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Brugada syndrome (BrS) is a clinical entity first described in 1992. BrS is characterized
by ST-segment elevations in the right precordial leads and susceptibility to ventricular
arrhythmias and sudden cardiac death. It affects young subjects, predominantly males,
with structurally normal hearts. The prevalence varies with ethnicity ranging from 1:2,000
to 1:100,000 in different parts of the world. Today, hundreds of variants in 17 genes have
been associated with BrS of which mutations in SCN5A, coding for the cardiac voltage-
gated sodium channel, accounts for the vast majority. Despite this, approximately 70%
of BrS cases cannot be explained genetically with the current knowledge. Moreover, the
monogenic role of some of the variants previously described as being associated with BrS
has been questioned by their occurrence in about 4% (1:23) of the general population as
found in NHLBI GO Exome Sequencing Project (ESP) currently including approximately
6500 individuals. If we add the variants described in the five newest identified genes
associated with BrS, they appear at an even higher prevalence in the ESP (1:21). The
current standard treatment of BrS is an implantable cardioverter-defibrillator (ICD). The risk
stratification and indications for ICD treatment are based on the ECG and on the clinical
and family history. In this review we discuss the genetic basis of BrS.
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INTRODUCTION
The Brugada syndrome (BrS) was first described as a clinical
entity in 1992 (Brugada and Brugada, 1992). It is inherited in an
autosomal dominant manner (Antzelevitch et al., 2005). BrS has
traditionally been viewed as a consequence of comprised electri-
cal function without structural abnormalities, although the latter
has been reported (Coronel et al., 2005; Frustaci et al., 2005;
Nademanee et al., 2011; Duthoit et al., 2012).

BrS is characterized by an ST-segment elevation in the right
precordial ECG leads V1–V3. The most descriptive ECG changes
have been described at consensus conferences, endorsed by Heart
Rhythm Society (HRS) and European Heart Rhythm Association
(EHRA) over the last decade (Antzelevitch et al., 2005). In a con-
sensus report from 2012, two specific ECG patterns are found to
be descriptive (Bayés de Luna et al., 2012).

The BrS ECG pattern is characterized by a coved type ST-
segment elevation ≥2 mm followed by a negative T wave in at
least one of the right precordial leads (V1–V3) in the presence or
absence of a sodium channel-blocking agent (type 1 ECG). BrS is
diagnosed when this is seen in conjunction with one of the follow-
ing: ventricular tachycardia/fibrillation (VF/VT), a family history
of sudden cardiac death (SCD) <45 years old, coved-type ECGs
in family members, inducibility of VT with programmed electri-
cal stimulation (PES), syncope or nocturnal agonal respiration
(Antzelevitch et al., 2005).

Patients with BrS have an increased risk of SCD secondary to
VT/VF (Antzelevitch et al., 2005). Different cohorts have reported
different risk of developing VT/VF (Brugada et al., 2002; Priori
et al., 2002; Eckardt et al., 2005). In the most updated and largest
BrS population so far, the cardiac event rate per year was 0.5%

in asymptomatic patients, 1.9% in patients with syncope and
7.7% in patients with aborted SCD. The median age of diagno-
sis was 45 ± 10 years (Probst et al., 2010). In general, men are
affected 8–10 fold more often than women, probably due to gen-
der differences in the expression of certain cardiac ion channels
(Antzelevitch, 2006). Approximately 20% of Brugada patients
also develop supraventricular arrhythmias with atrial fibrillation
accounting for most of the cases (Antzelevitch et al., 2005).

The syndrome is estimated to be responsible for 4% of all
sudden deaths (SD) and 20% of SD’s among patients with struc-
turally normal hearts. The prevalence is ranging between 1:2,000
and 1:100,000 (Hermida et al., 2000; Letsas et al., 2007; Gallagher
et al., 2008; Sinner et al., 2009; Holst et al., 2012a) in different
countries, and it is the most common cause of death, besides
accidents, in men under 40 years in some parts of the world,
e.g., in Thailand (Antzelevitch et al., 2005). The syndrome is
probably underestimated due to the fact that the characteristic
ECG-pattern often is dynamic and concealed and by the fact,
that there are several differential diagnoses associated with ele-
vated ST-segments in right precordial leads (Brugada et al., 2009).
The characteristic ECG pattern can in some cases be unmasked
by administration of sodium channel-blockers, by febrile state
or by vasotonic agents. Indeed sodium channel blockers such as
flecainide are used in the diagnosis of BrS (Antzelevitch et al.,
2005).

Experimental studies have provided some understanding of
the pathophysiological basis of the two main clinical characteris-
tics; elevated coved ST-segment in V1–V3 and the increased risk of
VT/VF (Yan and Antzelevitch, 1999). However, a consensus con-
cerning the exact mechanism has not been established and there is
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an ongoing dispute as to whether BrS is a repolarization disorder,
a depolarization disorder, or maybe both (Meregalli et al., 2005;
Hoogendijk et al., 2010; Wilde et al., 2010). The central mech-
anism underlying the ECG pattern and arrhythmias, according
to the repolarization hypothesis, is a more prominent transmural
voltage-gradient in the early repolarization phase due to a more
prominent Ito current in the epicardium compared to the endo-
cardium of the right ventricle (Meregalli et al., 2005). Thus, in
the epicardium, in the face of reduced sodium current, increased
potassium current or reduced calcium current, complete loss of
the phase 2 dome can occur. If this appears at some epicardial
sites but not at others and a further heterogeneity between the
epicardium and the endocardium occur, the result is an epicardial
and transmural dispersion of repolarisation, respectively. This
could lead to the development of a re-entry loop and premature
beats already in the phase 2 of the on-going action potential (AP)
that could further trigger VT/VF (Meregalli et al., 2005).

The reason why ST-segment elevation occurs in right precor-
dial leads, and not left, has been suggested to be due to a more
prominent Ito in the right ventricle than in the left (Di Diego
et al., 1996). Accordingly, this current is believed to have a cen-
tral role in BrS pathogenesis. This hypothesis has been tested
by Calloe et al. (2009), who demonstrated that an Ito activator
recapitulated the electrographic and arrhythmic manifestations
of BrS.

The depolarization theory states that the substrate for the ECG
changes and susceptibility of VT/VF is a slowing of conduction
caused both by fibrosis in right ventricular outflow tract (RVOT)
and a decreased INa. This decrease in conduction velocity is more
prominent in RVOT compared to the rest of the right ventricle
which gives rise to the substrate for ECG changes and re-entry
arrhythmias (Meregalli et al., 2005).

Recently Hoogendijk et al. stated that none of the proposed
mechanism so far described has been irrefutably demonstrated
in BrS patients. Therefore they suggested a unifying explanation,
the so-called current-to-load mismatch. This hypothesis states
that current-to-load mismatch caused by structural and func-
tional abnormality could explain the ST-segment elevation and
susceptibility to arrhythmias (Hoogendijk et al., 2010).

GENETIC BASIS OF BrS
To date, 17 genes have been associated with BrS or BrS ECG phe-
notype (Table 1). SCN5A was the first gene to be associated with
BrS and still represents the major gene in BrS pathogenesis. The
individual genes associated with BrS are described in detail in the
following.

BrS1 IS ASSOCIATED WITH MUTATIONS IN SCN5A
The SCN5A gene encodes the α-subunit of the voltage-dependent
cardiac sodium channel, Nav1.5 (Gellens et al., 1992). Mutations
in this gene in association with BrS were first described in 1998
by Chen et al. (1998). Since then more than 300 mutations in this
gene have been associated with BrS.

Functional studies of many different mutations in the gene
have been performed and they all lead to a reduction in
net sodium current due to one or more of following reasons
(Antzelevitch et al., 2005); (1) reduced current density due to
failure of the sodium channel to express or defect trafficking of
the channel (Baroudi et al., 2001; Valdivia et al., 2004; Pfahnl
et al., 2007), (2) a shift in the voltage- and time-dependence of
sodium channel current activation, inactivation or reactivation
(Keller et al., 2005; Hsueh et al., 2009; Calloe et al., 2013), or (3)
entry of the sodium channel into an intermediate state of inactiva-
tion from which it recovers relatively slower than normal (Bezzina

Table 1 | Mutations in genes associated with Brugada syndrome.

BrS subtype Gene name Gene product Ionic current Functional effect References Incidence, %

BrS1 SCN5A Nav1.5 INa Loss-of-function Chen et al., 1998 11–24 Kapplinger et al., 2010

BrS2 GPD1-L G3PD1L INa Loss-of-function London et al., 2007 Rare Antzelevitch and Nof, 2008

BrS3 CACNA1C Cav1.2 ICa−L Loss-of-function Antzelevitch et al., 2007 6–7 Antzelevitch and Nof, 2008

BrS4 CACNB2 Cavβ2 ICa−L Loss-of-function Antzelevitch et al., 2007 4–5 Antzelevitch and Nof, 2008

BrS5 SCN1B Navβ1 INa Loss-of-function Watanabe et al., 2008 1–2 Antzelevitch and Nof, 2008

BrS6 KCNE3 MiRP2 Ito/IKs Gain-of-function Delpón et al., 2008 <1 Antzelevitch and Nof, 2008

BrS7 SCN3B Navβ3 INa Loss-of-function Hu et al., 2009 Probably rare

BrS8 KCNH2 hERG1 IKr Loss-of-function Itoh et al., 2009; Verkerk et al., 2005 Probably rare

BrS9 KCNJ8 Kir6.1 IKATP Gain-of-function Medeiros-Domingo et al., 2010 Probably rare

BrS10 CACNA2D1 Cavα2δ-1 ICa−L Not available Burashnikov et al., 2010 Probably rare

BrS11 RANGRF MOG1 INa Loss-of- function Kattygnarath et al., 2011 Probably rare

BrS12 KCNE5 MiRP4 Ito/IKs Gain-of-function Ohno et al., 2011 Probably rare

BrS13 KCND3 Kv4.3 Ito Gain-of-function Giudicessi et al., 2011 Probably rare

BrS14 HCN4 HCN4 If Not available Crotti et al., 2012 Probably rare

BrS15 SLMAP SLMAP INa Loss-of-function Ishikawa et al., 2012 Probably rare

BrS16 TRMP4 TRMP4 NSCCa Both Liu et al., 2013 6*

BrS17 SCN2B Navβ2 INa Loss-of-function Riuró et al., 2013 Probably rare

Subtypes listed chronologically.

NSCCa, Calcium activated Non-Selective Cation channel. *6% of original cohort consisting of 248 BrS cases.
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et al., 1999; Veldkamp et al., 2000; Chiang et al., 2009). A number
of knock-out mouse models support the central role of SCN5A
in the pathogenesis of BrS (Killeen et al., 2008; Derangeon et al.,
2012). Heterozygous knock-out mice have been shown to have
compromised conduction velocity, impaired AV conduction and
QRS prolongation. Furthermore during programmed ventricu-
lar electrical pacing two thirds of the mice developed ventricular
tachyarrhythmias (Derangeon et al., 2012).

The arrhythmic potential of mutations in SCN5A is also
emphasized by its involvement in other arrhythmic diseases such
as LQTS, BrS, SIDS, cardiomyopathy and AF. Various SCN5A
mutations are known to present with mixed phenotypes, a pre-
sentation known as cardiac sodium channel overlap syndrome
(Darbar et al., 2008; Remme et al., 2008; Olesen et al., 2012a).
This really emphasises the complexity of SCN5A gene mutations
in BrS.

See supplementary Tables S1–S5 for a complete overview of all
mutations in SCN5A associated with BrS.

BrS2 IS ASSOCIATED WITH MUTATIONS IN GPD1L (SEE TABLE 2)
Weiss et al. (2002), linked a locus, close to but distinct from the
SCN5A locus, to BrS in a large Italian family (Weiss et al., 2002).
London et al. (2007) characterized the locus to be the glycerol-
3-phosphat dehydrogenase 1-like, GPD1-L gene. There is 84%
homology with the Glycerol-3-phosphate dehydrogenase protein,
GPD, a dimer involved in the glycerol phosphate shuttle that
transfers electrons from cytosolic NADH to the mitochondrial
transport chain. The GPD1-L protein is highly expressed in the
heart and is concentrated in the membrane fraction. London et al.
found that an A280V mutation from a BrS patient in GPD1-L was
linked to a 48% decrease in inward Na+ current and a marked
decrease in surface expression of Nav1.5 (London et al., 2007).

A mechanism by which GPD1-L mutations could affect Nav1.5
has been studied since by Liu et al. (2009). They, on the basis of
the homology between GPD and GPD1-L, investigated whether
the GPD1-L, as GPD, is involved in NAD-dependent energy
metabolism and thereby, whether NAD(H) could regulate Nav1.5.
Indeed they found that A280V-GPD1-L increased [NADH]i and
that this increase in [NADH]i reduced INa. This suggests a link
between metabolism and INa.

BrS3 IS ASSOCIATED WITH MUTATIONS IN CACNA1C (SEE TABLE 2)
This gene encodes the α-subunit of the human L-type
voltage-gated calcium channel, Cav1.2 (Takimoto et al., 1997).
Antzelevitch et al. (2007) identified an association between muta-
tions in CACNA1C and BrS. In a Brugada cohort they found two
missense mutations in two probands, G490R and A39V. The ECG
of the affected patients revealed short QT interval. Both muta-
tions occurred in highly conserved regions of the Cav1.2 protein
and both mutations led to a major loss-of-function in calcium
channel activity. The loss-of-function caused by the A39V muta-
tion was found to be caused by a trafficking defect (Antzelevitch
et al., 2007).

BrS4 IS ASSOCIATED WITH MUTATIONS IN CACNB2B (SEE TABLE 2)
This gene encodes the β-subunit of Cav1.2, Cavβ2, which is
involved in regulation of the gating process of ICa−L, in increasing

the ICa−L and in modulation of ICa−L traficking (Cornet et al.,
2002; Catterall et al., 2005; Hedley et al., 2009).

Antzelevitch et al. (2007) identified a mutation in CACNB2b
(S481L) in one proband with BrS as well as short QT. The S481L
mutation was present in all 6 phenotype-positive and absent in
all 4 phenotype-negative family members. The ICa−L was found
to be reduced markedly. Hedley et al. (2009) suggested that the
pathogenic mechanism for this mutation could be interference
of the stimulatory role of Cavβ2 on ICa−L, by the fact that the
mutation is localized close to the Cav1.2 binding domain.

In 2009, Cordeiro et al. associated a novel mutation in
CACNB2b with BrS. They detected a missense mutation in
CACNB2b, T11I. They found that the mutation led to an accel-
erated inactivation of the L-type Ca2+ channel. This change of
kinetics resulted in a reduced depolarizing current contribut-
ing to the plateau phase of the epicardial AP (Cordeiro et al.,
2009). Since, Burashnikov et al. (2010) have revealed additional
mutations in CACNB2b (see Table 2).

BrS5 IS ASSOCIATED WITH MUTATIONS IN SCN1B (SEE TABLE 2)
The gene encodes the β1-subunit of Nav1.5, Navβ1, which is
translated into to isoforms; β1 and β1b. Functions attributed to
the β-subunit include an increase in Nav1.5 expression at the cell
surface, modulation of channel gating and voltage dependence,
and a role in cell adhesion and recruitment of cytosolic proteins
such as Ankyrin-G (Isom, 2001; Watanabe et al., 2008).

The association of mutations in SCN1B with BrS was first iden-
tified by Watanabe et al. (2008). They screened 282 probands
with BrS and 44 patients with conduction disease. They identi-
fied one mutation (W179X (β1b)) in SCN1B in a patient with
BrS ECG phenotype. The mutated form of SCN1B was not able
to increase INa as normal. Recently, Holst et al. added further
evidence for an association between mutations in SCN1B and
BrS. Two mutations in two probands in SCN1Bb (H162P and
R214Q) were identified from a cohort of 42 SCN5A-negative BrS
patients. However, R214Q was also found in ESP; H162P was not
(Holst et al., 2012b; Olesen et al., 2012b). Hu et al. (2012) inves-
tigated the functional consequence of the R214Q variant. When
co-expressed with WT-SCN5A the mutant SCN1Bb induced a
significant decrease in peak sodium current compared to WT-
SCN1Bb. Interestingly, when co-expressed with WT-KCND3, the
variant induced a greater Ito, suggesting a combined loss of func-
tion of sodium channel current and gain of function of transient
outward potassium current in BrS pathogenesis.

BrS6 IS ASSOCIATED WITH MUTATIONS IN KCNE3 (SEE TABLE 2)
This gene encodes the protein MiRP2, one of five homologous
β-subunits (KCNE1-5) of voltage gated potassium ion channels
(Abbott et al., 2001; Hedley et al., 2009). The potassium chan-
nel complex, Kv:KCNE, is a heterohexameric structure consisting
of four α-subunits and two KCNE peptides. The functional role
of KCNE peptides, in general, is modulation of several potas-
sium currents in the heart, for instance Ito and IKs(Delpón et
al., 2008). The association of mutations in KCNE3 with BrS was
identified by Delpón et al. (2008). They screened 105 probands
with BrS and found a R99H missense mutation in one indi-
vidual who were highly symptomatic with one aborted cardiac
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Table 2 | Mutations in genes associated with BrS2-BrS17.

Subtype Gene Ionic current Amino acid

substitution

Functional effect References

BrS2 GPD1L INa A280V Loss-of-function London et al., 2007

BrS3 CACNA1C ICa−L A39V
G490R
E1115K
R1880Q
V2014I
D2130N

Loss-of-function
Loss-of-function
Loss-of-function
Loss-of-function
Loss-of-function
Loss-of-function

Antzelevitch et al., 2007
Antzelevitch et al., 2007
Burashnikov et al., 2010
Burashnikov et al., 2010
Burashnikov et al., 2010
Burashnikov et al., 2010

BrS4 CACNB2 ICa−L S481L
T11I
S143F
L399F
T450I
D538E
V340I
E499D

Loss-of-function
Loss-of-function
Loss-of-function
Loss-of-function
Loss-of-function
Loss-of-function
Not available
Not available

Antzelevitch et al., 2007
Cordeiro et al., 2009
Burashnikov et al., 2010
Burashnikov et al., 2010
Burashnikov et al., 2010
Burashnikov et al., 2010
Crotti et al., 2012
Crotti et al., 2012

BrS5 SCN1B INa W179X
R214Q
H162P
Q204R

Loss-of-function
Loss-of-function
Not available
Not available

Watanabe et al., 2008
Holst et al., 2012b; Hu et al., 2012
Holst et al., 2012b
Crotti et al., 2012

BrS6 KCNE3 Ito/IKs R99H Gain-of-function Delpón et al., 2008

BrS7 SCN3B Ito/IKs L10P
V110I

Loss-of-function
Loss-of-function

Hu et al., 2009
Ishikawa et al., 2013

BrS8 KCNH2 IKr G873S
N985S
R1135H

Gain-of-function
Gain-of-function
Gain-of-function

Verkerk et al., 2005
Verkerk et al., 2005
Itoh et al., 2009

BrS9 KCNJ8 IKATP S422L Gain-of-function Medeiros-Domingo et al., 2010

BrS10 CACNA2D1 ICa−L D550Y
S709N
Q917H

Not available
Not available
Not available

Burashnikov et al., 2010
Burashnikov et al., 2010
Burashnikov et al., 2010

BrS11 RANGRF INa E83D Loss-of-function Kattygnarath et al., 2011

BrS12 KCNE5 Ito/ IKs Y81H
D92E; E93X

Gain-of-function
Gain-of-function

Ohno et al., 2011
Ohno et al., 2011

BrS13 KCND3 Ito L450F
G600R

Gain-of-function
Gain-of-function

Giudicessi et al., 2011
Giudicessi et al., 2011

BrS14 HCN4 If S841L Not available Crotti et al., 2012

BrS15 SLMAP INa V269I
E710A

Loss-of-function
Loss-of-function

Ishikawa et al., 2012
Ishikawa et al., 2012

BrS16 TRPM4 NSCCa R144W
A432T
G555R
G582S
F773I
P779R
T873I

Not available
Gain-of-function
Not available
Not available
Not available
Loss-of-function
Gain-of-function

Liu et al., 2013
Liu et al., 2013, 2010
Liu et al., 2013
Liu et al., 2013
Liu et al., 2013
Liu et al., 2013
Liu et al., 2013

BrS17 SCN2B INa D211G Loss-of-function Riuró et al., 2013
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arrest and numerous appropriate shocks after ICD implantation.
The family of this individual was examined and they found that
4/4 phenotype-positive and 0/3 phenotype-negative family mem-
bers had the mutation. Co-transfection of R99H-KCNE3 with
KCNQ1 produced no alteration in current magnitude or kinet-
ics. Co-expressed with WT Kv4.3, Ito channel, the mutation had a
gain-of-function effect leading to an increase in peak current and
an accelerated inactivation of Ito. Overall, the mutation led to a
significant increase in total charge carried by Ito.

BrS7 IS ASSOCIATED WITH MUTATIONS IN SCN3B (SEE TABLE 2)
This gene encodes the β3-subunit of the cardiac sodium channel,
Navβ3 (Morgan et al., 2000). The functional attribution of Navβ3
is modulation of the channel gating of Nav1.5, similar to the β1-
subunit, although with different kinetics (Morgan et al., 2000).

The association of SCN3B with BrS have been identified by
Hu et al. (2009). They found a missense mutation (L10P) in
an individual with BrS. The mutation led to a decrease in peak
sodium current density, accelerated inactivation, and slowed reac-
tivation compared to wild type. The L10P mutation has also been
associated with lone atrial fibrillation (AF) suggesting an over-
lap in phenotypes (Olesen et al., 2011b). Recently, Ishikawa et
al. reported another novel SCN3B mutation, V110I, in three of
178 unrelated Japanese BrS patients. (Ishikawa et al., 2013) The
mutation was absent in 480 Japanese controls and displayed a
loss-of-function effect due to impaired cell surface expression of
Nav1.5.

BrS8 IS ASSOCIATED WITH MUTATIONS IN KCNH2 (SEE TABLE 2)
The α-subunit of the rapid delayed rectifier channel (hERG1) is
encoded by KCNH2. Verkerk et al. in 2005, identified two muta-
tions (G873S and N985S) in two unrelated SCN5A-negative BrS
patients. Functional investigation revealed an increase in the rec-
tifying current, namely an increase in peak current during phase 0
and phase 1 of the ventricular AP. Through computer simulations
this gain-of-function in IKr enhanced the susceptibility of loss
of AP dome in right ventricular subepicardial myocytes, which
is characteristic of BrS. G873S, however, was found in 2 of 500
unrelated Han Chinese controls suggesting that the variant has
only a modifying role or is an innocent bystander. Further sup-
port for this interpretation is the fact that the glycine at position
873 is not conserved between human, mouse and rat (Verkerk
et al., 2005). For this reason, they were not denoted as the first
to associate mutations in KCNH2 with BrS. In 2009, Itoh et al.,
as the “first”, identified a mutation (R1135H) in KCNH2 in a
34-year old man with Brugada-type ECG and short QT inter-
val. The mutation displayed a gain-of-function effect on IKr(Itoh
et al., 2009). Subsequently, Wilders and Verkerk, demonstrated,
through computer simulations, that R1135H had the same con-
sequence on AP as G873S and N985S (Wilders and Verkerk,
2010).

BrS9 IS ASSOCIATED WITH MUTATIONS IN KCNJ8 (SEE TABLE 2)
This gene encodes the cardiac KATP channel, Kir6.1. The
Kir6.1 channel facilitates a non-voltage-gated inwardly rectifying
potassium current, leading to a shortening of the AP duration
under conditions of metabolic stress (Delaney et al., 2012).

Medeiros-Domingo et al. (2010) found a mutation (S422L)
in KCNJ8 in a patient with a flecainide induced type 1 ECG
pattern. Electrophysiological the mutation displayed a gain-of-
function consequence on KATP. Subsequently, Barajas-Martínez
et al. (2012) identified the same mutation in three other BrS
patients. When KCNJ8-S422L was co-expressed with the wild
type regulatory SUR2A, it showed a twofold gain-of-function on
IK,ATP. Furthermore, the mutant channel displayed a reduced sen-
sitivity to ATP, pointing to incomplete closing of the channel
under normoxic conditions.

BrS10 IS ASSOCIATED WITH MUTATIONS IN CACNA2D1 (SEE TABLE 2)
CACNA2D1 encodes the α2δ-subunit of the voltage-dependent
calcium channel and has been found to share similar functional
properties with Cavβ2 (Gurnett et al., 1996; Hobom et al., 2000).
Burashnikov et al. identified three different missense mutations
in CACNA2D1 (S709N, D550Y and Q917H) in three BrS patients
from a cohort consisting of 205 patients with BrS, short QT,
idiopathic ventricular fibrillation (IVF) and early repolarisation
syndrome. However, in two of the three patients, additional muta-
tions in genes recognized as being associated with BrS were
identified. Unfortunately, the authors did not investigate the elec-
trophysiological consequence of the three missense mutations.
New mutations in CACNB2b and CACNA1C were also detected
in this cohort (see Table 2) (Burashnikov et al., 2010).

BrS11 IS ASSOCIATED WITH MUTATIONS IN RANGRF (SEE TABLE 2)
Kattygnarath et al. (2011) reported the gene RANGRF, encod-
ing MOG1 (a protein important for the trafficking of SCN5A
to the cell membrane), as a new BrS gene. They identified
a missense mutation E83D in a BrS patient that dominant-
negatively compromised the sodium current. The mutation was
not found in 281 control subjects. Olesen et al. identified
another MOG1 variant, E61X, in both AF patients and healthy
controls indicating that a person may have complete loss of
one MOG1 allele without having any signs of disease (Olesen
et al., 2011a). Genetic variants that compromise the MOG1
protein are therefore more likely to increase the susceptibil-
ity of BrS, rather than to be the major genetic susceptibility
variant.

BrS12 IS ASSOCIATED WITH MUTATIONS IN KCNE5 (SEE TABLE 2)
This gene encodes one of the regulatory β-subunits of the Ito/IKs

channels mentioned under BrS6. In 2011, Ohno et al. identi-
fied two novel variants (Y81H and D92E;E93X) in KCNE5 in a
Japanese cohort consisting of 205 patients with BrS or IVF (Ohno
et al., 2011). Three probands comprised the Y81H variant, one
the D92E;E93X variant. In 300 unrelated healthy Japanese con-
trols, Y81H was identified in 3 women, and D92E; E93X was
absent. All four probands were symptomatic and received an
ICD. When co-expressed with KCND3 (α-subunit of Ito), the
mutant channels significantly increased Ito compared to wild type,
displaying a gain-of-function effect. Stimulation study revealed
that the two variants induced altered ventricular AP profiles.
This could provide the likelihood of a proarrhythmic substrate.
Another interesting notion drawn by the authors is that KCNE5 is
located on chromosome X. This could in part explain the gender
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difference seen in prevalence. Indeed, the male phenotype in the
study by Ohno et al. was more severe.

BrS13 IS ASSOCIATED WITH MUTATIONS IN KCND3 (SEE TABLE 2)
KCND3 encodes the α-subunit of Ito, Kv4.3, a voltage-gated potas-
sium channel expressed in heart. In 2011, two novel mutations
(L450F and G600R) were identified in two unrelated BrS patients
(Giudicessi et al., 2011). Both mutations were absent in 1560 ref-
erence alleles. Co-expression of Kv4.3 mutants with KChIP2-WT
revealed a significant increase in Ito current density compared
with WT-Kv4.3. Moreover, the two mutations induced loss of AP
dome in RV epicardial myocytes, demonstrated by computer sim-
ulations, providing the arrhythmic substrate for BrS phenotype
(Giudicessi et al., 2011).

BrS14 IS ASSOCIATED WITH MUTATIONS IN HCN4 (SEE TABLE 2)
HCN4 encodes the hyperpolarisation-activated cyclic nucleotide-
gated channel 4 which is a pacemaker channel responsible for the
funny current (If ). Mutations in this gene has formerly been asso-
ciated with sinus node dysfunction (Ueda et al., 2004). Recently,
Crotti et al. identified a mutation (S841L) in HCN4 in one
proband of 129 unrelated BrS patients (Crotti et al., 2012). The
mutation was absent in ≥1400 ethnicity matched reference alleles
and in publicly available databases. The functional effect of this
mutation has not been assessed and therefore, before drawing any
conclusion in BrS pathogenesis, this gene has to be investigated
more thoroughly.

BrS15 IS ASSOCIATED WITH MUTATIONS IN SLMAP (SEE TABLE 2)
SLMAP encodes the sarcolemmal membrane-associated protein,
a component of T-tubules and sarcoplasmic reticulum which is
involved in excitation-contraction coupling in cardiomyocytes
(Ishikawa et al., 2012). Ventricular arrhythmias have previously
been linked to mutations in proteins involved in excitation-
contraction coupling (Priori et al., 2001). Ishikawa et al. (2012)
recently reported two mutations (V269I and E710A) in 190 unre-
lated BrS patients. In cell lines the two mutations were shown
to reduce cell surface expression of Nav1.5 resulting in decreased
peak sodium current density. In line with this, the investigators
demonstrated that silencing the two SLMAP mutants rescued the
decreased surface expression of Nav1.5.

BrS16 IS ASSOCIATED WITH MUTATIONS IN TRPM4 (SEE TABLE 2)
The TRPM4 gene encodes the transient receptor potential melas-
tatin protein number 4 which is a calcium-activated non-
selective cation channel (NSCCa) that mediates transport of
monovalent cations across membranes, thereby depolarizing
the membrane. Mutations in this gene have been associated
with cardiac conduction blocks (Kruse et al., 2009; Liu et al.,
2010; Stallmeyer et al., 2012) and recently, Liu et al. (2013)
associated mutations in TRPM4 with BrS. In 248 BrS cases,
the investigators identified 7 mutations absent in approxi-
mately 14,000 control alleles. Functional characterization of
selected mutations revealed both a decrease in TRPM4 expres-
sion (P779R) and an increase in expression (T873I) suggesting
that both loss- and gain-of-function mutations in this gene may
lead to BrS.

BrS17 IS ASSOCIATED WITH MUTATIONS IN SCN2B (SEE TABLE 2)
The SCN2B gene encodes the β2-subunit of the cardiac sodium
channel. The association of SCN2B with BrS have just recently
been identified by Riuró et al. (2013). They found a missense
mutation (A211G) in an individual with BrS. The mutation was
absent in 500 control alleles and available databases. The muta-
tion led to a significant reduction in sodium current density when
co-expressed with Nav1.5 compared to wild type. This reduction
was shown to be due to a reduced Nav1.5 cell surface expression
(Riuró et al., 2013).

BIOINFORMATIC RE-EVALUATION OF VARIANTS
With the recently published exome data from the NHLBI GO
Exome Sequencing Project (ESP), knowledge regarding genetic
variation in the general population have become available [Exome
Variant Server, NHLBI GO (ESP)]. In ESP, next-generation
sequencing has been carried out for all protein-coding regions
in approximately 6500 persons from different population stud-
ies. Risgaard et al. (2013) have, by using these data, found a
high genotype prevalence of 1:23 in the ESP of genetic vari-
ants in twelve genes (SCN5A, GPD1L, CACNA1C, CACNB2,
SCN1B, KCNE3, SCN3B, KCNH2, CACNA2D1, MOG1, KCND3,
and KCNJ8) previously associated with BrS. This is a very high
prevalence compared to the prevalence of BrS in the general pop-
ulation ranging between 1:2,000 and 1:100,000 (Hermida et al.,
2000; Letsas et al., 2007; Gallagher et al., 2008; Sinner et al., 2009;
Holst et al., 2012a). Moreover, in a synergistic use of prediction
analysis using ≥3 prediction tools, 47% of the variants found in
ESP were predicted pathogenic compared to 75% of the variants
not found in ESP (p < 0.0001). These data definitely questions
the pathogenic role of some of the previously BrS-associated vari-
ants. A limitation in the study is that there are no clinical data on
the persons in ESP. However, Refsgaard et al. have recently con-
ducted a number of studies that indicate, that the exome database
is indeed representative for genetic variation in healthy subject
(Refsgaard et al., 2012; Andreasen et al., 2013a,b). Moreover,
none of the studies in ESP specifically included patients with
channelopathies and at least two studies excluded such patients
(Refsgaard et al., 2012).

We investigated the prevalence in ESP of the genes not inves-
tigated by Risgaard et al. (2013), BrS subtypes 12 and 14-17.
The KCNE5, SCN2B and SLMAP mutations were not found in
ESP. The HCN4 mutation (S841L) was found in 3 out of 4289
European American (EA) individuals. The TRPM4 mutation
R144W was present in 1 of 2199 Afro-American (AA) individ-
uals, A432T in 9 of 4291 AA, and G582S in 9 of 4291 EA. The
rest of the TRPM4 mutations were not present in ESP [Exome
Variant Server, NHLBI GO (ESP)]. If we add the variants found
in the five newest identified genes associated with BrS, this corre-
sponds to an even higher genotype prevalence of 1:21 (296:6258)
in ESP.

TREATMENT
IMPLANTABLE CARDIOVERTER DEFIBRILLATOR—ICD
ICD is the only widely accepted treatment of BrS thus far
(Brugada et al., 1999, 2000). In 2003, a second consensus
conference was held which focused on risk stratifications and
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approaches to therapy (Antzelevitch et al., 2005). This consensus
report stated the recommendations for ICD implantation.

Sarkozy et al. (2007) studied the effectiveness of ICD treat-
ment in a retrospective study. 47 high risk Brugada patients (mean
age: 44 ± 15 years) with ICD were included. During a mean
follow-up of 47.5 months, seven patients had appropriate shocks
for potentially life-threatening ventricular arrhythmias. However,
seventeen patients received inappropriate shocks due to shocks
for sinus tachycardia and atrial arrhythmias, which is common in
Brugada patients.

A multicenter study by Sacher et al. (2006) showed the same
pattern. In 220 BrS patients with ICD (mean follow up >3
years) 8% experienced appropriate shocks and 20% inappropriate
shocks. Overall, complications occurred in 28% of the patients.

In a just published article, Miyazaki et al. (2013) also inves-
tigated the prevalence of ICD-related complications. In 41 BrS
patients and during a median follow-up of 76 months, 15 patients
(37%) experienced adverse effects after ICD implantation. This
includes complications in 8 (20%) and inappropriate shocks in
10 (24%). Appropriate shocks were detected in 5 patients (12%),
(please keep in mind that some patients experience more than one
adverse effect). In a nationwide study by Holst et al. (2012a), 26%
experienced appropriate shocks and 8% experienced inappropri-
ate shocks during a median follow-up of 47 months in 35 definite
BrS patients. The difference in rate of appropriate and inappro-
priate shocks compared to the three other studies could be due to
a more severe phenotype of patients included and due to differ-
ence in ICD discrimination algorithms as suggested by Holst et al.
(2012a).

A pharmacological approach with fewer complications is obvi-
ously desirable and there is a growing effort to define such a safe
and efficient treatment for this specific syndrome.

PHARMACOLOGICAL THERAPY
Loss-of-function mutations are responsible for the vast majority
of BrS incidents. This makes it more difficult in regard to a phar-
macological therapy as it is difficult to compensate for the missing
allele. However some substances may be beneficial. The objec-
tive is to rebalance the inward and outward currents during the
AP and thereby restoring electrical homogeneity (Brugada et al.,
2009).

The prominent Ito in the right ventricle is thought to have a
central role in the pathogenesis of BrS, so a drug like quinidine
that inhibits Ito (Imaizumi and Giles, 1987) has been suggested to
have a therapeutic value in BrS (Yan and Antzelevitch, 1999).

Hermida et al. (2004) observed that hydroquinidine ther-
apy prevented VT/VF inducibility in 22 out of 29 asymp-
tomatic patients with BrS and inducible arrhythmia, as well
as VT/VF recurrence in four BrS patients with multiple ICD
shocks.Belhassen et al. (2004) reported that quinidine bisulfate
prevented VF induction in 22 of 25 BrS patients. All 25 patients
had inducible VF before treatment. However, administration of
quinidine was associated with a 36% incidence of side-effects that
resolved after drug discontinuation. In general, disadvantages of
oral quinidine include gastrointestinal side-effects, as observed by
Belhassen et al. (2004), and proarrhythmic side-effects (QT pro-
longation), as observed by Hermida et al. (2004). The latter is

probably due to a quinidine block of IKr and IKs, however this
side effect is rare (Antzelevitch and Nof, 2008). In a recent study
by Márquez et al. (2012) the authors investigate the long-term
efficacy of low doses quinidine on malignant arrhythmias in BrS
patients. A total of twenty patients, of whom seventeen patients
had an ICD, were included. In all but three cases, quinidine effec-
tively suppressed arrhythmic events corresponding to an efficacy
of quinidine on 85%. All patients tolerated the medication well.

Taken together the data suggest that preventive treatment by
quinidine may be an alternative or complimentary strategy to
ICD in BrS patients, both in the short and long term. A more
Ito selective compound that does not permeate the blood-brain-
barrier would in theory be the optimal treatment. For other
possible beneficial agents please see Márquez et al. (2007) and
Minoura et al. (2013).

DISCUSSION AND PERSPECTIVES
Presently over 300 mutations in 17 genes have been associated
with BrS or BrS ECG phenotype, in contrast to 5 years ago
where only mutations in the SCNA5 gene were associated with
BrS. The knowledge about BrS associated mutations is there-
fore rapidly increasing and this could potentially make genetic
screening important in future. The intention would be to use
this knowledge in risk stratification, as some asymptomatic BrS
patients have an appreciable risk of arrhythmia (Probst et al.,
2010). The rapidly declining cost of multi-gene screening by Next
Generation Sequencing adds to the rationale. A study by Meregalli
et al. (2009) reveal an association between the type of SCN5A
mutation and the clinical severity. They compared groups hav-
ing either missense mutations or mutations leading to premature
truncation of the protein. They found that the disease phenotype
was more severe in the patients with large INa reduction than
in those with small INa reduction (truncation versus missense),
as evidenced by larger proportions of patients with syncope and
SCD. Sommariva et al. (2013) recently demonstrated that SCN5A
mutation carriers had a significantly increased risk of major
arrhythmic event compared with non-carriers in a BrS cohort. In
addition they established an association of five polymorphisms
with major arrhythmic event.Crotti et al. (2012) recently con-
ducted a comprehensive mutational analysis of twelve BrS genes
in a large BrS cohort. They did not detect any significant differ-
ence in mutation yield between those patients with definite BrS
and those patients only displaying a type 1 ECG pattern. On this
basis, the authors argue that genetic testing should additionally
be conducted in patients displaying only type 1 ECG pattern.
Secondly, they demonstrated that inclusion of the minor BrS sus-
ceptibility genes (genes other than SCN5A) in genetic testing,
only minimally affected the sensitivity of the test. Therefore, these
genes should only be screened under special circumstances.

These data may show some promise for the use of genetic
data in risk stratification regarding clinical outcome in BrS
patients. However, the scientific community is increasingly focus-
ing on separating genetic noise from true pathogenic mutations.
Risgaard et al. (2013) reported a high prevalence (1:23) of pre-
viously BrS-associated variants in ESP. If we added the variants
described in the five newest identified genes associated with BrS,
they appeared at an even higher prevalence in the ESP (1:21).
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These data definitely questions the pathogenic role of some of
the previously BrS-associated variants. With regard to deletions
and insertions in SCN5A (Tables S1–S5) these are more likely sus-
ceptibility mutations, as also evidenced by their lack of presence
in ESP.

In a HRS/EHRA consensus document, screening is recom-
mended in family members and relatives following the identifi-
cation of a BrS-causative mutation in an index case (Ackerman
et al., 2011). If the clinician should perform risk stratifica-
tions based on genetic screening it is important that vari-
ants being associated with BrS are truly pathogenic. An index
patient with definite BrS but a false-positive variant might
have another true pathogenic variant that is not found. This
could lead to misdiagnosis of family members with clinical
consequences.

Another important motive for identifying the important sus-
ceptibility mutations by genetically screening BrS patients could
be the tailoring of specific drugs to specific mutations as personal
medicine. Presently, the rationale behind the pharmacological
approach is to rebalance the inward and outward currents dur-
ing the AP, regardless of the underlying mutation. Maybe in
the future, it could be possible to treat the different BrS types
(1–17) differently, according to their mutational consequences,
although the disease entity is so small that the drugs will most
likely not be developed for this indication in the first case. For
instance, in the study done by Liu et al. (2009), they found that the
NADH-induced decrease in INa could be antagonized by exter-
nally or internally applied NAD+. This result suggests that drugs
that increase the availability of NAD+ may be a future treat-
ment strategy for BrS2. Teng et al. (2009) found that a SCN5A
non-sense mutation (W822X) associated with BrS effectively
could be suppressed by read-through enhancing agents, thereby
restoring the expression of normal length sodium channels. This
holds promising for all non-sense mutations associated with BrS.
Chakrabarti et al. (2013) recently showed that overexpression of
MOG1 effectively rescued the trafficking defect and the impaired
plasma membrane expression of Nav1.5 caused by the muta-
tions D1275N and G1743, respectively. These data suggests that

MOG1-enabled trafficking of Nav1.5 to plasma membrane may
serve as a novel therapy for BrS patients with loss-of-function
mutations in Nav1.5.

Even though over 300 mutations in 17 genes have been asso-
ciated with BrS, approximately 70% of BrS incidents cannot be
explained genetically at present. The causes may have to be found
in epigenetic regulation or in other mechanisms than ion channel
mutations. For instance methylation of promoters or mutations
in microRNA binding sites as is has been shown for LQTS1 (Amin
et al., 2012).

There is a need for an alternative strategy to ICD therapy.
Firstly, because ICD treatment is prohibitively expensive in many
parts of the world (Brugada et al., 2009). This is the case in
Thailand where the prevalence is exceptionally high. Secondly, the
high incidence of side-effects/complications associated with ICD
(Sacher et al., 2006; Sarkozy et al., 2007; Miyazaki et al., 2013).
And thirdly, BrS has been linked to sudden death infant syn-
drome (Van Norstrand et al., 2007) and ICD therapy in children
is challenging in general. The high risk of complications reported
in adults is likely to be worse in children (Antzelevitch and Nof,
2008).

The incentive for developing a good pharmacological
paradigm is evident. Quinidine is yet the best alternative to ICD
and has proven effective in small case series. However, a clear need
exists for a large randomized clinical controlled trial to assess the
effectiveness of quinidine in BrS patients.
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