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Circuit simulation is a powerful methodology to generate differential mathematical models.
Due to its highly accurate modeling capability, circuit simulation can be used to investigate
interactions between the parts and processes of a cellular system. Circuit simulation has
Reviewed by: become a core technology for the field of electrical engineering, but its application in
Jongrae Kim, University of Glasgow, 010100y has not yet been fully realized. As a case study for evaluating the more advanced
UK features of a circuit simulation tool called Advanced Design System (ADS), we collected
Guanglong Jiang, Capital Normal and modeled laboratory data for iron metabolism in mouse kidney cells for a H ferritin
University, China - (HFt) receptor, T cell immunoglobulin and mucin domain-2 (TIM-2). The internal controlling
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USA parameters of TIM-2 associated iron metabolism were extracted and the ratios of iron
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Jian Han, Department of Biology, processed by circuit simulation demonstrated a capability to identify variables and predict
North Carolina Agricultural and outcomes that could not be readily measured by in vitro experiments. For example, an
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roughly 2 h. At the end of endocytosis, about 28% HFt remained intact and the rest was

degraded. Iron released from degraded HFt was in the labile iron pool (LIP) and stimulated
the generation of endogenous HFt for new storage. Both experimental data and the model
showed that TIM-2 was not involved in the process of iron export. The extracted internal
controlling parameters successfully captured the complexity of TIM-2 pathway and the
use of circuit simulation-based modeling across a wider range of cellular systems is the
next step for validating the significance and utility of this method.
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BACKGROUND

There have been both classical and advanced uses of analo-
gous electronic circuit concepts in evaluating biological systems.
For more than several decades, both animal and plant physi-
ologists have used models such as Ohm’s Law to model envi-
ronmental response (Janes, 1970; Meier et al., 2003). A modern
challenge has been to discover and interrelate cellular dynamics
with higher-level outcomes (Kitano, 2002a). Biochemical systems
theory (BST) provides a conceptual foundation for differential
analysis of the functional requirements and design principles of a
viable cell (Savageau, 1972, 1979, 2001). Electrical circuits are also
subject to differential analysis of their linear and nonlinear com-
ponents (McAdams and Shapiro, 1995). We propose that circuit

Abbreviations: ADS, Advanced Design System; DC, direct current; FeNTA,
ferrous nitrotriacetic acid; Fpn, ferroportin; LIP, labile iron pool; HFt, H fer-
ritin; ODE, ordinary differential equations; PBS, phosphate buffered saline; SDS,
sodium dodecyl sulphate; SSNE, sum of squares due to normalized error; TIM-2,
T cell immunoglobulin and mucin domain-2; Tf, transferrin; TfR 1, Transferrin
receptor 1.

simulation may be a powerful technique for realizing the poten-
tial of BST within the 21 century discipline of computational
systems biology, a field that aspires to evaluate complex biological
systems through the use of computers (Kitano, 2002b).

Circuit simulation software has been extensively developed
by semiconductor and electronics industries to handle circuit
topologies having complex objectives for optimization and hav-
ing many diverse interconnected components. Circuit simulation
for biological systems was attempted several decades ago in the
early years of the digital age (Thomas and Mikulecky, 1978), but
usage has been infrequent. Its relevance may be renewed now
both by a strong community effort to extensively crowd source
the computer modeling of cells (Helikar et al., 2012), and by
transformative developments such as a whole cell simulation of
phenotype that illustrate the prowess of drawing together a wide
range of mathematical models for cellular genome expression
(Karr et al., 2012). After new experimental findings go beyond
the original knowledge for the modeled system, there is a need to
model the newly discovered subsystem and integrate it into the
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prior model. Contemporary circuit simulation software provides
an agile platform for inputting a differential model and extending
it with a rich feature set of advanced numerical and optimization
methods.

To test a circuit simulation approach, we sought to examine
iron, a cellular micronutrient for which both modeling and a new
wave of experimental data exists. Outside of cells, sources of iron
in the bloodstream include both transferrin (Tf) and ferritin (Ft).
There are complex multicellular conditions of disease associated
with increased serum levels of iron-loaded Tf and iron-loaded Ft
(Konijn et al., 1981; Arad et al., 1988; Torti and Torti, 1994), and
the underlying mechanisms and regulatory effects for cell-serum
iron transport are complex and variable across different species
(Kuchroo et al., 2003; Knickelbein et al., 2006; Rennert et al., 2006;
Watanabe et al., 2007; Todorich et al., 2008; Rodriguez-Manzanet
et al., 2009; Rejniak et al., 2010). Recently, a mouse-specific T cell
immunoglobulin and mucin domain containing (TIM) protein
receptor, T cell immunoglobulin and mucin domain-2 (TIM-
2), has been found to process iron delivery. Regulatory effects
of TIM-2 have been identified in both mouse brain glial cells
(Watanabe et al., 2007) and kidney cells (Han et al., 2011). Han
et al. (2011) found that TIM-2 uptakes iron from exogenous H
ferritin (HFt). Ferritin is an iron storage and delivery protein
made of both H and L subunits (Han et al., 2000; Todorich et al.,
2011).

Although a mathematical model of iron metabolism in mam-
malian cells has been recently proposed (Chifman et al.,, 2012),
this model does not account for the uptake of iron by TIM-2.
It is based upon iron uptake through the classical transferrin-
transferrin receptor pathway and storage of iron within ferritin
(Klausner et al., 1983; Baynes et al., 1987). State variables
account for the movement of iron between a labile iron pool
(LIP) and four types of proteins—transferrin receptor 1 (TfR1),
exporter ferroportin (Fpn), HFt, and active iron regulatory pro-
teins (IRPs) (Chifman et al., 2012). In this study, we extended
this model by developing governing equations for an addi-
tional set of TIM-2 dynamics and comparing outcomes of a
differential model-based circuit simulation to laboratory data.
Laboratory data were collected in vitro for different times of
exposure of HFt to TIM-2 c¢DNA transfected mouse kidney
TCMK-1 cells. The outcome of the comparison between sim-
ulation data and laboratory data showed circuit simulation to
be a valuable tool for quantifying emerging knowledge of the
integral and complex role that micronutrients have in cellular

physiology.

MATERIALS AND METHODS

IRON UPTAKE AND IRON STORAGE DATA

Data and the experimental procedures for iron uptake and iron
storage analysis are from (Han et al., 2011). Brief summaries of
iron uptake and storage methods are described below.

Iron uptake study

125 1.Ci >FeCl; was added to 50 jLg/ml mouse recombinant HFt
in buffer of 20 WM citric acid, 2 mM ascorbate, and 0.1 M HEPES
(pH 6.0) (Santambrogio et al., 1993). 3>Fe-HFt complex was then
filtered through a 0.45 jum syringe filter. Two jLg/ml >>Fe-HFt

complex was added to 1 x 10 TCMK-1 vector or TIM-2 cells
and the cells were incubated at 37°C for 0, 5, 15, 30, 60, 90,
and 120 min. Cells were washed three times with PBS and har-
vested in whole cell lysis buffer [25 mM Tris pH 7.4, 1% Triton
X-100, 1% sodium dodecyl sulfate (SDS), 1% sodium deoxy-
cholate, 150 mM NaCl, 2 pg/ml aprotinin, 1 mM PMSF, complete
protease inhibitor (Roche Diagnostics, Indianapolis, IN)]. The
radio-activity of >Fe was measured. The experiment was per-
formed in triplicate.

Iron storage experiment

125 Ci *Fe was loaded into dialyzed biotinylated HFt and
then dialyzed in 0.1M HEPES at 4°C. TCMK-1 TIM-2 or
vector cells were incubated with 2 pug/ml biotinylated->>Fe-HFt
at 37°C for 2h. Plates were washed with PBS and placed
in PC-1 growth media. Collection times were at 0, 2, 4, 8,
24, and 48h after incubation. Cell lysates were prepared by
homogenization in lysis buffer for 5s, and then centrifuged at
12,000 x g at 4°C for 15min. Biotin->>Fe-HFt was immuno-
precipitated from the supernatant by incubation with strepta-
vidin conjugated beads (Jackson Immuno Research, PA) (Wang
et al.,, 2007). The beads were dissolved in 10% SDS/0.1M
NaOH solution and the >>Fe radio-activity was measured. The
radio-activity of >Fe from extracts depleted of biotinylated fer-
ritin was also measured. The experiment was performed in
triplicate.

CHEMICALS AND CELL CULTURES FOR IRON EXPORT EXPERIMENT
Chemicals and cell cultures were purchased and handled as pre-
viously described (Han et al., 2011). The TCMK-1 mouse kidney
epithelial cell line was obtained from the American Type Culture
Collection (ATCC, Rockville, MD). Transfection of TIM-2 was
performed with vector plasmids [BSR-a-FLAG (Chen et al,
2005)]. Selection for stable transfectants of TIM-2 was as previ-
ously described (Han et al., 2011).

IRON EXPORT EXPERIMENT

To test if TIM-2 can be the exporter of HFt and iron, TCMK-
1 vector and TIM-2 containing cells were pre-loaded with >°Fe-
Tf. The biotin-labeled apo-HFt was added to the cells. Biotin-HFt
and *°Fe in media were examined as exported products.

Iron labeling of mouse transferrin (Tf)

125 wCi >>FeCl; was mixed with 10 pl of 10mM NTA (pH was
adjusted to 6 using 1 M NaHCO3). The mixture was incubated
with 2 mg/ml mouse apo-Tf in 0.2 M NaOAc at room tempera-
ture for 30 min. The rest of Tf binding sites were saturated with
100 pl of 10 mM cold FeNTA at room temperature for 30 min.
The product was dialyzed in 0.02M Tris-HCI (pH = 7) at 4°C
overnight and the absorbance at A465 and A280 was measured
(A465/A280 = 0.057, near to the ideal reading of 0.045) (Baynes
et al., 1987).

Iron preloading and apo-HFt treatment to the cells

TCMK-1 vector and TIM-2 containing cells were incubated with
0.37 M Tf->>Fe for 4h at 37°C in culture containing 5% CO,.
Cells were then incubated with 2 jLg/ml biotin labeled apo-HFt
for 3h. Cells were washed with PBS and changed into normal
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growth media containing 10% FBS. Media were collected at 0, 2,
4, 24, and 48 h. >°Fe in media was considered exported product
and measured by liquid scintillation counter.

Pulling down biotin-labeled HFt in the media using streptavidin
beads

Media at different time points were each incubated with strepta-
vidin conjugated beads at 4°C overnight. Beads were spun down
at 4000 rpm for 5min and then dissolved in 10% SDS/0.1M
NaOH solution and incubated at 50°C for 1h. Activity of >>Fe
was counted from streptavidin pulling down solution. The exper-
iment was performed in triplicate.

GOVERNING EQUATIONS OF IRON METABOLISM

A mathematical model of iron homeostasis developed by
Chifman et al. (2012) was used as a basis for proposing an
extended model with the TIM-2 pathway. Governing equa-
tions based upon this model for time derivatives (without the
TIM-2 pathway) are described in Equations 1-5 with state vari-
ables x; = [LIP], x, = [TfR1], x3 = [Fpn], x4 = [HFt], and x5 =
[Active IRPs].

. ksq
X1 = apFeexxy + YaXy — OgX1X3 — OgX] ——— (D)
ks4 + x5

. X5

X = 0 ——— — yax 2
2 2k52+x5 Y2X2 ()
. 53

X3 = a3——— — (y3 + ynHep)x; (3)

ks3 + x5

X4 = oyx i — VaX (4)
4 S

X5 = a ks V5X (5)
’ ks +x1 7

Independent self-degrading behaviors for each state variable are
captured by the terms —vy;x;, where y; are decay constants. For
effects of state variable x; on state variable x;, terms in the form

of kujj_‘; represent the promoting effect, and terms in the form
1T

of kag_’i represent the inhibiting effect. Activation thresholds
ij TXi

are represented by k;, and maximum production rates are rep-
resented by a;j. In Equation 1, second-order reaction rates are
represented by o Feerx; and —agx)x; for iron uptake and iron
export, respectively. The remaining term of Equation 1, —x4,
models the dynamic where, as ferritin degrades, iron is released
and elevates the level of the LIP.

The model was extended with a pathway of exogenous iron-
loaded HFt (Fe-HFt) as shown in Figure 1. Four dynamic states
of TIM-2 were modeled: x¢ = [TIM-2 active on cell membrane],
x7 = [TIM-2 bounded with HFt], x3 = [TIM-2 in endosomes],
and x9 = [exogenous Ft in cell]. Time derivatives for the govern-
ing equations of this model are described in Equations 6-9.

X6 = Yexg — o7 Ftexxs (6)
ka7
X7 = Q7 FtoXxe — Y7X7 ————— (7)
7 70TexXe — Y7 7k47—|—(x4—|—x9)
. ka7
Xg = y7X7 T — Y63 (8)
kg7 + (x4 + x9)
X9 = Q9y7X7 — Y9X9 9)

The term a7 Fteyxg is the combination rate of active TIM-2 with
exogenous ferritin, where a7 is the reaction-rate constant and Ft,y
the concentration of exogenous ferritin. The reaction turns the
active TIM-2 into a bounded one, thus this term is negative in the
Xc equation, and positive in the X; equation. The concentration of

FIGURE 1 | TIM-2 pathway model of the TIM-2 receptor, endosome
formation, HFt degradation, and iron release into the iron labile pool.
Iron is subsequently either stored in endogenous HFt or exported to the
media. Iron uptake by the TIM-2 receptor occurs at the cellular membrane.
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TIM-2 active on cell membrane is not only affected by the com-
bination reaction with exogenous ferritin, but also by the process
of recycling them back to cell membrane. The rate of recycling is
assumed to be equal to the rate of decrease of TIM-2 in the endo-
some. The rate of decrease of TIM-2 is modeled by a first-order
decay with a decay constant yg.

The endocytosis of TIM-2 and the bounding of TIM-2 on
the membrane with H-ferritin are hindered by the presence of
ferritin and are expressed in Equations 7 and 8. y7 is the rate
for endocytosis with low concentration of ferritin (x4 + x9). The
endosome formation saturation factor Ky7 is the threshold value
of ferritin concentration when the endocytosis rate is reduced by
half. Equation 9 expresses the surviving exogenous iron loaded
ferritin after the endosome is dissolved and its decay rate in
normal cell solution. The Equation 1 time derivative of >>Fe in
LIP is therefore modified as shown in Equation 10. Equations
2 through 10 describe therefore the TIM-2 iron uptake and
metabolism model.

X1 = o Feexxy + vaxa — dex1x3

— 04X + a10Y7X7 4+ A11Y9X9 (10)

ks + x5

SIMULATION

Simulation relied upon the quantified activity of >>Fe where
concentrations from in vitro experiments are inferred from the
strength of radiation. Assumptions were that the ratios of con-
centration to strength of radiation were each constant for various
iron-loaded proteins. Other assumptions were that initial condi-
tions were related to the preparation process, and that the system
reaches equilibrium states before and after external experimen-
tal conditions (treatments) perturbed the system. For simplicity,
this work assumed that all three iron metabolic processes (uptake,

storage, and export) are in equilibrium and the level of iron
concentration is below the nonlinear threshold. For this sim-
ulation, the nonlinear effects which are not related to TIM-2
are ignored. Output parameters to be compared with experi-
mental measurements were the sum of different iron-containing
components.

The ordinary differential equations (ODEs) for the TIM-2
pathway of iron uptake and metabolism were mapped to an
equivalent electrical circuit to be implemented within a circuit
simulator. The circuit simulator used in this work was Agilent
Advanced Design System (Agilent ADS). Electric circuit com-
ponents were mapped to the variables and equations of the
TIM-2 pathway model (Figure 2). A unit capacitor was used to
hold the state variables, x; = Q; = V;. Time derivative variables
were represented by the current flow in and out of a capacitor,
% = I. Dual directional processes were represented by a resis-

. . . i—x; dx; i—x;
tor connecting two capacitors, % S ij) and % = (X%J).

Unidirectional processes were represented by a current-control
dx,' _ Xi dx,- X . .
current source, 7 = — - and, 7 = - Nonlinear relations can
be implemented by nonlinear-equation based sub-circuit blocks.
Figure 3A shows an example of a linear to saturation model

X .
T term and Figure 3B shows an example of a constant to

()ij,j
s term.

suppression model

A simulation “bench” was constructed with Agilent ADS as
shown in Figure4 (Agilent ADS manual, http://www.agilent.
com, Santa Clara, CA, USA). With proper conversion, math-
ematical equations can be mapped to equivalent circuits and
solved through transient simulation for dynamic process or direct
current (DC) simulation for stable states. Conversion consists
of three parts: mathematical equation conversion, initial condi-
tion conversion, and output parameter conversion. Controlling
parameters were extracted from in vitro experiments of iron
uptake, storage and export as were performed in TCMK-1 vector

) 1
Rl§ R8=
= g e A 1
cces = —
SRC14 CT[mB FET E1l R3
A C=1F
G=1 R=tTim2Endo
| Ftal
= CCCS
SRC15
G=1

FIGURE 2 | An example circuit generated by ODE-to-circuit
conversion. The component on the left is a current-control current
source (CCCS), an ideal element for current scaling. The scaling factor
G = 1 for the element mirrors the current, representing iron atoms in a
TIM-2/ferritin complex. The current inputs into a capacitor are to model

the state of iron accumulation. At a linear release condition, the stored
charge in capacitor leaks through the resistor RR7 modeling the release
of iron. The current is then mirrored again on the right side of the
circuit to input into another state representing iron atoms in a
TIM-2/ferritin complex.
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FIGURE 3 | Example circuits of nonlinear behavior. (A) Linear to saturation model; (B) Constant to suppression model.
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FIGURE 4 | View of ADS simulation bench for simulation of TIM-2
pathway model. (A) Simulation setup defines the time duration and
resolution; (B) Variable setup defines parameters and their range for

optimization or tuning; (C) Initial condition and environment (external source)
as applied to the cell subcircuit through wire connections; (D) Optimization
setup of optimization methods and iteration time; (E) Goals for optimization.

and TIM-2 containing cells. Although the experiments were
performed independently, the underlying mechanisms for iron
metabolism would be the same since the same cell line was
used. Therefore, the model with the same internal controlling

parameters should be able to describe the underlying mechanisms
for these three experiments. The goal of optimization for the over-
all model is to find a set of internal controlling parameters that
will minimize error which is modeled by the sum of squares due
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to normalized error (SSNE) as shown in Equation 11. N is the
total number of data points collected from three in vitro exper-
iments. For each point j, y; represents the mean, o; represents
the standard deviation, and m; represents the modeling data. The
means and standard deviations are determined from repetitions
in each point.

X (mj— )
SSNE=Y L
27

RESULTS

In this study, multiple TIM-2 associated iron metabolic processes:
iron uptake, storage, and export were modeled simultaneously
based on a direct implementation from the Agilent ADS circuit
simulator software. Internal controlling parameters for TIM-2
iron pathway were extracted by ADS based on in vitro data col-
lected from mice kidney TCMK-1 TIM-2 and vector cells. The
model demonstrated a capability to identify variables and pre-
dict outcomes that could not be readily measured by in vitro
experiments.

IRON UPTAKE

Circuit simulation of iron uptake accurately modeled an increase
in a time-dependent manner in TIM-2 transfectants, but not for
vector controls (Figure5). While the optimization of internal
controlling parameters is conducted in conjunction with other
experiments, the primary parameters most affected by the data
of this experiment were the concentration of >>Fe-loaded ferritin
in the cell culture (Ft,), the combination coefficient (a7), endo-
some forming rate (y7), and TIM-2 recovering rate (ye). The
iron uptake rate starts at 1.4 pmol per min per million cells, then
reduces to about 0.07 pmol per min per million cells. The initial
rising (within 10 min) of iron concentration is due to the com-
bination of TIM-2 in cell membranes with Fe-HFt. The turning
point at around 10 min indicates the saturation of the TIM-2
combining process, i.e., the number of available TIM-2 is largely
reduced. The uptake curve is not flattened out; instead it keeps ris-
ing at a slower rate. This indicates the appearance of a new TIM-2
unit on the cell membranes, which may occur from either TIM-2
recycling or new synthesis.

IRON STORAGE
Circuit simulation of iron storage was consistent with iron stor-
age occurring by the release of iron from exogenous (biotinylated)
ferritin to a cellular fraction. Release of iron occurred concomi-
tantly with degradation of biotinylated ferritin, consistent with
processing through the lysosome, and in parallel with an increase
in endogenous ferritin (Han et al., 2011). This dynamic and the
kinetics of increase in endogenous ferritin were similar to those
of degradation of ferritin in the lysosome (Radisky and Kaplan,
1998) and an empirical model established in (Han et al., 2011).
Degradation of biotinylated ferritin consisted of two phases
with different degradation time constants (Figure 6). Phase one
was for the first 4 h and phase two was for the remaining exper-
imental period. In phases one and two, the concentration of
biotinylated ferritin decreased with rates of about 20% per h and

22
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ol —— i1 vitro : 55F e in vector cells
18 1 e irvitro:55Fe in TIM-2 cells e
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FIGURE 5 | Comparison of iron uptake rates between laboratory data
and simulation. Cells were harvested at different time points over a 2-h
period and °°Fe amounts in cytosol fractions were counted. Data shown
are means and standard deviations for triplicate replication of the
experiment. The experiment was performed in triplicate.

—a&— 7 vitro: 58Fe in cellular bictinylated Ft
—— /77 vitro: 95Fe in cellular non-bictinylated Ft
—— i vitro: total 59Fe in the cell

——Model : %5Fe in cellular bictinylated Ft
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FIGURE 6 | Comparison of iron storage rates between laboratory data
and simulation. Cells were treated with biotinylated HFt loaded with ®5Fe
for various time points and the %°Fe amounts in biotinylated and
non-biotinylated fractions were counted. Data shown are means and
standard deviations for triplicate replication of the experiment. The
experiment was performed in triplicate.

1-2% per h, respectively. Possibly because biotinylated ferritin
stayed within endosomes for approximately 2 h within phase one,
it decreased faster due to the lower pH of endosome, which facili-
tates the ferritin degradation process in phase one. This indicates
that not all of the exogenous ferritin degrades at the end of endo-
some (within the 2 h period) and the remaining ferritin continues
degrading at a slower rate in the intracellular environment.

IRON EXPORT
An iron export experiment was performed for the purpose of data
collection and subsequent modeling. 3> Fe was loaded to TCMK-1
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FIGURE 7 | Comparison of iron export rates between laboratory data
and simulation. Cells that had been preloaded with Tf-°° Fe were washed
and changed into normal growth media. Media were collected at different
time points over a 48 h period and °®Fe amounts in media were counted.
Data shown are means and standard deviations for triplicate replication of
the experiment. The experiment was performed in triplicate.

vector and TIM-2 containing cells through Tf. Biotin labeled apo-
HFt was treated to the cells after iron loading. >>Fe and biotin
labeled HFt in fresh media were measured at different time points
as the exported products. The hypothesis for this study was that
intracellular iron could be loaded into apo-HFt and then exported
through TIM-2 receptor to the media. Our data showed that there
was a general absence of biotinylated HFt in media for TCMK-
1 vector and TIM-2 containing cells, and essentially all of >Fe
was found in total media. Figure 7 showed no difference between
the amount of *>Fe measured in total media of TIM-2 and vector
cells. This indicates that TIM-2 does not play a major role in iron
export, so there is not a need for a separate export model for TIM-
2 cells. For modeling, the iron export experiments would not be
expected to have an effect on determining internal controlling
parameters since TIM-2 was not involved in export process.

In order to confirm that the model with extracted parameters
can successfully predict the outcome of the iron export experi-
ments, simulation runs with known initial iron concentrations
in the media and the cells were conducted. With the initial iron
concentration of 2.4 pmol per million cells in the media and
10.8 pmol per million cells in the cell, the model predicted the
experimental results within one standard deviation, starting with
initial conditions within the experimental uncertainty. The addi-
tional information extracted from the model is that, for the iron
present in the cells, 80% were stored in ferritin and 20% is in LIP,
and the export rate of *>Fe from LIP is 0.2% per min for both
TIM-2 and vector cells.

EXTRACTED PARAMETERS

The extracted parameters from TIM-2 models are listed in
Table 1, and provide a reference set of values for TIM-2 iron
metabolism pathway kinetics where partial iron is released from
exogenous ferritin and stored in endogenous ferritin. The iron
uptake values were consistent with the reappearance of TIM-2 at

Table 1 | Extracted controlling parameters of TIM-2 pathway model.

Extracted controlling Expression Value

parameter
TIM-2 and HFt combination rate a7 Ftex 0.166 per min
Initial TIM-2 endosome Y7 0.118 per min

formation rate
TIM-2 endosome degradation Y6
rate

0.0142 per min

Remaining fraction of HFt at the ag 0.283 (unitless)

end of endocytosis

HFt degradation rate in cell Y9 0.00031 per min
Saturation factor of endosome Ka7 0.11 pmol per million cells
formation

Direct iron uptake rate aq Feex 0.00015 per min

Iron export rate through o4 0.0019 per min

ferroportin

the cell surface to maintain an iron uptake flow. The extracted
parameter, yg = 0.0142 per min, indicates the rate of recovery
of TIM-2 after one uptake cycle. From model simulation, the
recycling rate matched the consequence of the end of the fast
degradation (in endosome) of the biotinylated HFt. This indicates
that TIM-2 is recycled back to cell membrane. The rate of ferritin
degradation was based on >Fe measurement and detection of
biotinylated HFt. The two phases of ferritin degradation indicate
that amounts of iron released from the ferritin molecules were
different between the beginning and the end of the 48 h exper-
imental period. Excess iron may have been exported through
TIM-2 independent pathway, which is predictably through Fpn,
a known iron exporter.

DISCUSSION

Differential modeling with circuit simulation evaluated the
kinetic processes of iron relocation across three phases: iron
uptake, iron storage, and iron export. Each process was repre-
sented by governing equations. The model calculated the ratios
of iron movement among different cellular compartments and
confirmed the specific uptake of iron via HFt through the TIM-
2 receptor. By using concentration values measured in vitro and
applying the method of circuit simulation, precisely quantified
outcomes were predicted. Specifically, controlling parameters, the
ratios of uptake, storage, and export, and the recycling rate of the
TIM-2 receptor were predicted and consistent with the dynamic
role of the TIM-2 receptor based on iron kinetics. The con-
tinuous distribution of outcomes predicted by the simulation
will ultimately, when applied to multiple host/cell lineages and
environment controls, allow for focused comparisons that eval-
uate differences between species and physiologic conditions that
impact pathways of cellular iron metabolism.

The circuit simulator simulated multiple biological processes:
iron uptake, storage, and export simultaneously based on a direct
implementation from the Agilent ADS circuit simulator soft-
ware interface. Although the underlying processing of differential
models by a circuit simulator makes itself comparable to a gen-
eral performance capability of Matlab (another common tool for
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modeling biological systems), the Agilent ADS circuit simula-
tor interface avoids a complicated coding process. When com-
pared to other circuit simulators such as PSPICE, Agilent ADS
provided an intuitive interface and wide range of features for
multiple variable optimizations that we used for kinetic model-
ing. Finally, unlike software for generic mathematical modeling,
circuit simulators are advantageous in having a software archi-
tecture that is scalable for a large number of ODEs, a feature
that may be promising for expansive studies of reaction net-
works. A summary of these comparisons is provided in Table 2.
An ongoing challenge in biological studies has been the reso-
lution of analytical bottlenecks that frequently occur after the
initial quantification of data. Provided that an analyst has a work-
ing understanding of linear control systems, the use of circuit
simulation software when applied to kinetic modeling would be
both flexible and straightforward based on the results of this case
study.

Although the usage of biotechnology to generate data is accel-
erating, the inexact measurement of parameters in biological
systems can limit the number of ODEs that would require a high-
throughput analytical capacity. We expect however that as the
scope of analysis moves beyond a limited set of model organ-
isms and biochemical pathways, the circuit simulation approach
would benefit multi-level analyses that go from molecules to
entire ecosystems in an evolutionary context. The degree to which
the high-throughput capacity and multiple goal optimization
interface of circuit simulation software are needed would depend
greatly on what is found upon investigating for pluralism in
nature’s “circuitry” In this study, the identification and analysis
of a novel non-human pathway for a well-studied micronu-
trient such as iron represents a first step in uncovering such
pluralism.

The simulation setup in this study was configured for a co-
simulation of three experimental data sets, but the setup readily
supports multiple combinations of experimental data sets to
be evaluated separately or together. Prospective testing of this
method for circuit simulation would include functional valida-
tion of model-based predictions. For instance, the significance of
the extracted parameters in this study may be further pursued

Table 2 | Comparison between circuit simulator with Advance Design
System and Matlab.

Circuit simulation with Matlab
Advance Design System
Solving ODE Yes Yes
Solving ODE Yes Yes
system
Converging Select different solver both Select different solver
control automatically and manually manually
Optimization Implemented directly Implemented through
through interface programming
Multiple goal Implemented directly Implemented through
optimization through interface programming

ODE, ordinary differential equations.

by comparison with other animal models for expressional vari-
ation with, or lack of, the TIM-2 receptor and conducting
likelihood analysis for internal controlling parameters. We fur-
ther anticipate that the merging together of multiple differential
models would be useful for evaluating the complex, dynamic out-
comes of a more extensive and biologically responsive cellular
network.

The scalability and analytical feature set of circuit simula-
tion is enormous, and compares favorably to other approaches
found in computational modeling studies (Ulrich et al., 2006;
Laubenbacher et al., 2009; Rejniak and McCawley, 2010; Rejniak
et al., 2010, 2012; Salgado et al., 2010; Wu et al., 2010; Zhu
et al., 2011). Advanced numerical methods include Jacobian
matrix evaluation, step control, and convergence control, to han-
dle huge amounts of linear and nonlinear electrical components.
Optimization methods include genetic, random, gradient, min-
max, random minmax, quasi-Newton, and least path. Different
optimization methods can cover different situations such as the
quality of initial guess, converge speed, and existence of local
optimum conditions. This presents a powerful range of options
for developing and extending models that are based upon ongo-
ing research to identify new mechanisms within complex cellular
networks.

A distinctive issue can often be whether the strength of a soft-
ware application is to enable detailed customization of an analysis
through scripting in a programming language, or to accelerate
throughput and tractable project completion by pre-configured
interface options. For the former approach, a general ideal is to
enable a wide variety of approaches to connect data to analytical
computations. For the latter approach, the variety of data-to-
computation modalities can be restrictive if the pre-configured
interface has incorrect assumptions and/or does not provide a
wide enough range of options to manage different contexts. It
is therefore an interesting finding that the interface-based ADS
tool, designed for an electrical engineering context, was effective
at simulating biological system parameters. The unique feature of
ADS, as well as other circuit simulators, is their history of solving
linear and nonlinear ODE for complex and potentially massive
circuits. This case report indicates that a complex analysis may be
achieved in an interface-based circuit simulator without exten-
sive knowledge of a programming language. This capability has
potential application for future complex modeling of biological
systems.
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