~107% — 10~ M) than their specific receptor binding
(Kd ~10~!" = 107!2 M), but this binding can facilitate their adja-
cent specific receptor binding (Baird et al., 1988; Park et al., 2000;
Prince et al., 2010). Syndecan-1, a transmembrane receptor, is the
major source of cell surface heparan sulfate (HS). There is com-
pelling evidence demonstrating that endowed with the HS chain
on its ectodomains, syndecan-1 acts as a matrix co-receptor with
adjacent membrane-bound receptors such as integrins to medi-
ate cell adhesion and/or spreading (McQuade et al., 2006). This
co-membrane receptor model of syndecan-1 with integrin was
found to play an indispensable role in mediating YKL-40-induced
angiogenic responses (Shao et al., 2009). YKL-40 can induce cou-
pling of syndecan-1 with integrin ayf3 through binding to HS
and then activate intracellular signaling effectors focal adhesion
kinase (FAK®®!) and mitogen-activated protein kinase (MAPK)
that regulate endothelial cell adhesion and motility (Figure2).
In addition, treatment of HMVEC with recombinant YKL-40
increases protein expression and active form of both VEGF recep-
tor 2 (Flk-1) and intracellular extracellular signal-regulated kinase
(Erk 1 and 2) that in turn enhance angiogenic signaling pathways
(Faibish et al., 2011; Lee et al., 2011). Furthermore, an addi-
tional phosphoinositide 3-kinase-protein kinase B (PI3K-AKT)

Endothelial cells

Expression of Flk-1

— - e T e

Angiogenesis

FIGURE 2 | YKL-40 induces angiogenic signaling in endothelial cells.
YKL-40 induces the coordination of syndecan-1 (S1) and integrin oy B3
through binding heparan sulfate chains (HS) of S1 on cell surface. The
intracellular signaling pathway includes pFAK®8! and downstream MAP
kinase Erk 1 and 2, leading to angiogenic responses and angiogenic gene
expression as well (e.g., Flk-1). FIk-1 up-regulation in turns activates the
signal transduction cascade, constituting a positive feedback loop to
enhance angiogenic responses. Elevated Flk-1 may also sensitize
angiogenic responses to VEGF. An additional PISK-AKT pathway
participating in YKL-40-induced angiogenesis in endothelial cells warrants
further investigation.

pathway responsible for YKL-40’s action in vascular endothelial
cells is proposed, but no date has confirmed it yet.

The signaling activation by YKL-40 in endothelial cells was
similarly identified in the tumor line U87 cells, in which YKL-40
induces strong association of syndecan-1 with different inte-
grin oyf5 and downstream activation of FAK?”7 and Erk 1
and 2, thus targeting VEGF expression that evokes endothe-
lial cell angiogenesis (Francescone et al., 2011). In apoptotic
responses, YKL-40 was found to prevent U87 cell death from vy-
irradiation through activation of PI3K-AKT pathways, the signal
transduction identical to the cascade that mediates YKL-40-
induced mitogenesis in connective tissue cells (Recklies et al.,
2002). In SW480 cells, YKL-40 also regulated MAPK includ-
ing Erk 1, 2, and JNK that induce expression of IL-8 and
monocyte chemoattractant protein-1, facilitating angiogenesis
(Kawada et al., 2012). Therefore, YKL-40 acts as an angiogenic
factor and a growth factor to induce distinct signaling cas-
cades in endothelial cell angiogenesis and tumor cell survival,
respectively.
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ACTIVITY OF YKL-40 IN VASCULAR SMOOTH MUSCLE CELLS

As discussed earlier, neo-vascular development is mainly ascribed
to the activation of vascular endothelial cells, the primary com-
ponent of blood vessels. However, a functional role of YKL-40
in smooth muscle cells or vascular pericytes, another subset of
vascular cell populations that support vessel integrity and sta-
bility, is poorly understood, even those cells express YKL-40.
Using a smooth muscle cell model named glioblastoma stem-
differentiated cells (GSDC), we found that YKL-40 enhances both
GSDC and HMVEC contacts, restricts vascular leakage, and sta-
bilizes vascular networks (Francescone et al., 2013). Furthermore,
the vascular sprouting and stability mediated by smooth muscle-
like cells are dependent on signaling activation induced by YKL-
40, which includes interaction of membrane adhesion molecules
neural cadherin (N-cad) with B-catenin and downstream intra-
cellular cytoskeleton smooth muscle alpha actin (Figure1).
Likewise, adhesion and permeability of HMVECs regulated by
YKL-40 rely on the interaction of vascular endothelial cadherin
(VE-cad) with p-catenin and downstream effector actin. YKL-40
gene knockdown in GSDCs leads to disruption of association of
VE-cad with p-catenin and increases endothelial cell permeability
via a paracrine manner. In GSDCs, YKL-40 shRNA also inhibits
interaction of N-cad with f-catenin and reduces GSDC-mediated
vessel stability, suggesting that both vascular cell populations reg-
ulated by YKL-40 coordinately contribute to the angiogenesis.
Furthermore, xenotransplantation of GSDCs expressing YKL-
40 shRNA in mice gives rise to impaired blood vessel integrity
with collapsed vessel lumens and diminished smooth muscle-
like cell coverage; whereas control GSDCs develop extensive
and stable blood vessels covered with more smooth muscle-
like cells, highlighting a unique role of YKL-40 derived from
smooth muscle-like cells in the maintenance of vascular per-
meability, stability, and angiogenesis. Although the interaction
between cadherins and catenin is vital for YKL-40’s function, it
is still unknown whether or not this interaction is dependent on
pre-activation of syndecan-1 that is for YKL-40 binding on the
membrane.

FUNCTIONAL BLOCKADE OF YKL-40—A POTENTIAL TOOL
FOR ANTI-ANGIOGENIC THERAPY

A neutralizing anti-YKL-40 antibody (named mAY) from mice
immunized against recombinant YKL-40 was recently established
(Faibish et al., 2011). HMVEC migration and tube formation
induced by YKL-40 in a dose-dependent fashion were markedly
suppressed by mAY. mAY was also found to abolish YKL-40-
induced activation of Flk-1 and intracellular signaling MAP
kinase Erk 1 and Erk 2 in HMVEC. In addition, mAY facilitated
death responses of the U87 glioblastoma cell line to y-irradiation
through decreased expression of pAKT and AKT (Faibish et al.,
2011). Consistent with these data from cultured cells, tumor
angiogenesis developed from xenografted U87 cells expressing
YKL-40 was abrogated in mice treated with mAY, whereas vigor-
ous angiogenesis was observed in mIgG-treated control tumors.
Similar studies focusing on YKL-40 neutralization in the angio-
genesis of colon cancer unveiled the identical importance for the
anti-YKL-40 antibody (Kawada et al., 2012). Therefore, the evi-
dence from such pre-clinical trials has hold therapeutic promise

for formulating a humanized anti-YKL-40 antibody in the treat-
ment of cancer patients as well as other possible diseases.

Chitin can bind to both chitinases that have hydrolase activity
and chitinase-like proteins that lack the enzymatic activity such as
YKL-40 (Lee et al., 2008). Size difference of chitin exhibits distinct
capabilities of inducing host immune responses, as small parti-
cles (<10 pm) can induce TH1 type immune responses whereas
large ones (>50 wm) activate TH2 type responses (Shibata et al.,
1997; Lee et al., 2008). Recently, Iragavarapu-Charyulu’s group
has utilized small chitin to test a hypothesis that saturation
of YKL-40’s binding can alleviate its direct tumor-promoting
effects on tumors (Libreros et al., 2012). Chitin (1-10 wm) has
strong binding affinity with YKL-40 and is associated with acti-
vation of M1 type macrophages. This binding between chitin
and YKL-40 may induce immune response shift from pro-
tumorigenic TH2 type (M2 macrophage activation) to anti-
tumorigenic TH1 type (M1 macrophage activation). They found
that the treatment of mammary tumor-bearing mice with chitin
significantly decreased serum levels and splenic macrophages of
YKL-40, CXCL2, and MMP-9, thereof impeding lung metas-
tasis. It remains to be determined if the reduction of YKL-40
expression and subsequent inhibition of tumor progression are
different from treatment with large chitin. Other alternative pos-
sible approaches that block YKL-40 signaling pathways may also
suffice to prevent YKL-40 activity or be synergistic in conjunc-
tion therapies with YKL-40-directed inhibitors. Nonetheless, the
recent multiple animal approaches to blocking YKL-40 func-
tion offer therapeutic value potential for modalities of clinical
patients.

YKL-40 IN HUMAN TUMOR ANGIOGENESIS

A multitude of clinical studies have revealed that serum levels
of YKL-40 were elevated in patients with a series of carcinomas
including breast (Jensen et al., 2003), colorectum (Cintin et al.,
1999), ovary (Hogdall et al., 2003), prostate (Kucur et al., 2008),
brain (Pelloski et al., 2005), and blood (Bergmann et al., 2005).
These increased levels were correlated with poorer survival of can-
cer patients (Cintin et al., 1999, 2002; Hogdall et al., 2003; Jensen
et al., 2003; Johansen et al., 2003; Bergmann et al., 2005; Pelloski
et al., 2005), suggesting that serum levels of YKL-40 serve as a
prognostic cancer biomarker (Johansen et al., 2009).

While amounting evidence was documented in the study of
serum levels of YKL-40, there is relatively limited evidence focus-
ing on YKL-40 expression in cancers, particularly for its associ-
ation with angiogenesis. Thirty-eight cases of breast infiltrating
ductal carcinomas were surveyed for relationship of YKL-40 with
vessel formation using immunohistochemistry of CD34, a vascu-
lar endothelial cell marker (Shao et al., 2009). Of those 38 cancers,
23.7% (9 cases) contained high expression levels of YKL-40 and
23.7% (9 cases) displayed medium levels of YKL-40; whereas
52.6% (20 cases) were negative or low. These three groups with
different expression levels of YKL-40 were found to be signifi-
cantly correlated with different degrees of vascularization with
CD34-positive vessels in tumor sections (p = 0.006), in which
the blood vessel density of the two groups that demonstrated
high and medium levels of YKL-40 were 2.1 and 1.6-fold greater
than the group expressing low YKL-40, respectively. Consistent
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with this finding, of 61 colorectal cancer samples, 37 and 24 cases
expressing strong YKL-40 and weak YKL-40 exhibited 2.0 and
1.6-fold higher microvessel density than did 12 normal subjects,
respectively (Kawada et al., 2012). In addition, studying 11 cases
of patients with GBM revealed that the higher the YKL-40 expres-
sion, the more extensive the vessels appeared to be (Francescone
etal., 2011). All of the evidence demonstrates that YKL-40 expres-
sion in cancer is associated with vascular network development,
underscoring the angiogenic property of YKL-40 identified in
pre-clinical (cultured cells and xenografted animal models) and
clinical studies.

In the study of YKL-40 expression and clinical outcomes, sev-
eral independent studies with large breast cancer cohorts from
different laboratories including ours demonstrate that YKL-40
expressed by breast cancer is associated with estrogen recep-
tor (ER™), progesterone receptor (PR™), and human epidermal
growth factor receptor 2 (Her2/meu) (Kim et al., 2007; Roslind
et al., 2007b; Shao et al., 2011). Unexpectedly, cancer tissue
expression, contrary to its levels in the blood, was not corre-
lated with patient overall survival or disease-free survival in 8-year
follow-up studies (Shao et al., 2011). This finding was rein-
forced by the others surveying 630 breast cancer patients (Roslind
et al., 2007b). Interestingly, strong expression levels of YKL-40
were identified in TAMs in both breast cancer and lung can-
cer, as these TAMs surrounding tumor cells co-expressed YKL-40
and CD68, a marker of macrophages (Junker et al., 2005a,b;
Roslind et al., 2007a; Stearman et al., 2008). It is well estab-
lished that infiltrating macrophages play an essential role for
angiogenesis in both inflammatory diseases and tumor devel-
opment, because increased infiltration of macrophages leads to
accumulation of multiple growth factors (TGF-B, EGF, bFGF,
VEGE, and PDGF) that modulate tissue repair and angiogene-
sis (Chong et al., 1999; Ganapathy et al., 2010). Furthermore,
increased macrophage density in cancers correlates with tumor
angiogenesis and poorer patient survival (Leek et al., 1996, 2000;
Bingle et al., 2002; Tsutsui et al., 2005). However, it remains to be
clarified if the expression of YKL-40 by TAM:s is associated with
cancer metastasis and patient survival. Validating their relation-
ship may provide a key role of TAMs in the contribution to cancer
malignancy.

UNANSWERED QUESTIONS

It has been established that chronic inflammation is a key com-
ponent of cancer development and metastasis (Coussens and
Werb, 2002). TAMs, the primary infiltrating leukocytes, act as
a core mediator to regulate inflammatory responses that exac-
erbate the pathogenesis of cancers (Coussens and Werb, 2002;
Pollard, 2004; Lewis and Pollard, 2006). Although tumor-derived
YKL-40 was reported to be associated with macrophage recruit-
ment and angiogenesis in colorectal cancer (Kawada et al,
2012), we still lack sufficient knowledge regarding the functional
role and molecular mechanisms of YKL-40 in TAM-mediated
tumorigenesis. TAMs have the ability to render tumor cells inva-
sive through up-regulation of multiple inflammatory factors
such as cytokines, growth factors, chemokines, and metallo-
proteinases (MMPs). It is noted that YKL-40 is essential for
macrophage differentiation and maturation (Rehli et al., 1997,

2003). Thus, it is intriguing to interrogate if the inflammatory
responses mediated by these factors in the tumor microenvi-
ronment are dependent on TAM-derived YKL-40. For example,
little is known if YKL-40 up-regulates inflammatory cytokines
in TAMs, even though YKL-40 is recognized as an inflamma-
tory factor and can induce IL-8 from tumor cells (Rathcke
and Vestergaard, 2006; Qin et al., 2007; Kawada et al., 2012).
YKL-40 can induce VEGF in tumor cells as discussed earlier,
but the similar relationship in TAMs remains to be established.
In addition, it is still unclear regarding the molecular mech-
anisms by which YKL-40 regulates macrophage recruitment,
differentiation, and maturation. Identification of potential sig-
naling mediators in TAMs may provide alternative approaches
to block activities of TAMs, thus impeding tumor progression.
Besides TAMs, other YKL-40-producing cells surrounding tumor
cells and TAMs (e.g., neutrophils) should be not neglected in
the tumor microenvironment, as these cell populations likely
coordinate with tumor cells, TAMs, and vessel cells to facilitate
tumor cell ectopic dissemination. The function of cell-associated
YKL-40 in tumor may be different from free form of YKL-40 in
the blood, because we currently do not know receptors or lig-
ands for YKL-40 binding. This may also explain the difference
between serum levels and cancer cell levels of YKL-40 in asso-
ciation with tumor malignancy. Thus, characterization of their
relationship will aid in establishing a new therapeutic target for
treatment.

YKL-40 harbors chitinase-3-like catalytic domains, but
does not possess chitinase activities. Therefore, its functional
domain(s) are still unclear. Chen at al., recently reported that a
chitin-binding motif located between 325 and 339 amino acid
residues at the C terminus of YKL-40 is critical for YKL-40
inflammatory activities including AKT-mediated cytokine pro-
duction (IL-8 and TNF-a) in colonic epithelial cells (Chen et al.,
2011a,b). This motif may be also vital for other activities of
YKL-40 such as angiogenic function, tumor cell survival, and
inflammatory responses of TAMs, all of which need to be proven
in individual cell types. Moreover, if a single amino acid residue
within this motif is found to mainly contribute to YKL-40’s func-
tion, this could help screen new therapeutic agents aiming at this
specific element. Finally, one of the most challenging research
approaches is to identify the membrane receptor(s) specific for
YKL-40 binding, which would not only provide new mecha-
nistic insights into YKL-40’s action, but also establish proof-of-
principle for offering a novel mechanistically-directed target in
treatment of a wide spectrum of cancers as well as other types
of diseases. Therefore, gaining such important knowledge about
pathological activities and molecular mechanisms of YKL-40 will
unequivocally pave a fundamental way toward an advanced plat-
form able to notably improve the current diagnosis, prognosis,
and therapy of multiple human diseases that are associated with
increased levels of YKL-40.
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