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Introduction: Genetic forms of the Short QT Syndrome (SQTS) arise due to cardiac
ion channel mutations leading to accelerated ventricular repolarization, arrhythmias and
sudden cardiac death. Results from experimental and simulation studies suggest that
changes to refractoriness and tissue vulnerability produce a substrate favorable to re-entry.
Potential electromechanical consequences of the SQTS are less well-understood. The aim
of this study was to utilize electromechanically coupled human ventricle models to explore
electromechanical consequences of the SQTS.

Methods and Results: The Rice et al. mechanical model was coupled to the ten
Tusscher et al. ventricular cell model. Previously validated K+ channel formulations for SQT
variants 1 and 3 were incorporated. Functional effects of the SQTS mutations on Ca2+

i
transients, sarcomere length shortening and contractile force at the single cell

[
level

]

were evaluated with and without the consideration of stretch-activated channel current
(Isac). Without Isac, at a stimulation frequency of 1Hz, the SQTS mutations produced
dramatic reductions in the amplitude of

[
Ca2+ transients, sarcomere length shortening

i
and contractile force. When I

]
sac was incorporated, there was a considerable attenuation of

the effects of SQTS-associated action potential shortening on Ca2+ transients, sarcomere
shortening and contractile force. Single cell models were then incorporated into 3D human
ventricular tissue models. The timing of maximum deformation was delayed in the SQTS
setting compared to control.

Conclusion: The incorporation of Isac appears to be an important consideration in
modeling functional effects of SQT 1 and 3 mutations on cardiac electro-mechanical
coupling. Whilst there is little evidence of profoundly impaired cardiac contractile function
in SQTS patients, our 3D simulations correlate qualitatively with reported evidence for
dissociation between ventricular repolarization and the end of mechanical systole.

Keywords: short QT syndrome, stretch-activated channel, mechanical contraction, 3D model, human ventricles

INTRODUCTION
The short QT syndrome (SQTS) was first recognized as a distinct
clinical entity in 2000 (Gussak et al., 2000). It is characterized by
an abnormally short QT interval on the ECG with a QTC inter-
val of ∼320 ms or less, tall and peaked T-waves, and increased
Tpeak−Tend width (Anttonen et al., 2009; Patel and Pavri, 2009;
Couderc and Lopes, 2010; Cross et al., 2011; Gollob et al., 2011).
Patients usually have structurally normal hearts and affected fam-
ilies tend to exhibit histories of syncope, abbreviated atrial and
ventricular refractory periods, as well as increased susceptibility to
atrial and ventricular arrhythmias and sudden death (Gaita et al.,
2003; Schimpf et al., 2005; Giustetto et al., 2006; Hancox et al.,
2011).

There are currently six identified forms of the genetic SQTS
(SQT1–SQT6). SQT1-3 result from gain-of-function mutations
to K+ channel subunits. For SQT1, these mutations are to the

KCNH2 (hERG) gene encoding the α-subunit of the rapidly-
activating delayed rectifier K+ channel IKr (Brugada et al., 2004;
Hong et al., 2005a; Sun et al., 2011). The SQT2 variant arises
from mutations to the KCNQ1 gene encoding the α-subunit of
the slowly-activating delayed rectifier K+ channel IKs (Bellocq
et al., 2004; Hong et al., 2005b), whilst SQT3 involves mutations
to the KCNJ2 gene encoding the Kir 2.1 protein, which under-
lie the inwardly-rectifying K+ current IK1 (Priori et al., 2005;
Hattori et al., 2011; Deo et al., 2013). SQT4–SQT6 are due, respec-
tively, to loss-of-function mutations to the CACNA1C, CACNB2b
(Antzelevitch et al., 2007) and CACNA2D1 (Templin et al., 2011)
genes encoding the α1C, β2b, and α2δ-1- subunits of the L-type
Ca2+ channel.

Pro-arrhythmic mechanisms in the SQTS have been investi-
gated through the application of K+ channel openers to left ven-
tricular wedge preparations (e.g., Extramiana and Antzelevitch,
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2004; Patel and Antzelevitch, 2008). Data from these experiments
have been suggestive of a role for amplified transmural dispersion
of repolarization and abbreviation of effective refractory period
in the arrhythmogenic substrate in the SQTS (e.g., Extramiana
and Antzelevitch, 2004; Patel and Antzelevitch, 2008). However,
at present there are no phenotypically accurate animal models
of the SQTS, making in silico approaches attractive for explor-
ing the consequences of identified SQTS mutations. Computer
models have reproduced QT interval shortening produced by K+
channel mutations in the syndrome (Zhang and Hancox, 2004;
Priori et al., 2005; Weiss et al., 2005; Zhang et al., 2008; Adeniran
et al., 2011, 2012; Deo et al., 2013). Using a Markov-model of
the N588K-hERG SQT1 mutation based on experimental data
from recombinant wild-type and N588K-hERG channels, we have
recently shown that this SQT1 mutation reduces substrate size
and increases tissue vulnerability to premature stimuli in order to
facilitate and maintain re-entrant excitation waves in 2D and 3D
tissue. We have also shown that the SQT3 D172N Kir2.1 muta-
tion increases tissue vulnerability, alters excitability, stabilizes and
accelerates re-entry (Adeniran et al., 2012).

Although the SQTS is an electrical disorder, the heart is both
an electrical and mechanical organ and it is feasible, at least in
principle, that abbreviated repolarization in the syndrome might
influence the mechanical function of the heart. In SQTS patients,
there is some evidence of significant dissociation between ventric-
ular repolarization and the end of mechanical systole (Schimpf
et al., 2008). All modeling studies to-date that have investigated
arrhythmogenesis in the SQTS have utilized ventricular cell and
tissue electrical models that do not consider mechanical prop-
erties (Zhang and Hancox, 2004; Priori et al., 2005; Weiss et al.,
2005; Zhang et al., 2008; Adeniran et al., 2011, 2012; Deo et al.,
2013). Through mechano-electric feedback, the heart is able to
regulate its electrical activity in response to changes in con-
tractility or volume load (Lab, 1982, 1996; Franz, 1996). This
regulation is believed to occur through the activation of stretch-
activated channels (SACs) (Taggart, 1996; Bett and Sachs, 1997;
Hu and Sachs, 1997; Youm et al., 2005). As potential electrome-
chanical consequences of the SQTS are incompletely understood,
the present study was conducted in order: (1) to investigate
the potential functional consequences of the SQTS on ventric-
ular contraction at the single cell, tissue and organ levels in
the presence and absence of a stretch-activated current (Isac)
and (2) to evaluate the relationship between ventricular repo-
larization and mechanical systole in the setting of the SQTS. In
order to address these aims, established models of the SQT1 and
SQT3 K+-channel-linked SQTS variants (Adeniran et al., 2011,
2012) were coupled to a validated mechanical model (Rice et al.,
2008).

MATERIALS AND METHODS
SQT1 (IKr) AND SQT3 (IK1) FORMULATIONS
For SQT1, we used a biophysically-detailed Markov chain model
formulation which incorporates the experimentally observed
kinetic properties of wild-type (WT) and N588K-mutated
hERG/IKr channel current at 37◦C (Adeniran et al., 2011).
For SQT3, we employed a biophysically-detailed Hodgkin-
Huxley model formulation (Adeniran et al., 2012), which also

incorporates the experimentally observed kinetic properties of the
D172N-mutant Kir 2.1 channel at 37◦C.

ELECTROMECHANICAL MODEL
For electrophysiology, we utilized the ten Tusscher and Panfilov
(TP) human ventricular single cell model (Ten Tusscher and
Panfilov, 2006), which recapitulates human ventricular cell elec-
trical and membrane channel properties and the transmural
heterogeneity of ventricular action potential (AP) across the ven-
tricular wall (Ten Tusscher et al., 2004; Ten Tusscher and Panfilov,
2006). The TP model was modified and updated in 2006 to
incorporate newly available experimental data (Xia et al., 2006);
these modifications were also employed in the present study. This
approach mirrors that used in our recent studies of electrical con-
sequences of the SQT1 and SQT3 mutations (Adeniran et al.,
2011, 2012).

We used the Rice et al. myocyte contraction model (Rice et al.,
2008) to describe the mechanics of a cardiac myocyte. This model
was chosen as it is based on the cross-bridge cycling model of car-
diac muscle contraction and is able to replicate a wide range of
experimental data including steady-state force-sarcomere length
(F-SL), force-calcium and sarcomere length-calcium relations
(Rice et al., 2008).

The intracellular calcium concentration
[
Ca2+]

i from the
electrophysiology model (EP) was used as the coupling link to
the myofilament mechanics model (MM).

[
Ca2+]

i produced as
dynamic output from the EP model during the time course
of the AP served as input to the MM model from which the
amount bound to troponin is calculated. The formulation of the
myoplasmic Ca2+ concentration in the EP model is:

dCai

dt
= Caibufc

(
Vsr

Vc

(
Ileak − Iup

) + Ixfer

)

− Cm
Ibca + Ipca − 2INaCa

2VcF
(1)

where Caibufc is the total cytoplasmic buffer concentration, Vsr

is the sarcoplasmic reticulum (SR) volume, Vc is the cytoplas-
mic volume, Ileak is the SR Ca2+ leak current, Iup is the SR Ca2+
pump current, Ixfer is the diffusive Ca2+ current current between
dyadic Ca2+ subspace and bulk cytoplasm, Cm is the membrane
cell capacitance per unit surface area, IbCa is the background Ca2+
current, IpCa is the plateau Ca2+ current, INaCa is the Na+/Ca2+
exchanger and F is the Faraday constant.

The flux of the binding of Ca2+ to troponin was incorporated
into Equation 1 as follows:

dCai

dt
= Caibufc

(
Vsr

Vc

(
Ileak − Iup

) + Ixfer

)

− Cm
IbCa + IpCa − 2INaCa

2VcF
− dTropTotCa

dt
× 1

1000
(2)

where dTropTotCa
dt is the rate of Ca2+ binding to troponin. The

combination of all state variables from the EP model with the
MM model and the substitution of (Equation 2) for (Equation 1)
yielded a human ventricular myocyte electromechanical cell
model.
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STRETCH-ACTIVATED CURRENT
In accord with previous studies (Kohl and Sachs, 2001;
Panfilov et al., 2005; Youm et al., 2005; Kuijpers, 2008;
Lunze et al., 2010), we incorporated a stretch-activated cur-
rent (Isac) into the electromechanics model using the following
formulation:

Isac = Gsac × Pm × (Vm − Esac) (3)

where Gsac and Esac are the maximum channel conductance and
reversal potential of the SAC, respectively. In the electromechanics
model, Esac was typically set to 1 mV and describes the experi-
mentally observed depolarizing effect of the channel (Kohl et al.,
1999; Trayanova et al., 2004). Vm is the membrane potential and
Pm is the channel’s open probability modeled as:

Pm = 1.0

1 + e
−

(
ε−ε1/2

ke

) (4)

where ε and ε1/2 are the strain (with an explicit dependence
on the sarcomere length) and half-activation strain, respectively,
Ke = 0.02 (Zabel et al., 1996; Youm et al., 2005; Lunze et al., 2010)
is the activation slope.

The SAC is assumed to be permeable to Na+, K+ and Ca2+
(Kamkin et al., 2000; Youm et al., 2005; Kuijpers, 2008) with Isac

therefore defined as:

Isac = Isac, Na + Isac, K + Isac, Ca (5)

where Isac, Na, Isac, K, and Isac, Ca are the contributions of Na+,
K+ and Ca2+ to Isac. To evaluate the effects of the permeabil-
ity of the SAC to Na+, K+, and Ca2+, two permeability ratio
cases were considered in the single cell simulations: PNa : PK :
PCa = 1:1:0 and PNa : PK : PCa = 1:1:1 where PNa, PK, and PCa are
the relative permeabilities of the channel to Na+, K+ and Ca2+,
respectively.

TISSUE MECHANICS MODEL
We modeled cardiac tissue mechanics within the theoretical
framework of non-linear elasticity (Marsden and Hughes, 1994;
Holzapfel, 2000) as an inhomogeneous, anisotropic, nearly
incompressible non-linear material similar to previous studies
(Hunter et al., 1997; Costa et al., 2001; Whiteley et al., 2007;
Niederer and Smith, 2008; Pathmanathan and Whiteley, 2009).
We used a two-field variational principle with the deformation u
and the hydrostatic pressure p as the two fields (Lions and Ciarlet,
1994; Holzapfel, 2000; Bonet and Wood, 2008). p is utilized as
the Lagrange multiplier to enforce the near incompressibility
constraint. Thus, the total potential energy functional � for the
mechanics problem is formulated as:

�(u, p) = �int(u, p) + �ext(u) (6)

where �int(u, p) is the internal potential energy or total strain
energy of the body and �ext(u) is the external potential energy or
potential energy of the external loading of the body. With the axes

of the geometry aligned to the underlying tissue microstructure
(Seemann et al., 2006; Legrice et al., 1997), the second Piola-
Kirchhoff stress tensor S, obtained from the directional derivative
of Equation 6 in the direction of an arbitrary virtual displacement
and which relates a stress to a strain measure (Holzapfel, 2000;
Bonet and Wood, 2008) is defined as:

S = 1

2

(
∂W

∂EMN
+ ∂W

∂ENM

)
− pC−1

MN + SActiveTension (7)

where W is a strain energy function that defines the constitutive
behavior of the material, E is the Green-Lagrange strain ten-
sor that quantifies the length changes in a material fiber and
angles between fiber pairs in a deformed solid, C is the Right-
Cauchy green strain tensor, p is a Lagrange multiplier (referred
to as the hydrostatic pressure in the literature) used to enforce
incompressibility of the cardiac tissue, SActiveTension is a stress
tensor incorporating active tension from the electromechanics
cell model and enables the reproduction of the three physiolog-
ical movements of the ventricular wall: longitudinal shortening,
wall thickening and rotational twisting (MacGowan et al., 1997;
Lorenz et al., 2000; Tseng et al., 2000; Bogaert and Rademakers,
2001; Cheng et al., 2008; Coppola and Omens, 2008; Lilli et al.,
2013).

For the strain energy function W, we used the Guccione
constitutive law (Guccione et al., 1991) given by:

W = C1eQ (8)

Where

Q = C2E2
11 + C3

(
E2

22 + E2
33 + 2E2

23

) + 2C4(E12E21 + E13E31)

(9)
following previous work (Land et al., 2012), C1 = 0.831 kPa,
C2 = 14.31, C3 = 4.49, C4 = 10. Eij are the components of the
Green-Lagrange strain tensor.

TISSUE ELECTROPHYSIOLOGY MODEL
The monodomain representation (Colli Franzone et al., 2005;
Potse et al., 2006; Keener and Sneyd, 2008) of cardiac tissue was
used for the electrophysiology model with a modification (the
incorporation of the Right Cauchy Green deformation tensor C),
which allows the monodomain equation to take into account
the effect of the deforming tissue, similar to previous studies
(Nash and Panfilov, 2004; Whiteley et al., 2007; Pathmanathan
and Whiteley, 2009):

Cm
dV

dt
= −(Iion + Istim) + ∇ × (DC−1∇V) (10)

where Cm is the cell capacitance per unit surface area, V is the
membrane potential, Iion is the sum of all transmembrane ionic
currents from the electromechanics single cell model, Istim is
an externally applied stimulus and D is the diffusion tensor. In
simulations, intracellular conductivities in the fiber, cross-fiber
and sheet directions were set to 3.0, 1.0, and 0.31525 ms mm−1,
respectively. These gave a conduction velocity of 65 cm s−1 in the
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fiber direction along multiple cells, which is close to the value
70 cm s−1 observed in the fiber direction in human myocardium
(Taggart et al., 2000).

COMPUTATIONAL METHODS
Geometry and meshes
The 3D simulations were carried out on a DT-MRI reconstructed
anatomical human ventricle geometry, incorporating anisotropic
fiber orientation, from a healthy 34-year-old male. This had a spa-
tial resolution of 0.2 mm and approximately 24.2 million nodes
in total and was segmented into distinct ENDO (25%), MCELL
(35%), and EPI (40%) regions. The chosen cell proportion in
each region is similar to those used in other studies (Gima and
Rudy, 2002; Zhang et al., 2008; Adeniran et al., 2011, 2012). The
conditional activation sites were determined empirically across
the ventricle wall and were validated by reproducing the activa-
tion sequence and QRS complex in the measured 64-channel ECG
(Keller et al., 2009) of that person.

Solving the electromechanics problem
The electromechanics problem consists of two sub-problems: the
electrophysiology problem and the mechanics problem. The elec-
trophysiology problem (Equation 10) was solved with a Strang
splitting method (Sundnes et al., 2005) ensuring that the solu-
tion is second-order accurate. It was discretized in time using the
Crank-Nicholson method (Burnett, 1987), which is also second-
order accurate and discretized in space with Finite Elements
(Burnett, 1987; Braess, 2007; Brenner and Scott, 2010; Ern and
Guermond, 2010). Iion in (Equation 10) represents the single
cell electromechanics model from which the active tension input
to the Tissue mechanics model for contraction is obtained. The
system of ordinary differential equations (ODE) composing Iion

was solved with a combination of the Rush-Larsen scheme (Rush
and Larsen, 1978) and the CVODE solver (Cohen et al., 1996;
Hindmarsh et al., 2005).

The mechanics problem (Equation 6) was also solved using the
Finite element Method using the automated scientific computing
library, FEniCS (Logg et al., 2012). The resulting non-linear sys-
tem of equations was solved iteratively using the Newton method
to determine the equilibrium configuration of the system. The
value of the Right Cauchy Green Tensor C was then used to update
the diffusion coefficient tensor in Equation 10. Over a typical
finite element domain, P2 elements (Braess, 2007; Brenner and
Scott, 2010; Ern and Guermond, 2010) were used to discretize
the displacement variable u, while the pressure variable p was dis-
cretized with P1 elements (Braess, 2007; Brenner and Scott, 2010;
Ern and Guermond, 2010). This P2–P1 mixed finite element has
been proven to ensure stability (Chamberland et al., 2010; Haga
et al., 2012; Logg et al., 2012) and an optimal convergence rate
(Hughes, 2000; Chamberland et al., 2010; Ern and Guermond,
2010).

The algorithm for solving the full electromechanics problem is
as follows:

1. Determine the initial deformation and obtain the value of the
Right Cauchy Green Tensor C.

2. While time < tend:

a. Solve the electrophysiology problem for �tmechanics =
1 ms with C as input and active tension Ta as output
(�telectrophysiology = 0.01 ms).

b. Project Ta from the electrophysiology mesh onto the
mechanics mesh.

c. Solve the mechanics problem with Ta as input and C as
output.

RESULTS
SINGLE CELL ELECTROMECHANICAL SIMULATIONS
Simulations without incorporation of Isac

Initial simulations, in the absence of Isac, were performed using
the coupled electromechanics model for the WT condition for
each of ENDO, MCELL, and EPI conditions. Figure 1 shows
the electrophysiological consequences of the SQT1 and SQT3
mutations in EPI, MCELL, and ENDO cell types at a stimula-
tion frequency of 1 Hz (Figures 1Ai–Ci). For the EPI cell, action
potential duration at 90% repolarization (APD90) was 317 ms
under WT conditions and was shortened to 212 ms and 283 ms
respectively under SQT1 and SQT3 conditions. For the MCELL,
WT APD90 was 441 ms, whilst it was 232 and 382 ms under SQT1
and SQT3 conditions, respectively. For the ENDO cell model, WT
APD90 was 317 ms, whilst it was 211 and 284 ms under SQT1
and SQT3 respectively. The observed APD shortening was more
extensive for SQT1 than SQT3 and this is explicable on the basis of
the relative timings and roles of IKr and IK1 during ventricular AP
repolarization. As shown in Figures 1Aii–Cii, the SQT1 N588K
mutation produced a large increase in IKr together with a change
in the current’s profile that resulted in a significant augmentation
of IKr and shift in timing of maximal current to be earlier during
the AP plateau (see also Adeniran et al., 2011). The D172N muta-
tion significantly increased IK1 magnitude (Figures 1 Aiii–Ciii),
but as IK1 contributes to terminal AP repolarization, the conse-
quence of the mutation for APD shortening was less extensive
than that for the SQT1 mutation. The electrophysiological conse-
quences of the SQT1 and SQT3 mutations in these simulations are
comparable to those reported previously from non-mechanically
coupled ventricular cell models (Adeniran et al., 2011, 2012).

To validate the electromechanics model, we simulated force-
frequency relationship (FFR) by stimulating the single cell at
different frequencies for 1000 beats until steady state, recorded
the maximum force developed and plotted it against frequency
and compared it to experimental data (Mulieri et al., 1992). The
results are shown in Figure 2. In the frequency range, 1–2 Hz,
the electromechanics model produced an FFR which is quali-
tatively comparable to experimental data (vertical dashed lines)
(Mulieri et al., 1992) and showed the Bowditch staircase or Treppe
effect (Woodworth, 1902; Mulieri et al., 1992; Lakatta, 2004).
All subsequent simulations in this study were carried out at
1 Hz. We then proceeded to characterize the calcium and con-
tractile properties of the electromechanically coupled WT cell
models. Figure 3 shows the action potential (AP),

[
Ca2+]

i tran-
sient, sarcomere length shortening (SLs): EPI (Figures 3Ai–Aiv),
MCELL (Figures 3Bi–Biv), and ENDO (Figures 3Ci–Civ). The
larger

[
Ca2+]

i transient (and hence contraction) of the MCELL
compared to EPI and ENDO cells is consistent with experimental
data (McIntosh et al., 2000).
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FIGURE 1 | Simulation of ventricular action potentials and the time

course of IKr and IK1. (Ai–Ci) Steady state (at a stimulation frequency
of 1 Hz) action potentials for EPI (Ai), MCELL (Bi), and ENDO (Ci) cells under
wild-type (WT; black), SQT1 (blue) and SQT3 (green) conditions. (Aii–Cii)

Corresponding IKr current profiles for EPI (Aii), MCELL (Bii), and ENDO (Cii)

cells under the WT (black) and SQT1 (blue) conditions. (Aiii–Ciii)

Corresponding IK1 current profiles for EPI (Aiii), MCELL (Biii), and ENDO
(Ciii) cells under the WT (black) and SQT1 (blue) conditions.

FIGURE 2 | Force-frequency relationship. Plot of steady state normalized
active force vs. heart rate using the EPI cell model. Black continuous line
represents the WT electromechanics model while symbols represent
experimental data from non-failing control preprarations of human
myocardium. Experimental data from Mulieri et al. (1992).

Figure 3 also shows the effects of incorporating the SQT1 and
SQT3 mutations on the AP,

[
Ca2+]

i transient, SL shortening and
active force in the coupled electromechanics single cell mod-
els. Both mutations shortened the AP (Figures 3Ai–Ci), reduced

the amplitude of
[
Ca2+]

i (Figures 3Aii–Cii) and SL shortening
(Figures 3Aiii–Ciii) in each of the EPI, MCELL, and ENDO cell
models. These effects led to the attenuation of contractility (per-
centage of WT) in all the cell types (Figures 3Aiv–Civ) (SQT1 EPI
30%; SQT3 EPI 76%; SQT1 MCELL 44%; SQT3 MCELL 83%;
SQT1 ENDO 41%; SQT3 ENDO 78%). As identified in Figure 1,
the effects for the SQT3 mutation were not as pronounced as the
SQT1 mutation because of the relative timing of IKr and IK1 dur-
ing the AP, with the SQT3 mutation influencing only terminal
repolarization and consequently giving rise to longer APDs across
the ventricular wall.

The observed reduction in the active force under the muta-
tion conditions in Figure 3 was profound, particularly in the
case of SQT1. In order to elucidate the mechanism causing
such a decrease in contractile force, we performed a simulated
“AP clamp” experiment on the WT electromechanics model
(Figure 4), using two different AP profiles—one AP of a nor-
mal duration and the other AP with an abbreviated duration.
In this experiment, WT IKr and IK1 formulations were used,
therefore any observed alterations to

[
Ca2+]

i and contractile force
would relate to APD per se. Figure 4A shows the two AP clamp
commands used. Figure 4B shows the AP-evoked ICaL whilst
Figures 4C–E respectively show

[
Ca2+]

i, active force, and the dif-
ference in steady state level of free calcium concentration in the
sarcoplasmic reticulum (CaSR). The results of these simulations
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FIGURE 3 | Single cell effects of the SQT1 and SQT3 mutations (without

Isac). (Ai–Ci) WT (black), SQT1 (blue) and SQT3 (green) action potentials in
the EPI (Ai), MCELL (Bi), and ENDO (Ci) cell models. (Aii–Cii) WT (black),
SQT1 (blue) and SQT3 (green) intracellular calcium concentration and Ca2+
transients in the EPI (Aii), MCELL (Bii), and ENDO (Cii) cell models.

(Aiii–Ciii) WT (black), SQT1 (blue) and SQT3 (green) sarcomere length (SL) in
the EPI (Aiii), MCELL (Biii), and ENDO (Ciii) cell models. (Aiv–Civ) WT
(black), SQT1 (blue) and SQT3 (green) active force in the EPI (Aiv), MCELL
(Biv), and ENDO (Civ) cell models. Values are normalized to WT maximum
active force for each cell type.

showed that though the shorter AP did not alter notably the
peak amplitude of ICaL, it reduced the amplitude of the

[
Ca2+]

i
transient, SL shortening and the active force and—notably—SR
calcium content (CaSR). These effects are similar to the results
shown in Figure 3 for the SQT models. However, in the AP clamp
simulation, any observed reduction in amplitude of

[
Ca2+]

i, SL
shortening, CaSR and the active force can be attributed solely to
consequences of application of the shorter AP waveform. This
suggests that the key reason for the reduced active force in the
SQTS setting (Figure 3) is the indirect effect of the SQT mutation-
linked AP shortening on Ca2+ handling (and on SR content in
particular).

To investigate further the functional impact of AP duration on
the loading of SR calcium content at the steady state, we applied
conditioning trains containing one of two different AP clamp
commands (one with a longer and the other with a shorter AP
duration) to the WT electromechanics model; the conditioning
train was followed by an identical single square voltage command
to +10 mV for 300 ms (Figure 5A). With the conditioning train
of APs comprised of the longer duration AP, it was observed that
the +10 mV square pulse command produced a larger

[
Ca2+]

i

transient than that when conditioning trains of shorter duration
APs were applied. Results are shown in Figure 5C. With the con-
ditioning AP trains of different durations, the square pulse elicited
an identical ICaL (Figure 5B), but a smaller

[
Ca2+]

i amplitude
(Figure 5C) and active force (Figure 5D) for the shorter dura-
tion AP. These simulations also showed that prior to the square
pulse command, the SR was filled to a greater level with the
longer duration conditioning APs than with those of shorter
duration,(as illustrated by the steady state CaSR in Figure 5E).
This further validates the notion that the attenuation of

[
Ca2+]

i
amplitude and contractility with the SQT mutations was conse-
quent upon reduced SR content associated with abbreviation of
AP duration.

Incorporation of Isac

We then performed comparable simulations with the incorpora-
tion of Isac. Figures 6, 7 show the results with the SAC assumed to
be permeable to Na+, K+ and Ca2+ in the ratio 1:1:0 (Figure 6)
and 1:1:1 (Figure 7). The resting potential for EPI, MCELL and
ENDO decreased from −86 to −76 mV (Isac at 1:1:0 permeability
ratio) and to −79 mV (Isac at 1:1:1 permeability ratio) for the WT
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FIGURE 4 | Simulated AP clamp using the WT electromechanics model

without Isac. (A) The normal (black) and shortened (red) AP waveforms
applied as voltage clamp commands to the WT electromechanics model.
(B) ICaL elicited by the two AP waveforms in (A). (C) Normalized

[
Ca2+]

i
elicited by the two AP waveforms in (A). Values are normalized to
maximum

[
Ca2+]

i
for the “normal” AP waveform. (D) Normalized SL

shortening elicited by the two AP waveforms in (A). Values are normalized
to maximum SL shortening for the normal AP waveform. (E) Normalized
contractile force elicited by the two AP waveforms in (A). Values are
normalized to maximum active force for the normal AP waveform.

and SQT1 conditions respectively. Depolarization of the mem-
brane potential is an effect of SACs, which has been observed
experimentally (Boland and Troquet, 1980; Franz et al., 1992;
Kamkin et al., 2000). The resting membrane potential remained
unchanged under the SQT3 condition because the increase in out-
ward IK1 caused by the mutation counteracted the depolarizing
effect of Isac. Similar to the situation without Isac, the incorpo-
ration of SQT1 and SQT3 mutations abbreviated the AP in all
three cell types (Figures 6Ai–Ci, 7Ai–Ci). The most significant
consequences of inclusion of Isac were upon

[
Ca2+]

i and con-
tractile activity. Thus, the results shown in Figures 6, 7 indicate
that incorporation of Isac attenuated the reduction caused by
the SQT1 and SQT3 mutations shown in Figure 3 on

[
Ca2+]

i
(Figures 6Aii–Cii, 7Aii–Cii), SLs (Figures 6Aiii–Ciii, 7Aiii–Ciii)
and active force (Figures 6Aiv–Civ, 7Aiv–Civ). Isac incorporated
at 1:1:1 permeability ratio (i.e., incorporating Ca2+ permeabil-
ity) produced the greater effect, with contractility across the
ventricular wall being approximately 85% of control under the
SQT1 mutation and 92% of control under the SQT3 mutation. In
contrast, with Isac incorporated at a permeability ratio of 1:1:0, on
average across the ventricular wall, the contractile force was 62%
of control under the SQT1 condition and 82% of control under
the SQT3 condition.

FIGURE 5 | Changes in steady state SR content induced by

conditioning trains of action potentials of differing duration. (A)

Protocol used to determine steady state SR content, comprised of train of
100 normal (black) and shortened (red) AP clamp commands followed by a
300 ms square command voltage pulse to +10 mV. (B) ICaL elicited by the
+10 mV voltage command. Peak ICaL is equal with the two AP waveforms
in (A). (C) Normalized

[
Ca2+]

i
elicited by the by the +10 mV voltage

command. Values are normalized to maximum
[
Ca2+]

i
for the “normal” AP

waveform. (D) Normalized active force elicited by the +10 mV voltage
command. Values are normalized to maximum active force for the normal
AP waveform. (E) Normalized maximum SR Ca2+ content prior to the
application of +10 mV voltage command in (A). Values are normalized to
maximum SR Ca2+ for the normal AP waveform.

In order to investigate how Isac attenuated the effects of the
SQT1 and SQT3 mutations on

[
Ca2+]

i and cell contractility, a
side-by-side comparison was made between the effects of the
SQT1 and SQT3 mutations on AP duration,

[
Ca2+]

i and force
production, in the absence of Isac and with Isac incorporated at
the two permeability ratios (Figure 8). Figures 8Ai–Ci shows that
the incorporation of Isac at both permeability ratios reduced the
APDs under the WT, SQT1 or SQT3 conditions,with a greater
APD reduction in the case of permeability ratio of 1:1:1 than that
of 1:1:0 as shown in Table 1. There was a greater

[
Ca2+]

i tran-
sient amplitude under both SQTS mutation conditions with the
incorporation of Isac; the greatest amplitude being at the 1:1:1
permeability ratio (Figures 8Aii–Cii). From Figures 8Aiii–Ciii,
it is clear to see the increase in the

[
Ca2+]

i produced a greater
SL shortening (relative to WT) on incorporation of Isac, which
consequently led to greater cell contractility in the SQT1 and
SQT3 mutations particularly with a permeability ratio of 1:1:1
(Figures 8Aiv–Civ).

We then investigated how the incorporation of Isac led to better
maintenance of the [Ca2+]i transient magnitude. Figure 9 shows
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FIGURE 6 | Effects of Isac on the WT, SQT1, and SQT3

electromechanics model. (Ai–Ci) WT (black), SQT1 (blue) and SQT3
(green) action potentials in the EPI (Ai), MCELL (Bi), and ENDO (Ci)

cell models. (Aii–Cii) WT (black), SQT1 (blue) and SQT3 (green)
intracellular calcium concentration and Ca2+ transients in the EPI (Aii),

MCELL (Bii), and ENDO (Cii) cell models. (Aiii–Ciii) WT (black), SQT1
(blue) and SQT3 (green) sarcomere length (SL) in the EPI (Aiii), MCELL
(Biii), and ENDO (Ciii) cell models. (Aiv–Civ) WT (black), SQT1 (blue)
and SQT3 (green). SAC in these simulations were permeable to Na+,
K+, and Ca2+ in the ratio 1:1:0.

the computed APs (Figures 9Ai–Ci), ICaL (Figures 9Aii–Cii),
[Na+]i (Figures 9Aiii–Ciii), [Ca2+]i (Figures 9Aiv–Civ), CaSR
(Figures 9 Av–Cv) and INaCa (Figures 9 Avi–Cvi) with and with-
out Isac (permeability ratio 1:1:1) in the WT, SQT1 and SQT2
conditions. Under the WT, SQT1 and SQT3 conditions, it was
shown that incorporation of Isac did not produce a noticeable
change in the amplitude of ICaL, but elevated [Na+]i, [Ca2+]i,
and CaSR. These changes in the intracellular Na+ and Ca2+
concentrations were associated with an altered INaCa as shown
in Figures 9Avi–Cvi. In the case when Isac was absent, dur-
ing the initial depolarization phase of the AP, INaCa operated
briefly in its reverse-mode that brought Ca2+ into the cytoplas-
mic space, producing an outward INaCa. During the plateau and
early repolarization phases, INaCa remained almost zero for a
period before switching to a forward mode to extrude Ca2+ out
of cell cytoplasmic space, producing an inward INaCa current in
the late repolarization phase. However, in the case with Isac, the
activation of Isac brought more Na+ into the cell cytoplasmic
space (as it is permeable to Na+) producing an elevated level of[
Na+]

i (Figures 9Aiii–Ciii) as compared to the case when Isac was
absent. Consequently, INaCa operated longer in a reverse-mode

during the AP phase before it reverted to a normal mode in
late repolarization phase. This led to a greater INaCa amplitude
in both the reverse and forward modes (Figures 9 Avi–Cvi).
A greater INaCa in the reverse-mode brought more Ca2+ into
the cell cytoplasmic space, resulting in a higher systolic level
of

[
Ca2+]

i (Figures 9 Aiv–Civ) and a greater level of the CaSR
(Figures 9Av–Cv). Though this observation was qualitatively
similar for the WT (Figure 9Avi), SQT1 (Figure 9Bvi) and SQT3
conditions (Figure 9Cvi), in quantitative terms the increase in the[
Ca2+]

i was more dramatic in the SQT1 and 3 than WT set-
tings. Thus, incorporation of Isac into the simulations increased[
Ca2+]

i by 88% under the WT condition, but by 153% under the
SQT1 condition and by 94% under the SQT3 setting. The greater
increase of

[
Ca2+]

i under the SQT simulation conditions pro-

vides an explanation for the maintenance of the Ca2+ transient by
Isac. Our simulated elevation of

[
Na+]

i by Isac is consistent with
previous experimental studies (Alvarez et al., 1999; Isenberg et al.,
2003; Youm et al., 2005) that have shown an increase in cytosolic
and total

[
Na+]

i by a mechanical stretch in human, mouse and
ventricular myocytes, which has been attributed to the reverse-
mode of INaCa during the rising phase of APs (Gannier et al., 1996;
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FIGURE 7 | Effects of Isac on the WT, SQT1, and SQT3

electromechanics model. (Ai–Ci) WT (black), SQT1 (blue) and SQT3
(green) action potentials in the EPI (Ai), MCELL (Bi), and ENDO (Ci)

cell models. (Aii–Cii) WT (black), SQT1 (blue) and SQT3 (green)
intracellular calcium concentration and Ca2+ transients in the EPI (Aii),

MCELL (Bii), and ENDO (Cii) cell models. (Aiii–Ciii) WT (black), SQT1
(blue) and SQT3 (green) sarcomere length (SL) in the EPI (Aiii), MCELL
(Biii), and ENDO (Ciii) cell models. (Aiv–Civ) WT (black), SQT1 (blue)
and SQT3 (green). SAC in these simulations were permeable to Na+, K+,
and Ca2+ in the ratio 1:1:1.

Alvarez et al., 1999; Calaghan and White, 1999; Kamkin et al.,
2000, 2003; Calaghan et al., 2003; Youm et al., 2005).

3D SIMULATIONS
Results from single cell models cannot be translated automati-
cally to the intact tissue situation due to intercellular electrical
coupling and mechanical deformation of tissue. Schimpf et al.
(2008) observed a dissociation between ventricular repolarization
and the end of mechanical systole in SQT patients. Consequently,
to investigate this observation, we implemented a multi-cellular
3D tissue model of the human ventricles that considered the
intercellular electrical coupling and mechanical deformation of
tissue. Simulation results using the human ventricle 3D model
are shown in Figure 10. Figure 10A shows the ventricles during
diastole before contraction, whilst Figure 10B shows deforma-
tion under the WT condition; maximum deformation occurred
at 230 ms. Maximum deformation occurred at 200 ms and 210 ms
under the SQT1 (Figure 10C) and SQT3 (Figure 10D) condi-
tions respectively but in contrast to WT, repolarization had
already advanced significantly, particularly under the SQT1 con-
dition. The vertical lines show that contraction was greatest in

the WT condition (Figure 10B) and least in the SQT1 setting
(Figure 10C) but due to the incorporation of Isac, contractil-
ity was not significantly impaired in either mutation condition,
which agrees with available clinical evidence (Schimpf et al.,
2008).

DISCUSSION
SUMMARY OF MAJOR FINDINGS
Electromechanical coupling in the heart is an active area of
research and an important mechanism that couples electrical
and mechanical processes is the presence of cardiac ion channels
activated by mechanical stimuli such as changes in cell volume
or cell stretch (Morris, 1990; Bustamante et al., 1991; Hagiwara
et al., 1992; Van Wagoner, 1993; Suleymanian et al., 1995). In
the present study, we have developed a family of multi-physical
scale models for simulating the electromechanical coupling in
the human ventricle at cellular and tissue levels under both WT
and SQTS mutation conditions. Using these models we inves-
tigated the functional impact of AP abbreviation due to the
SQT1 and SQT3 mutations on human ventricular mechanical
dynamics. In the heart, SACs transduce mechanical energy into
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FIGURE 8 | Summary of effects of SQTS mutations on APD90,[
Ca2+]

i
, SL shortening and active force under different simulation

conditions. (Ai–Ci) Changes in APD90under the WT (black), SQT1 (gray)
and SQT3 (white) in the EPI, MCELL and ENDO cell types without Isac

(Ai), with Isac at a permeability ratio of 1:1:0 (Bi) and with Isac at a
permeability ratio of 1:1:1 (Ci). (Aii–Cii) Percentage changes in[
Ca2+]

i
under the WT (black), SQT1 (gray) and SQT3 (white) in the EPI,

MCELL and ENDO cell types without Isac (Aii), with Isac at a permeability

ratio of 1:1:0 (Bii) and with Isac at a permeability ratio of 1:1:1 (Cii).
(Aiii–Ciii) Percentage sarcomere length shortening under the WT (black),
SQT1 (gray) and SQT3 (white) in the EPI, MCELL, and ENDO cell types
without Isac (Aiii), with Isac at a permeability ratio of 1:1:0 (Biii) and with
Isac at a permeability ratio of 1:1:1 (Ciii). Values are relative to WT
without Isac (Aiii). (Aiv–Civ) Normalized active force under the WT (black),
SQT1 (gray) and SQT3 (white) in the EPI, MCELL and ENDO cell types
without Isac (Aiv), with Isac at a permeability ratio of 1:1:0 (Biv) and with
Isac at a permeability ratio of 1:1:1 (Civ).

cellular responses and can carry considerable currents (Franz
et al., 1992; Alvarez et al., 1999; Calaghan and White, 1999;
Calaghan et al., 2003; Youm et al., 2005). Consequently, we
incorporated a stretch-activated channel current (Isac) into our
single cell models to investigate the consequences of its inclu-
sion under WT and SQTS mutation conditions. Our simulations
suggest that: (i) at least in silico, abbreviated repolarization in
the SQTS has the potential to reduce ventricular mechanical
function; (ii) the inclusion of (Isac) in the model acts to main-
tain the normal amplitude of the contractile force (Figures 6–8);

and (iii) there is a dissociation between ventricular repolariza-
tion and the end of mechanical systole in 3D SQTS simulations
(Figure 10), which matches clinical observations by Schimpf
et al. (2008). Several aspects of our findings merit more detailed
discussion.

MECHANISTIC INSIGHTS
The results of simulated AP clamp experiments utilizing longer
and shorter duration APs in the WT electromechanics model
(Figure 4) provide mechanistic insight into the cause of the
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profound reduction and effects on contractility under simu-
lated SQT1 and SQT3 conditions. In these simulations it was
shown that markedly reduced contractility was attributable to
reduced SR Ca2+ loading. AP shortening alters cellular electrical

Table 1 | Changes in APD in the EPI, MCELL, and EDO cells with Isac.

APD (ms)

No Isac Isac (Permeability Isac (Permeability

1:1:0) 1:1:1)

WT EPI 317 310 306
MCELL 441 433 420
ENDO 317 314 310

SQT1 EPI 212 214 218
MCELL 232 230 237
ENDO 211 218 218

SQT3 EPI 283 269 253
MCELL 382 355 336
ENDO 284 270 257

dynamics and provides less time for SR Ca2+ loading and there-
fore SR Ca2+ content is compromised. This leads to a reduced
SR Ca2+ release and, consequently, cell shortening. These obser-
vations are somewhat similar to previously reported effects of
K-ATP channel openers. For example, K-ATP channel activa-
tion with lemakalim has been reported to reduce ventricular
myocyte Ca2+ transients and contraction (Jiang et al., 1994),
whilst a second K-ATP channel opener HOE 234 produced a neg-
ative inotropic effect on papillary muscle preparations (Kocić and
Siluta, 1995).

Our simulation data are suggestive that the presence of SACs
attenuates the reduced ventricular cell contractility arising from
SQTS K channel mutations. This can be ascribed to the effects of
Isac on SR Ca2+ loading and therefore the amplitude of

[
Ca2+]

i
transients as shown in Figure 8. With Isac, with a Na:K:Ca ratio of
either 1:1:0 or 1:1:1, there was a greater

[
Ca2+]

i transient ampli-

tude and higher SR Ca2+ content, resulting in a greater shortening
of the SL and active force as compared to the case when Isac was
absent. Such an effect of Isac on the intracellular Ca2+ handling
is due to two factors. First, during the depolarization phase of
the AP, INaCa operates in a reverse mode that brings Ca2+ into
the cytoplasmic space due to Na+ influx. As Isac is permeable to

FIGURE 9 | Reverse mode operation of NCX with the incorporation of

SAC. (Ai–Ci) Action potentials of WT (Ai), SQT1 (Bi), and SQT3 (Ci) without

stretch (black) and with stretch (red). (Aii–Cii)
[
Na+]

i for WT (Aii), SQT1 (Bii),

and SQT3 (Cii) without stretch (black) and with stretch (red). (Aiii–Ciii) Action
potentials of WT (Aiii), SQT1 (Biii), and SQT3 (Ciii) without stretch (black) and
with stretch (red). As the SAC is permeable to Na+, it is of higher amplitude

under stretch conditions. (Aiv–Civ)
[
Ca2+]

i
for WT (Aiv), SQT1 (Biv), and

SQT3 (Civ) without stretch (black) and with stretch (red). (Av–Cv) SR Ca2+
release under WT (Av), SQT1 (Bv) and SQT3 (Cv) without stretch (black) and
with stretch (red). The SR is refilled to a greater level prior to AP initiation
under stretch conditions. (Avi–Cvi) INaCa of WT (Avi), SQT1 (Bvi) and SQT3
(Cvi) without stretch (black) and with stretch (red).
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FIGURE 10 | Electromechanical coupling in 3D ventricle model under the

SQT1 and SQT3 mutations with Isac. (A) Resting position of the ventricles
prior to electrical stimulation. (B) Snapshot of maximum deformation
occurring at 230 ms under the WT condition just at the onset of repolarization
(black AP). (C) Snapshot of maximum deformation occurring at 200 ms under
the SQT1 condition. Repolarization is already significantly advanced (blue AP).
(D) Snapshot of maximum deformation occurring at 210 ms under the SQT3

condition. Repolarization is already in progress (green AP). Vertical lines show
a comparison of the degree of contraction of the ventricles between the
different conditions. Color bar represents the membrane potentials of cells in
the ventricles ranging from –86 to 42 mV. The APs shown in the inset are from
a left ventricular cell under the WT, SQT1 and SQT3 conditions. Arrows
indicate the snapshot time shown in the main figure for each condition
corresponding to the repolarization time at which maximal deformation occurs.

Na+, the activation of Isac elevates
[
Na+]

i, consequentially pro-

duces a greater reversed INaCa that elevates the
[
Ca2+]

i (Figure 9).

The elevation of
[
Na+]

i leading to the reverse-mode of INaCa

have been reported by previous studies (Bassingthwaighte et al.,
1976; Eisner et al., 1983; Hume and Uehara, 1986; Barcenas-Ruiz
et al., 1987; Gannier et al., 1996; Alvarez et al., 1999; Calaghan
and White, 1999; Kamkin et al., 2000, 2003; Calaghan et al., 2003;
Youm et al., 2005). Secondly, the increased

[
Ca2+]

i and the Ca2+
entry via INaCa in its reversed mode can both lead to more Ca2+
being pumped back to the SR, contributing to a greater CaSR, and
trigger more SR Ca2+ release (Leblanc and Hume, 1990; Levesque
et al., 1991; Litwin et al., 1996; Bers, 2001), thereby elevating
[Ca2+]i (Figure 10).

The dissociation between ventricular repolarization and the
end of mechanical systole reflects the difference time course of

the two processes. Our simulation data show that relative to ongo-
ing mechanical contraction, ventricular repolarization terminates
significantly earlier in SQTS conditions. Thus, accelerated repo-
larization in the SQTS exacerbates differences between electrical
and mechanical events. By way of illustration, in our 3D anatom-
ical human ventricle simulations, at the point of maximum
deformation, repolarization was already underway in the SQT1
and SQT3 conditions (Figure 10) whereas it had not begun under
the WT condition.

RELEVANCE TO PREVIOUS STUDIES
Our simulation data suggest that Isac plays an important role in
modulating cardiac electromechanical coupling. This is consis-
tent with previous findings (Hirabayashi et al., 2008; Keldermann
et al., 2010). In their study, Keldermann developed a coupled
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electromechanical model for the left human ventricle, and
used the model to investigate possible functional roles of Isac

on the re-entrant electrical wave conductions. It was found that
mechanoelectrical feedback via Isac can induce the deterioration
of an otherwise stable spiral wave into turbulent wave patterns
similar to that of ventricular fibrillation. A similar role for Isac

has also been observed in the study of (Hirabayashi et al., 2008).
Findings from the present study add to these previous studies,
in demonstrating the important role of Isac in cardiac electrome-
chanical dynamics.

In relation to the SQTS, Gaita et al. (2003) performed echocar-
diography, cardiac MRI and stress tests on the two families
in which the SQTS was first reported (Gaita et al., 2003) and
found no evident structural abnormalities. In subsequent work
on mechanical function in the SQTS by Schimpf et al. (2008), no
significant difference was seen between control subjects and SQTS
patients in end systolic volume, end diastolic volume and ejection
fraction. However, a dissociation between ventricular repolariza-
tion and the end of mechanical systole was observed. Our 3D
simulations (Figure 10) qualitatively match and substantiate this
clinical finding (Schimpf et al., 2008).

LIMITATIONS
In addition to acknowledged limitations of both the TP electro-
physiology model (Ten Tusscher and Panfilov, 2006) and the Rice
et al. (2008) mechanics model, although our coupled electrome-
chanics model exhibited the Bowditch staircase or Treppe effect
(Woodworth, 1902; Mulieri et al., 1992; Lakatta, 2004), it was
only qualitatively able to reproduce experimental force-frequency
characteristics. In simulations at increased pacing rates from 1.5
to 4 Hz, we observed APD shortening with an increase in the
pacing rate, but due to reduced time for Ca2+ extrusion and SR
accumulation between successive APs, there was an increase in the
amplitude of the

[
Ca2+]

i transient and the active force in both
WT and SQT settings. This was particularly the case at the faster
rates examined, where there was insufficient time for restoration
of Ca2+ dynamics between successive APs. These modeling obser-
vations require further validation and, if necessary, improvement
in Ca2+ dynamics when experimental data become available.
However, over the frequency range of 1–2 Hz our data matched
reasonably experimental force-frequency data (Figure 2) and all
simulations of the effects of SQT mutations presented here were
conducted at 1 Hz. In the ventricular electrophysiology cell mod-
els, we did not consider the effects of β-adrenergic stimulation

or more physiologically-detailed Ca2+ handling mechanisms as
implemented in some recently published models (Grandi et al.,
2010; O’Hara et al., 2011). These effects may affect quantita-
tively the simulation results (Puglisi et al., 2013). Additionally,
due to lack of experimental data on the Isac in human ventric-
ular myocytes, Isac density was based on the study of (Panfilov
et al., 2005; Youm et al., 2005; Kuijpers, 2008; Kohl and Sachs,
2001; Lunze et al., 2010). Whilst we have investigated the effects
of Isac on attenuation of force reduction in the SQTS setting, it
is possible that alternative mechanisms may be involved such as
calcium transport controlled by feedback of SR filling via store-
operated Ca2+ channels (SOC) (Kusters et al., 2005; Kowalewski
et al., 2006; Berna-Erro et al., 2012). Consequently, in additional
simulations (data not shown), we have incorporated into the
model a SOC channel current based on the Kuster et al. model
(Kusters et al., 2005). In contrast to our findings with Isac, with
ISOC incorporation no significant attenuation (<6%) of the force
reduction in the SQTS settings was observed for the maximal SOC
channel conductance varying from 0.2 to 20 pS/pF. Whilst it is
important that these potential limitations are stated, they do not
fundamentally alter the principal conclusions of this study.

CONCLUSION
Our tissue simulations qualitatively reproduce and provide a
possible explanation for dissociation between the end of mechan-
ical systole and ventricular repolarization (Schimpf et al., 2008):
accelerated repolarization under SQTS conditions exacerbates
differences in time-course between mechanical and electrical
events. The results of the simulations in this study also raise a
question as to whether electromechanical coupling involving Isac

offsets a negative inotropic effect of ventricular action potential
abbreviation that might otherwise occur for K+-channel linked
SQTS. If, in vivo, Isac does not execute such a role, then it is pos-
sible that other compensatory changes exist in SQTS patients as
accelerated repolarization might otherwise result in altered SR
Ca2+ loading and a reduction in contractile activity.
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