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Current microbiome research has generated tremendous amounts of data providing
snapshots of molecular activity in a variety of organisms, environments, and cell
types. However, turning this knowledge into whole system level of understanding on
pathways and processes has proven to be a challenging task. In this review we highlight
the applicability of bioinformatics and visualization techniques to large collections of
data in order to better understand the information that contains related diet—oral
microbiome—host mucosal transcriptome interactions. In particular, we focus on systems
biology of Porphyromonas gingivalis in the context of high throughput computational
methods tightly integrated with translational systems medicine. Those approaches have
applications for both basic research, where we can direct specific laboratory experiments
in model organisms and cell cultures, and human disease, where we can validate new
mechanisms and biomarkers for prevention and treatment of chronic disorders.
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SYSTEMS BIOLOGY OF THE ORAL MICROBIOME
The human oral cavity is estimated to contain more than 750 bac-
terial species packed in biofilms (Jenkinson and Lamont, 2005;
Paster et al., 2006). Three key hypotheses developed recently try
to explain the connection between oral microbiota and systemic
diseases. The “ecological plaque” hypothesis was formulated to
link the composition and phenotypic properties of the oral micro-
biota associated with caries initiation and progression (Marsh,
1994). This hypothesis envisages that caries is the result of envi-
ronmental changes, particularly as a result of reduced intra-oral
pH as a consequence of bacterial fermentation of dietary carbo-
hydrates. The “keystone pathogen” hypothesis was developed to
explain how despite its low-level colonization of the periodon-
tium, Porphyromonas gingivalis (P. gingivalis) causes inflamma-
tory periodontitis through dysbiosis, i.e., an unbalancing of the
relative abundance of individual components of the microbiota
compared with their abundances in health (Hajishengallis et al.,
2012). Finally, the “dietary carbohydrate-density” hypothesis as
a link between periodontal health and metabolic health tries to
explain how acellular dense carbohydrates of modern foods pro-
duce an inflammatory microbiota and from the mouth onward a
low-level inflammation, with multiple elements of the metabolic
syndrome (MetS) strongly correlating with circulating bacterial
lipopolysaccharide (LPS) concentrations (Spreadbury, 2013). To
address the questions how those emerging topics may influence
human health, we propose computational systems biology model-
ing approaches bridging microbial genome-scale metabolic mod-
eling, system level reconstructions of epithelial transcriptome,
and molecular profiling of the dietary glycobiome (Figure 1).
Biological response pathways (e.g., signaling or metabolic) often
integrate with a number of other pathways, operating within a
complex web of pathways. Traditional reductionism approaches

that seek to explain an isolated pathway by breaking it into its
component parts often cannot produce a sufficiently deep mech-
anistic understanding to enable predictive behaviors. This state
of affairs has led to the emergence of the field of “systems biol-
ogy” that seeks to develop testable models to explain the behavior
of complex biological systems (Palsson, 2006). Systems biology
can be defined broadly as the integration of large amounts of
biological data from various sources to create one or more com-
prehensive models of a system to enable (1) visualization of the
changes in the various working parts within a particular system
(e.g., “Bayesian Network” data from changes in genes, proteins,
or metabolites in response to different biological conditions),
(2) visualization of the known and/or predicted interaction(s)
between those parts, and (3) creation of a mathematical model
of interaction paths from which testable predictions about the
system can be made. This framework can also highlight areas
where information is scarce; promoting the focused acquisi-
tion data that will help flesh out specific parts of the model(s).
Systems approaches have been extended to model and simu-
late gut microbiome–host intestinal transcriptome interactions
(Heinken et al., 2013). Here we describe how they may similarly
shed insight on oral microbiology.

FOOD MOLECULAR PROFILING
Dental caries is initiated by demineralization of the tooth surface
due to the action of organic acid formed by dental plaque bacteria,
arising from their fermentation of dietary carbohydrates. After
fermentable carbohydrate intake, the plaque pH may decrease
below the critical pH of 5.5, at which point human enamel under-
goes demineralization, within minutes, and may remain acidified
for several minutes up to several hours (Morse et al., 1989).
Characteristics contributing to the ecological fitness in the oral
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FIGURE 1 | Translational systems biology approach for modeling of the

oral microbiome. The proposed framework of different modules need be
treated differently, i.e., stored differently, queried differently, and shown

differently. For large data sets, it has proven efficient to follow Keim’s Visual
Analytics mantra: “Analyse First, Show the Important, Zoom, Filter and
Analyse Further, Details on Demand” (Keim et al., 2006).

cavity, such as utilization of different diet-derived carbohydrates,
and stress tolerance to oxidative environments, should be dis-
cernible in a chewed food network model. To determine how oral
microbiome functionally responds to nutrient stimuli, molec-
ular profiling studies using food pairing approach can shed a
light on individual food preferences through building a bipar-
tite network consisting of two different types of nodes: (i) 381
ingredients used in recipes throughout the world and (ii) 1021
flavor compounds that are known to contribute to the flavor
of each of these ingredients (Ahn et al., 2011). Such chemoin-
formatics approach is useful to determine ethnic differences in
eating patterns, where North American food heavily relies on
dairy products, eggs, wheat and by contrast East Asian cuisine is
dominated by plant derivatives like soy sauce, sesame oil, rice, and
ginger.

Targeted glycoprofyling of the oral bolus (mass of food formed
in the mouth after thorough chewing) via high performance
liquid chromatography-chip time-of-flight mass spectrometry
can be used for monosaccharide analysis, sialic acid analysis to
determine relative levels of human vs. non-human sialylation,

oligosaccharide profiling, and detailed glycan structure analysis
(Gamsiz et al., accepted). To specific aim will be identifying oral
glycoproteins that bind to bacteria and either aid or prevent the
adherence of bacteria to mucosal and tooth surfaces.

In addition, food texture of the bolus can also be mea-
sured by special equipment in research laboratories and fac-
tory quality assurance (QA) labs (Peyron et al., 2011). Texture
analyzers can press, pull, pierce, squash, twist, and crush sam-
ples of food in a way which tries to mimic the end use as
closely as possible. In many cases, these tests have been devel-
oped to try to mimic human senses to make the test as appli-
cable to the product as possible, for example, to represent a
biting action or a chewing action. One research group in the
UK, Leatherhead Food International (LFI), is even investigating
textual and structural changes in low fat foods during chew-
ing, in other words, how the food breaks down in the mouth
when it is a low-fat product. Other field of food science—food
microbiology knowledge could also be extrapolated toward how
ingested food changes in response to different oral microbial
strains.
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THE ORAL SYMBIONT—NETWORK OF INTERACTIONS BETWEEN
MICROBIAL SECRETOME AND HOST MUCOSAL TRANSCRIPTOME
Oral bacteria can adhere to salivary agglutinin, other plaque bac-
teria, extracellular matrix, and epithelial cell-surface receptors
(Ellen et al., 1997). When explored using functional genomics
approaches, the oral microbiome can permit the analysis of
genes involved in colonization, survival, growth, and pathobi-
ology of P. gingivalis in this unique complex environment. A
common approach for building connectivity networks that inte-
grate prior knowledge, e.g., using Kyoto Encyclopedia of Genes
and Genomes (KEGG) (http://www.genome.jp/kegg/pathway/
pgi/pgi00520.html) can reveal the arsenal of genes of P. gingi-
valis allowing for breakdown of sugars, and this can be further
compared to carbohydrate activity gene sets of other mem-
bers of the oral microbiota biofilm. Classification according to
the Carbohydrate Active Enzymes (CAZy) system of Coutinho
& Henrissat (Cantarel et al., 2008) will allow identification of
carbohydrate-active genes including glycoside hydrolases (GH),
glycosyl transferases (GT), and glycosyl esterases (CE). This will
help to score the glycolysation potential of the pathogen. The
genome-scale metabolic model of P. gingivalis demonstrates also
that, upon amino acid catabolism, the organism is predicted
to secrete as fermentation products succinate, propionate, and
butyrate (Mazumdar et al., 2009). This would be compatible with
the observation that succinate secreted by other oral pathogens
is known to be used by P. gingivalis to produce ATP Shah and
Williams (1987). Alternatively, the cellular choice of secreting
mostly butyrate and propionate might be a deliberate evolved
strategy for inducing harm to host cells or for supplying partner
organisms with a share of useful nutrients.

Virulence factors secreted by P. gingivalis include gingipains
and LPS. The Arg-specific cysteine proteinases (gingipains) of P.
gingivalis exhibit complement C5 convertase-like activity, which
generates high levels of C5a locally to activate the C5a recep-
tor (Hajishengallis et al., 2012). C5aR signaling is involved in
crosstalk with Toll-like receptor 2 (TLR2), which is activated in
parallel by P. gingivalis surface ligands, and the crosstalk leads
to enhanced local inflammation. This may fuel further changes
to the biofilm and stabilize the transition to a disease-provoking
microbiota. Metatranscriptomic analysis of oral microbial com-
munity gene expression has shown that the introduction of P.
gingivalis into a healthy multispecies biofilm alters the pattern
of community gene expression (e.g., upregulation of proteins
related to growth and division, chaperones, ABC-transport sys-
tems, putative transposases, as well as numerous transcription
factors).

There are numerous examples of systems models developed
for various aspects of immune function activation by virulence
factors, a selection of which are described below. Transcriptomic
data has been most commonly used to create systems models.
Examples of this approach include Ravasi et al. (2007) and Tegnér
et al. (2006), who used transcriptomic data to generate a sys-
tems model of macrophage activation. Nilsson et al. (2006) used a
series of mathematical and bioinformatics analyses of microarray
data to study the time course of transcription factor regula-
tion following LPS activation of macrophages. They then used
bioinformatics to predict the regulation of various targets of the

transcription factors, to determine transcript dynamics in the
LPS network, composed of connections active during the LPS
response of macrophages. This was followed by creation of a sys-
tems model demonstrating the interconnection of transcription
factors and their various effectors.

Several approaches have been used to study the responses of
the human oral mucosa to external stimuli, including monolayers
of epithelial cells isolated from unstimulated saliva, oral squa-
mous cell carcinomas (SCC), or primary gingival keratinocytes—
organotyping of oral mucosa (Dongari-Bagtzoglou and Kashleva,
2006). For the purpose of studying the oral host–microbiome
interactions, gingival keratinocytes can be used in model sys-
tems to investigate the interaction between periodontal bacteria
and the epithelium in the initial stages of the periodontal disease
process (Moffatt-Jauregui et al., 2013). Expression of epithelial
TLRs in those cultured epithelial cells shows continuous interac-
tion with components of oral plaque bacteria that form biofilms
attached to the tooth surface. Under conditions of physiologi-
cal stress (e.g., bacterial LPS and/or hypoxia), TLR signaling in
epithelial cells becomes exaggerated in part through increased
TLR expression. This leads to impairment in the epithelial func-
tion, increased injury, and decreased repair, resulting in mucosal
inflammation.

Other environmental factors should be also taken into account
when building the broad picture of interactions. In particular,
smoking is major contributor to oral microbiome changes in later
life and coordinate analysis in smokers reveals significantly lower
taxonomic diversity, higher attachment loss and higher propor-
tion of the anaerobic genera (Kumar et al., 2011). Mucosal cells
are the first biological tissue to encounter inhaled cigarette smoke.
Apparently, the oral cavity’s antioxidant system fails to cope with
the severe attack of reactive oxygen species originating in cigarette
smoke. Application of Reverse Causal Reasoning (RCR) to cel-
lular stress transcriptomic data has been used to build Cellular
Stress Network model that describes physiological stressors and
the main processes operating in response to these stressors that
occur in non-diseased tissues (Schlage et al., 2011). Specifically,
this network model captures the responses to oxidative, endoplas-
mic reticulum, hypoxic, osmotic, xenobiotic, and shear stresses.
Causal relationships were constructed using a computable frame-
work, enabling its application to the evaluation of cellular stress
based on systems biology data.

THE ORAL INFLAMMATOME NETWORK
Bacterial components from caries activate cytokine/chemokine
release from odontoblasts, dendritic cells, and/or macrophages
via TLRs. Pro-inflammatory cytokines released from these
cells act as autocrine and paracrine signals to amplify
cytokine responses including antimicrobial peptide, cytokine,
and chemokine production. The release of chemokines creates
a migration gradient for immune cells to ODL while antimi-
crobial peptides reduce bacterial load. The minimal connectivity
of genes increased in the odontoblast layer (ODL) and pulp of
carious teeth network model (Horst et al., 2011) shows inter-
actions between genes measured to be significantly upregulated
and the most important candidate inflammatory signal medi-
ators: PIK3R1, IL1R1, TLR4, ARRβ1, CCL5, CCR5, IL8, JAK1,
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JAK2, RELA, and TYK2. The key receptors for inflammatory sig-
nals induced by caries in ODL appear to converge through IL1R1,
CCR5, and IL8Rα/β. The gene expression data used for building
this map were derived from PCR arrays and qPCR verification
data of cDNA arrays. In summary, this is the first comprehensive
analysis of identified potential mediators that connect local and
systemic inflammation, suggesting that this type of analysis may
be a useful discovery tool for novel biomarkers. Peripheral tissue
trauma can initiate systemic inflammation and remote organ dys-
function. To explore how inflammation spreads the “homeostatic
cytokine concentration” model was developed by Valeyev et al.
(2010). In essence, the model proposes strategy for a quantitative
description of multiple interactions between immune cell pop-
ulations based on their cytokine production profiles. According
to the dose–response curve, any given extracellular concentration
of cytokine A in tissue translates to a specific extracellular con-
centration of cytokine B, under conditions of equilibrium. It is
also possible that additional cytokine A or B production by other
cell populations can also occur in tissue, resulting in cytokine
A and B concentrations that do not fit the line of homeostatic
equilibrium or the immune cell population considered. After
such perturbation, the immune system returns to homeostasis,
defined as the dose-dependent line of cytokine B production in
a cytokine A-dependent manner and modulated by the cytokine
removal mechanisms. Internal or external factors can change the
cytokine production profiles and thereby modify the immune cell
interaction parameters via feedback loops. After establishing the
mechanism of chronic inflammation in the form of additional
stable homeostatic level, the systems model for immune cell inter-
actions can elucidate the causes of variety of clinical phenotypes
observed in clinical practice.

SYSTEMS MEDICINE OF THE ORAL MICROBIOME
“Systems medicine” is the application of systems biology
approaches to medical research and medical practice (Bousquet
et al., 2011). Over the past decade, a number of bioinformatics
tools have been developed to predict to which parts of a microbe
the immune system will react, the so-called epitopes (Rapin et al.,
2006). Several methodologies are used to model immune sys-
tem. Immune system models have recently been used to answer
a number of immunologically relevant questions and to inves-
tigate controversial new theories or mechanisms. The computer
implementation of the model (SimAthero simulator) has two
main classes of parameters: the first one refers to values known
from standard immunology literature; the second one collects
all the parameters with unknown values which we arbitrarily
set to plausible values after performing a series of tests (tuning
phase) (Pappalardo et al., 2008). In particular, specificity is imple-
mented in SimAthero by a bit-string polyclonal lattice method.
Bit-string refers to the way the molecules and the specificity
among molecules is represented, polyclonal indicates that more
clones of different specificity of lymphocytes are represented and
lattice means that we use a discrete lattice to represent the space,
that is, the space is discrete. The set of lymphocytes receptors is
represented by bit-strings of length h which then forms the so-
called shape space. A clonal set of cells is characterized by the
same clonotypic receptor, i.e., by the same bit-string of length l.

The potential repertoire of receptors scales as 2l. The receptor–
coreceptor binding among the entities are described in terms of
matching between binary strings with fixed directional reading
frame. Bit-strings represent the generic binding site between cells
(through their receptors) and target molecules (through peptides
and epitopes). The simulator takes care of the main interactions
that happen during an immune response against atherogenesis.
The model applies to the very early stage of the atherosclero-
sis, i.e., before a calcified plaque is formed. In silico experiments
on two samples of one hundred virtual humans show reasonable
agreements with human observations. As the model and its com-
puter implementation is very flexible and new biological entities
and interactions can be easily added to the model.

HOW ORAL MICROBIOME CONTRIBUTES TO DISEASE?
It is intriguing to study to what extend periodontopathic bacteria
may directly enhance atherogenesis. Several facts provide clues of
potential connection between oral bacteria and local immuno-
inflammatory response. The detection frequency of P. gingivalis,
in atherosclerostic specimens was shown to be 32% (Chen et al.,
2008). Lu et al. (2008) also suggested that systemic markers of
inflammation (CRP, white cell count, fibrinogen) were predictors
of peripheral vascular disease and were significantly associated
with periodontal attachment loss.

The increasing use of cone beam computed tomography
(CBCT) in dentistry provides images in the third dimension (3D)
which facilitates precise localization and prevalence of Carotid
Artery Calcifications (CAC) on panoramic images in the general
dental population over 50 years varies from 0.1 to 3.2% increas-
ing with age and is substantially higher (22–37%) in populations
exhibiting atherosclerotic (hypertension, cardiovascular disease,
past stroke/CVA, transient ischemic attacks, or diabetes) or other
(hypercholesterolemia, obesity and physical inactivity, cigarette
smoking, sleep apnea, and male gender) risk factors (Lee and
Kang, 2005).

Recent studies have pointed to the heterogeneity of
macrophages infiltrated into adipose tissue; i.e., they follow
at least two different polarization states: M1 or classically acti-
vated (pro-inflammatory) macrophages, which are induced by
pro-inflammatory mediators such as LPS and M2 or alternatively
activated (anti-inflammatory) macrophages, which are generated
in vitro by exposure to Th2 cytokines such as IL-4 and IL-13
(Osborn and Olefsky, 2012; Manteiga et al., 2013). Evidence has
accumulated indicating that macrophages exhibit the phenotypic
change from M2 to M1 polarization in obese adipose tissue,
thereby accelerating adipose tissue inflammation. Local ectopic
fat accumulation, as well as adipose inflammation, is now con-
sidered a significant contributor to systemic one (Thomas et al.,
2012). In the context of crosstalk oral microbiome–metabolic
dysregulation, the “fatty neck” could join the rest of the Metabolic
Syndrome inflamed depots. Eighty percentage of the fat in the
face is localized under the chin and comprises 35% of total
neck fat (Figure 2A). Although considered subcutaneous fat,
it is metabolically active (Cypess et al., 2013) and it is highly
plausible that interacts with both oral pathogens and innate
immunity. Researchers from the Framingham heart study found
that even those with relatively trim waistlines appeared to be
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FIGURE 2 | Translational systems medicine: salivomics and

vaccinomics of the oral microbiome. (A) The “Fatty Neck”—new
emerging marker of inflammatory complications; (B) Salivary diagnostics
(salivomics)—non-invasive and applicable approach for disease detection

and follow up. (C) Personalized vaccinomics—for prediction of
protein–ligand binding regions, vaccine design using computational
vaccinology of responders vs. non-responders with the overall role for
disease prevention.

at greater risk if they had larger necks (Preis et al., 2013). In
this study, average neck circumferences were 40.5 cm for men
and 34.2 cm for women. As neck circumference grew, so did
metabolic risk factors. For every nearly 3 cm more of neck,
men had 2.2 milligrams of less good cholesterol per deciliter
of blood (mg/dl) and women 2.7 mg/dl. Neck circumference
was associated with cardiovascular disease (CVD) risk factors
even after adjustment for visceral adipose tissue (VAT) and
body mass index (BMI). These findings suggest that upper-body
neck fat may be a unique, pathogenic fat depot. Recent stud-
ies have indicated a close correlation of metabolic syndrome
and obesity with periodontal disease and with other chronic
inflammatory diseases, including type 2 diabetes and CVD (Kuo
et al., 2008; Bascones-Martínez et al., 2012; Divaris et al., 2013;
Krejci and Bissada, 2013). Whether the relationship between
obesity and periodontitis is causal needs to be assessed in future
studies.

SALIVOMICS
Saliva is the oral fluid that lubricates, buffers, and protects
oral tissues against decay, damage, microbial inflammation, and
facilitates the remineralization of teeth. Saliva consists primar-
ily of water, minerals, electrolytes, buffer, and proteins that are
secreted by three major glands (parotid, submandibular, sublin-
gual) and by numerous minor glands in the lip, cheek, tongue,
and palate. In addition, saliva contains microbes, epithelial cells,
nasal and bronchial secretions, and serum products. These com-
ponents can provide clues to local and/or systemic diseases and
disorders of the human body. Diagnostically, a number of find-
ings in the past decade have prompted interest in the use of
saliva as a source of biomarkers. Levels of hormones (e.g., corti-
sol, oxytocin) and drugs (e.g., cisplatin, nicotine, methadone) in
saliva reflect their concentration in serum (Refulio et al., 2013).
A significant boost to the scientific foundation and infrastruc-
ture of salivary diagnostics research came 6 years ago when the
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National Institute of Dental & Craniofacial Research (NIDCR)
made a significant investment toward developing the use of saliva
as a diagnostic tool. Saliva has since become a biofluid that is
poised for translational and clinical applications. Of note is the
maturation of the salivary proteome, the first implement in the
diagnostic toolbox for saliva-based diagnostics. We now know
there are 1166 proteins in human saliva, the functions of which
range from structural binding to participation in diverse bio-
logical processes (Rathnayake et al., 2013). A second diagnostic
resource in saliva has since emerged, the salivary transcriptome.
Using the salivary transcriptome as a diagnostic tool, a set of
185 mRNAs was identified as “normal salivary core transcripts”
(NSCT) (Fábryová and Celec, accepted). Third, the CE-TOFMS
can readily and effectively be applied to salivary metabolomics.
Small molecule metabolites found in human saliva can come from
several sources. Depending on the method of collection, food
components may be directly observed during targeted profiling
of saliva. These can be solutes already dissolved in the food, like
caffeine in coffee, solid components that rapidly dissolve into the
saliva, like sugars from a cookie, or metabolites resulting from
the action of enzymes in the saliva, like maltose from the action
of α-amylase on starches (Walsh et al., 2006). For the purpose
of this review, saliva metabolomics is most applicable as a direct
measure of dietary input; however, systems biology integration of
metabolomics data with the rest of the oral network components
has not been done thus so far.

Applied salivomics can involve both insights gained from
biobanking analysis, as wells as from targeted analysis in spe-
cific phenotype subjects, e.g., obese ones or smokers (Figure 2B).
Data from the UK Biobank (UKB) national epidemiological
study revealed that the oral salivary microbiome shows varia-
tions between subjects and suggested that the resource of 120,000
samples held in storage will be useful for phenotyping subjects
and revealing potential prognostic disease biomarkers (Pramanik
et al., 2012).

Human salivary circadian 27 metabolites in saliva that demon-
strate a monotonic increase or decrease across the 40-h constant
routine protocol (Dallmann et al., 2012). For example, the system
analysis found a more than threefold increase in two fragments
of the C3 complement, which is a marker of upregulation of the
immune system in general.

Comparison of the salivary metabolome profile of male smok-
ers and non-smokers revealed that citrate, lactate, pyruvate, and
sucrose to be higher and formate to be lower in concentration
in smokers compared with non-smokers (Takeda et al., 2009).
Gender differences were also investigated, and acetate, formate,
glycine, lactate, methanol, propionate, propylene glycol, pyruvate,
succinate, and taurine were significantly higher in concentration
in male saliva compared to female saliva (p < 0.05). These results
show that differences between male and female, stimulated and
unstimulated, as well as smoking status may be observed in the
salivary metabolome.

PERSONALIZED INTERVENTIONS
The modulation of pro-inflammatory cytokines in saliva may be
proof of principle for interventional approaches, e.g., probiotics
for combating inflammation in the oral cavity (Twetman et al.,

2009). Several companies are already marketing probiotic chew-
ing gums and would be interesting to test how they influence
the level of oral pathogens in the mouth in controlled clinical
settings (Vicario et al., 2011). Companies investing in clinical
research with the goal of achieving an EFSA (European Food
Safety Agency) approved health claim may want to re-examine
their study design to ensure the data will serve its purpose. Recent
consensus statement of ILSI Europe Nutrition and Immunity
Task Force gives extensive overview of available inflammatory
biomarkers and their utility to predict clinical outcome and high-
lights the need for the use of multiple markers and integrated
analysis (Calder et al., 2013). In particular the authors suggest
comprehensive statistical computation of cytokine pertubations
over time, during and after challenge tests.

Another area of intensive research is the vaccine against P.
gingivalis and as soon as it enters Phase I clinical trial status
would be appealing to test several of the already established
hypothesis and biomarkers (Jong and van der Reijden, 2010).
Computational vaccinology or vaccine informatics is an inter-
disciplinary field that addresses scientific and clinical questions
in vaccinology using computational and informatics approaches
(He et al., 2013). Computational vaccinology overlaps with
many other fields such as immunoinformatics, reverse vacci-
nology, postlicensure vaccine research, vaccinomics, literature
mining, and systems vaccinology. The term “vaccinomics” or
“systems vaccinology” was coined to represent a new field that
integrates immunogenetics and immunogenomics with “omics-
based” systems biology and immune profiling methods for the
better development of next-generation of vaccines and expan-
sion of personalized medicine studies. Literature mining can be
considered as a tool within the scope of systems vaccinology.
Currently, there are over 300,000 vaccine-related peer-reviewed
articles cited in the PubMed literature database. This allows a
comprehensive evaluation and optimization of sequence-, motif-,
and SVM-based computational prediction approaches for aller-
gens. First, the researchers collect a comprehensive dataset of
known allergens and an even larger number of putative non-
allergens. The prediction approaches then are integrated with this
data in a web-based application that enhances allergen search and
prediction.

Databases of vaccine clinical trials and vaccines in research
also exist. The important vaccine components include vaccine
antigens, vaccine adjuvants, vaccine vectors, and -vaccine preser-
vatives. The vaccine antigens can be whole proteins or immune
epitopes. Various in silico vaccine design tools are also available
(He and Xiang, 2013).

The next period of medicine will focus on prevention and
personalization of treatment, where identification of respon-
ders and non-responders to a given therapy will rely on early
predictions based on computational modeling and stimula-
tions. A new approach to vaccine discovery characterized as a
“discover–validate–characterize–deploy” paradigm is based on
the foundations of vaccinomics and personalized vaccinology
and represent a range of potential components that can be
assembled into a comprehensive, systems-level examination of
infection/vaccination of a given pathogen (Poland et al., 2011)
(Figure 2C).
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In addition to combating oral inflammation with probiotics
and vaccines, an intriguing study would be to estimate to what
extent the anti-inflammatory effect of nicotine in the nicotine-
replacement chewing gums has overall system effects, e.g., in obe-
sity and metabolic syndrome (Lakhan and Kirchgessner, 2011).

CONCLUSION
The proposed computational framework is an appropriate
approach for modeling biological networks that allows in sil-
ico testing of new hypotheses. Specifically, the framework allows
integration of new modules of interactions between compo-
nents within the network. The oral microbiome systems biology–
systems medicine translational model offers achievable strategy

for understanding diet–microbe–host crosstalks, and can pro-
vide insights toward reducing inflammation and chronic diseases
burden. The development of user-friendly and integrated bioin-
formatics platform for computational analysis and visualization
of selected omics data in systems biology–systems medicine of
the oral microbiome context is the way forward. The platform
will implement the algorithms and data structures developed into
one integrated tool that make these achievements directly verifi-
able by the community and accessible for non-expert biomedical
users. Effective, reproducible, and clinically meaningful tools for
combining data-driven and knowledge-based approaches to iden-
tify predictive signatures of disease are the key to future success in
the biomarker and biotechnology R&D field.
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