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This Research Topic on muscle fatigue and muscle weakness
presents the latest ideas, arguments, and evidence from investi-
gations at the molecular level to macroscopic observations on
whole animals including humans, in an effort to identify criti-
cal factors underlying fatigue and weakness in health and disease.
Skeletal muscles confer movement to the human body using
vast amounts of energy provided through complex metabolic
pathways such that whole body mobility and energy balance
are largely dictated by muscle activity. Conversely, muscle func-
tion reflects overall health status as exercise history and chronic
conditions affect either or both muscle quality, including pro-
tein and fat content, and muscle mass. In health, muscle fatigue
is temporary and recovery occurs rapidly, and recreational or
competitive athletes are always pursuing the next best fatigue
“fix.” However, after inactivity—whether due to lifestyle choices,
injury or chronic disease—muscle fatigue may occur prema-
turely and persist, endangering a person’s safety because weak-
ness can lead to falls that may result in loss of independence.
Individuals are then trapped in a self-perpetuating, vicious cycle
of inactivity, disuse muscle atrophy/weakness, and metabolic
disturbance that compounds morbidity (i.e., causing metabolic
syndrome, obesity, hypertension, cachexia) and eventually pre-
mature death. Such issues transcend many scientific disciplines
and it becomes evident that not only recognizing fundamen-
tal factors in muscle fatigue and muscle weakness is necessary,
but also evaluating their interaction with factors outside of the
muscle is essential if we aspire to design better interventions
that improve muscle function and thus improve quality of life
and life prognosis for the ageing population and chronic disease
patients.

Fatigue and weakness may stem from changes within myocytes
that affect cross-bridge function or Ca2+ activation, to changes
within the circulation or function of the nervous system. Within
myocytes, metabolic products of ATP hydrolysis in the cytoplasm
such as inorganic phosphate (Pi), protons (H+ or pH), and ADP
have often been considered as agents that could disrupt force
generation at the sarcomere level (Fabiato and Fabiato, 1978;
Cooke and Pate, 1985; Metzger and Moss, 1987; Nosek et al.,
1987, 1990; Chase and Kushmerick, 1988, 1995; Cooke et al.,
1988; Godt and Nosek, 1989; Pate and Cooke, 1989; Metzger
and Moss, 1990a,b; Pate et al., 1995, 1998; Wiseman et al.,

1996; Karatzaferi et al., 2003, 2008). These effects may be due
to direct binding to proteins, or due to a more global alteration
of cellular energetics (�GATP) in the myocyte (Karatzaferi et al.,
2004).

In this Research Topic, Debold (2012) consolidates the most
recent information, including single molecule assays and molec-
ular biological approaches, about the mechanisms by which Pi,
H+, and ADP inhibit actomyosin cross-bridge cycling and thin
filament Ca2+-activation. Allen and Trajanovska (2012) provide
a synthesis on the multiple roles of Pi in fatigue, including
novel results from their group, showing that Pi is even more
detrimental when its effects on Ca2+ release are combined with
inhibition of actomyosin force generation and Ca2+ activation.
In addition to activity-driven changes in metabolites and cellular
energetics, mutations in sarcomeric proteins have been associ-
ated with prolonged muscle weakness in myopathies. Moving
away from actomyosin events, Ottenheijm et al. (2012) consider
the role of nebulin in sarcomere function, and how transgenic
mouse models can inform us about mutations in the giant fila-
mentous protein nebulin, and mutations in other thin filament
and closely related proteins that are associated with nemaline
myopathy.

To fully test our understanding of muscle fatigue, appropri-
ately detailed models of muscle function will be necessary. Röhrle
et al. (2012) make major advances in that arena by presenting a
multi-scale, finite element model of the human tibialis anterior.
Their model has the advantage of allowing simulation of fatigue
at the cellular and motor unit levels, and can incorporate altered
recruitment patterns of motor units due to central components of
fatigue. Thus their model can serve an invaluable role as we bridge
our understanding between the cellular and tissue levels.

Muscle’s plasticity is most readily evident in its adaptation
to repeated exercise, and conversely to inactivity that may be
associated with various injuries and disease states. Bogdanis
(2012) reviews the long-term changes in muscle at the molec-
ular, cellular, and tissue levels, as well as the corresponding
functional changes that are associated with these adaptations to
activity level history. Fatigability is a key functional character-
istic of different muscle fiber types, and can vary greatly with
activity, or inactivity, and Bogdanis evaluates the utility of high-
intensity bouts of exercise for modulating fatigability by training,
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or as a component in therapy. Bogdanis’ section on effects of reac-
tive oxygen species (ROS) sets the stage for the succinct review
on antioxidants by Hernández et al. (2012). Despite the pop-
ularity of antioxidants as nutritional supplements, Hernández
et al. report that their utility for either minimizing or speeding
recovery from fatigue appears to be limited to specific mus-
cle types. Moreover, Bogdanis’ (2012) section on neural fac-
tors opens the discussion on the role of non-muscle factors in
fatigue and serves as a bridge to the articles by Kobilo and
van Praag (2012), Sakkas and Karatzaferi (2012), and Noakes
(2012).

What is the extent to which muscle activity and fatigue
influence the function of other physiological systems of the
body, particularly the nervous system upon which skeletal mus-
cle depends for activation, and how much of fatigability is
determined centrally? In the commentary by Kobilo and van
Praag (2012), pharmacological activation of AMP-activated pro-
tein kinase (AMPK)—a metabolic regulator that is activated
during exercise—is shown to alter performance in a test of
spatial memory and hippocampal neurogenesis in mice in a
time-dependent manner. How can diseases and treatments mod-
ify the experience and presentation of fatigue? In their opin-
ion article, Sakkas and Karatzaferi (2012) consider available
evidence on the complex symptomatology of fatigue in renal
patients on hemodialysis treatment. By drawing analogies to
Chronic Fatigue Syndrome, Sakkas and Karatzaferi (2012) present

the view that fatigue, as experienced by patients undergo-
ing routine hemodialysis, might be better addressed by care-
givers as a syndrome and not with isolated measures since
its apparent complexity requires a cross-disciplinary therapeu-
tic approach. While hemodialysis and some other patients may
be afflicted with specific syndromes, the rest of us have all
heard the expression “mind over matter.” Does it apply to
muscle? Noakes (2012) concludes the series with a challenging
review, partly historical in nature, arguing that the key com-
ponent in fatigue is central. The author discusses the accepted
models on the limits of human exercise performance, and
presents his central governor model of exercise regulation, argu-
ing that fatigue is brain-derived, being an important homeo-
static mechanism that protects an organism from catastrophic
overexertion.

It is our sincere hope that this Research Topic will not
only provide readers with new insights and viewpoints on
the issue of muscle fatigue and weakness, but will also stim-
ulate novel ideas, experiments, and further advances in this
research field.
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