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Cardiovascular risk can be calculated using the Framingham cardiovascular disease (CVD)
risk score and provides a risk stratification from mild to very high CVD risk percentage
over 10 years. This equation represents a complex interaction between age, gender,
cholesterol status, blood pressure, diabetes status, and smoking. Heart rate variability
(HRV) is a measure of how the autonomic nervous system (ANS) modulates the heart
rate. HRV measures are sensitive to age, gender, disease status such as diabetes and
hypertension and processes leading to atherosclerosis. We investigated whether HRV
measures are a suitable, simple, noninvasive alternative to differentiate between the
four main Framingham associated CVD risk categories. In this study we applied the
tone-entropy (T-E) algorithm and complex correlation measure (CCM) for analysis of HRV
obtained from 20 min. ECG recordings and correlated the HRV score with the stratification
results using the Framingham risk equation. Both entropy and CCM had significant analysis
of variance (ANOVA) results [F(172, 3) = 9.51; <0.0001]. Bonferroni post hoc analysis
indicated a significant difference between mild, high and very high cardiac risk groups
applying tone-entropy (p < 0.01). CCM detected a difference in temporal dynamics of the
RR intervals between the mild and very high CVD risk groups (p < 0.01). Our results
indicate a good agreement between the T-E and CCM algorithm and the Framingham
CVD risk score, suggesting that this algorithm may be of use for initial screening of
cardiovascular risk as it is noninvasive, economical and easy to use in clinical practice.
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meausres, Framingham risk factor, Poincare plot

INTRODUCTION
Identification of the risk of a cardiovascular disease (CVD) is an
important attribute of preventative health care.

THE FRAMINGHAM RISK EQUATION AND CARDIOVASCULAR RISK
Multifactorial factors contribute to the increased risk of CVD.
Previous health practice guidelines recommend that patients be
treated with respect to their underlying coronary heart disease
risk (Sheridan et al., 2003). Therefore accurate estimates are
required to provide information on treatment strategies and
timing of commencement of treatment. The Framingham risk
equation has been validated in general populations. (D’Agostino
et al., 2001) The Framingham risk equation has also been
modified by various countries such as the Australian and New
Zealand Cardiovascular Society (Jackson, 2000) as well as alter-
native risk equations proposed including the Coronary Risk
Evaluation (SCORE) for fatal coronary heart disease or CVD and
the Diabetes Epidemiology: Collaborative Analysis of Diagnostic
Criteria in Europe (DECODE), which incorporates glucose

tolerance status and fasting plasma glucose as well. (Conroy
et al., 2003), (Balkau et al., 2004) History of CVD, physical
inactivity, obesity, and left ventricular hypertrophy diagnosed by
echocardiography are not included in current models of car-
diovascular risk assessment (Jackson, 2000) as their individual
predictive value is unclear, although obesity and left ventric-
ular hypertrophy (LVH) are associated with increased cardiac
pathology. There are suggestions that additional clinical measures
may be of benefit such as biomarkers including C-reactive pro-
tein or D-dimer. (Charo et al., 1998; De Lemos, 2006; Nwose
et al., 2007) However, these measures are invasive as they require
blood samples to be sent to analytical laboratories and time
consuming.

THE FRAMINGHAM SCORE AND AUTONOMIC NERVOUS SYSTEM
Assessment of the autonomic nervous system (ANS) function
can provide information on the risk and presence of CVD.
As such blood pressure, one component of the Framingham
risk score (FRS) is a function of heart rate and peripheral
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vascular resistance. In turn heart rate is a function of metabolism,
which is also in part regulated by the ANS. Peripheral vascular
resistance is equally regulated by the ANS, albeit only by the
sympathetic branch. Increased cholesterol levels combined with
oxidative stress due to for instance, increased free radicals
leads to pathophysiological changes in the vascular endothe-
lial cells and atherosclerosis, which also affects blood pressure.
However increased blood pressure can also lead to atheroscle-
rosis (Alexander, 1995, p. 9301). The metabolic changes due
to oxidative stress are particularly a factor in diabetes disease
progression, where an increase in reactive oxygen species activ-
ity associated with an increase in blood glucose levels leads
to not only lipid peroxidation and atherosclerosis but also
to damage to the kidneys, eye, gastrointestinal tract and the
vascular system. Similar pathological changes to the periph-
eral circulation are due to smoking. The final parameter con-
tained in the Framingham equation is age. Aging also affects
heart rate variability (HRV), with increasing age associated
with a decrease in HRV. (Pikkujämsä et al., 1999) These fac-
tors are the standard clinical parameters incorporated into the
Framingham risk equation. Therefore we hypothesized that
parameters that indicate characteristics of ANS function such
as ANS influence on heart rhythm may be good indicators for
CVD risk.

The Framingham-based cardiovascular risk categories can
be determined on line at http://www.mdcalc.com/framingham-
coronary-heart-disease-risk-score-si-units/ and other websites.
The Framingham risk equation uses data on gender, age, choles-
terol, blood pressure, diabetes status and smoking to determine
the 10 year risk of belonging to one of four risk categories: mild,
moderate, high and very high (Wilson et al., 1998).

HRV INDICES AND FRAMINGHAM RISK SCORE
HRV is an important physiological factor that is regulated by the
sinoatrial node located in the right atrium of the heart and con-
nected to the remainder of the heart by an elaborate network
of cardiac cells that conduct the electrical impulse throughout
the heart muscle. The endocrine system via a diverse set of hor-
mones and the ANS also modulate HRV (Naschitz et al., 2005).
HRV is also influenced by the same factors as incorporated in
the Framingham risk equation including age, gender, cholesterol,
blood pressure, diabetes status and smoking.

Standards of measurement and interpretation of HRV have
been recommended by the Task Force of the European Society
of Cardiology and the North American Society of Pacing and
Electrophysiology (Tfesc/Naspe, 1996). However the majority
of studies investigating cardiovascular risk and HRV have used
clinical data such as from the Framingham cohort to assess cor-
relations between parameters measured as part of the FRS and
HRV. Thus in the Framingham Heart Study, frequency and time
domain analysis of HRV were found to be associated with a
higher CVD mortality. (Tsuji et al., 1996) Studies by our labora-
tory and others have investigated the correlation between HRV
and hypertension, cholesterol, gender, age, hyperglycemia and
diabetes, smoking, body mass index, oxidative stress and heart
disease. (Da Silva et al., 2004; Lampert et al., 2008; McLachlan
et al., 2010; Tacoy et al., 2010; Thayer et al., 2010; Johnson et al.,

2011; Khandoker et al., 2011; Kotecha et al., 2011; Fakhrzadeh
et al., 2012; Matthews et al., 2012; Thiyagarajan et al., 2013)
However, these studies did not stratify the cohorts according to
the FRS but rather evaluated the magnitude of the HRV associ-
ated with presence or absence of the pathology being investigated.
Hillebrand et al. (2013) recently reported that HRV is a useful
marker for incidence of CVD in a population without any signs
of CVD based on lowered time domain HRV values (Hillebrand
et al., 2013).

Our search of the literature found one previous paper that
investigated the correlation between HRV and FRS in a group of
healthy adults (Yoo et al., 2011). The results of the study was based
on dichotomizing the FRS into two groups, one with a CVD risk
lower than 10% and the other a CVD risk higher than 10%. The
results indicated that both time and frequency domain analyses
were useful parameters for differentiating between high and low
CVD risk.

Time and frequency domain analyses are sensitive to the length
and non-stationarity inherent in the R-R series obtained from
the ECG recordings. Several HRV analysis methods have been
proposed in the last 10 years, which address some of the short-
comings associated with time and frequency domain analysis.
The tone-entropy (T-E) algorithm is a method that is robust
against data length, non-stationarity of the signal and also against
respiratory influence and has been validated as a tool for analyz-
ing HRV. The T-E algorithm has also been shown to correlate
with experimentally induced HRV changes by either blocking
the parasympathetic component using atropine or increasing the
sympathetic influence on heart rate by head-up tilt (Oida et al.,
1999). A clinical study analyzing HRV in a cohort of people
with diabetes and cardiac autonomic neuropathy indicated a good
correlation between cardiac autonomic progression and T-E as
suggested by the work of Oida and colleagues (Khandoker et al.,
2010). T-E is a combination of tone, which indicates the sympa-
thovagal balance and entropy which indicates the overall activity
of the ANS. Higher tone and lower entropy values indicate wors-
ening ANS function and reduced HRV, which by its nature has a
certain amount of variability and activity level (Khandoker et al.,
2010).

Current HRV parameters used in HRV analysis are essentially
static measures of a time signal. To obtain a better understand-
ing of the relationship between autonomic control of the heart
rate and the correlation to CVD risk a more dynamic measure of
heart rate is required (Peng et al., 1995). The Poincaré Plot is a
method proposed and utilized by Tulppo et al. (1996) for analysis
of heart rate signals. The Poincaré Plot allows determining linear
components of the inter-beat variability associated with short and
long term correlations of the signal (Tulppo et al., 1998; Karmakar
et al., 2009a). An extension of the Poincaré Plot to determine
and measure the temporal dynamics over the recording interval
was proposed by Karmakar et al. (2011). The complex correlation
method (CCM) relies on computing the point-to-point variation
of the signal with increasing lag (beat intervals) rather than the
global description the Poincare plot provides based on n, and
n + 1 beats.

This study investigated whether T-E and CCM are able to dif-
ferentiate between ECG recordings obtained from four groups of

Frontiers in Physiology | Computational Physiology and Medicine July 2013 | Volume 4 | Article 186 | 2

http://www.mdcalc.com/framingham-coronary-heart-disease-risk-score-si-units/
http://www.mdcalc.com/framingham-coronary-heart-disease-risk-score-si-units/
http://www.frontiersin.org/Computational_Physiology_and_Medicine
http://www.frontiersin.org/Computational_Physiology_and_Medicine
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive


Jelinek et al. CVD risk and heart rate variablity

patients categorized according to their FRS into mild, moderate,
high and very CVD risk.

METHODS
FRAMINGHAM RISK ASSESSMENT AND ECG SIGNALS
Data for the study was obtained from the Diabetes Screening
Complications Initiative (DiScRi) clinic at Charles Sturt
University. The study was approved by the Charles Sturt
University Human Ethics Committee and undertaken between
2004 and 2008. Patient data was only included if it was com-
plete for demographic as well as experimental variables. Under
these criteria, 319 records and ECG traces were available. The
Framingham cardiac risk score was determined using the pro-
tocol outlined by Jackson (2000) and determined automatically
from data entered into the DiScRi ACCESS database (Pecoul
and Jelinek, 2008). The variables used for determination of the
cardiac risk score were age, sex, blood pressure, cholesterol [total
and high density lipoprotein (HDL)], and smoking with diabetes
status being a categorical variable. Cardiac risk as defined by
the Framingham risk score is divided into very high (>20%),
high (15–20%), moderate (10–15%) and mild (less than 10%)
in accordance with the Australian and New Zealand Guidelines.
The CVD risk score for each patient was used to categorize them
into one of the four groups.

ECG signals were recorded and edited using the MLS310 HRV
module (version 1.0, ADInstruments, Australia) included in the
Chart software package. High frequency noise was removed with
a 45 Hz low-pass filter and a 0.5 Hz high pass filter adjusted
for wandering baseline. Ectopic beats were selected visually and
deleted manually. Linear interpolation was used to replace ectopic
beats that occur immediately before and after the ectopic inter-
val. Intervals between successive R waves of the QRS complex
(i.e., R-R intervals in seconds) were calculated using the algo-
rithm developed by Pan and Tompkins.(Tompkins, 1993) The
HRV analysis described in the following sections was performed
on 1000 RR intervals.

TIME AND FREQUENCY DOMAIN ANALYSIS
We quantified several time domain HRV parameters: mean RR,
standard deviation of normal RR data (SDNN) and the square
root of the mean squared difference of the successive RR data
(RMSSD). Spectral analysis was performed on linearly resampled
(1 Hz) time series using Welch’s method (Welch, 1967). The 256-
point fast Fourier transform was repeatedly computed with 50%
overlap between adjacent segments. Then the spectral power of
each segment was computed and averaged. Hanning window was
applied to avoid spectral leakage. Subsequently, spectral powers
in the low frequency (LF) band (0.04–0.15 Hz) and high fre-
quency (HF) band (0.15–0.40 Hz) were obtained by integration
(TFESC/NASPE). The normalized LF and HF powers were cal-
culated by LF/(Total Power–VLF) and HF/(Total Power–VLF)
respectively as per Task Force recommendation. (Tfesc/Naspe,
1996) The power in the very lower frequency (VLF) band was set
at ≤ 0.04 Hz.

TONE-ENTROPY DETERMINATION
The methodology was described in detail in previous reports
(Oida et al., 1999; Amano et al., 2005). In brief, acquired heart

periods (RR intervals) are transformed into percentage index (PI)
time series:

PI(n) = [H(n) − H(n + 1)] × 100/H(n) (1)

where H(n) is a heart period time series, and n a serial number
of heart beats shown. PI(n) therefore represents the number of
instances each specific heart rate interval (RR) occurs in the time
series. The tone is defined as a first order moment (arithmetic
average) of this PI time series as:

∑

n

PI(n)/N(non-dimensional) (2)

where N is a total number of PI terms. The tone, balance between
accelerations (PI > 0) and inhibitions (PI < 0) of the heart, rep-
resents the sympatho-vagal balance faithfully as appreciated in
all the previous studies (2002). The entropy is defined on PI
probability distribution by using Shannon’s formula:

−
∑

n

p(i) log2 p(i)(bit) (3)

where [p(i)] is a probability that PI(n) has a value in the range,
i < PI (n) < i + 1, i an integer. The entropy evaluates total
acceleration–inhibition activities, or total heart period variations,
in a familiar unit of bit. Entropy represents therefore the auto-
nomic regulatory activity and tone the sympatho-vagal balance
(Khandoker et al., 2010).

Tone as a feature has its origin in the investigations in the last
century of Rosenbluth and Simeone (Rosenblueth and Simeone,
1984). These authors investigated autonomic control of heart
rate as an antagonistic interactive operation between acceleration
and inhibition. Entropy evaluates HRV almost the same way as
conventional second-order moments, for example, as standard
deviation and is based on the Shannon entropy.

COMPLEX CORRELATION MEASURE
CCM measures the point-to-point variation of the signal rather
than gross description of the Poincaré plot. It is computed in a
windowed manner, which embeds the temporal information of
the signal. A moving window of three consecutive points from
the Poincaré plot are considered and the temporal variation of the
points are measured. If three points are aligned on a line then the
value of the variation is zero, which represents the linear align-
ment of the points. If the Poincaré plot is composed of N points
then the temporal variation of the plot, the CCM, is composed of
all overlapping three point windows and can be calculated as:

CCM(m) = 1

Cn(N − 2)

N−2∑

i = 1

||A(i)|| (4)

where m, the lag, represents the number of consecutive points
used from the Poincaré plot, A(i) represents area of the i-th tri-
angle and Cn is the normalizing constant which is defined as,
Cn = π∗ SD1∗ SD2, represents the area of the fitted ellipse over
Poincaré plot at lag-m. The length of major and minor axis of the
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ellipse are 2SD1, 2SD2, where SD1, SD2 are the dispersion per-
pendicular to the line of identity (minor axis) and along the line
of identity (major axis) respectively as proposed by Tulppo et al.
(1996) The detail mathematical formulation of CCM is reported
in our previous study Karmakar et al. (2009b).

STATISTICAL ANALYSIS
Results were expressed as means (±SD). One-way analysis of vari-
ance (ANOVA) and Bonferroni post hoc examination were carried
out for comparisons among the four groups (mild, moderate,
high, and very high) to evaluate whether statistically significant
differences exist among the groups. In this study, the Lilliefors test
was applied to test if the HRV features (tone, entropy, and CCM)
comes from a distribution in the normal family. Results from the
Lilliefors tests confirmed that HRV features’ distributions were
normal. Therefore, we decided to perform the statistical analysis
with ANOVA. A value of p < 0.05 was considered significant for
all examinations.

RESULTS
Three hundred and nineteen patients were recruited into the
study with complete results from the DiScRi clinic including data
required for determining the FRS. After exclusion of results due to
noise in ECG signals or ectopic beats, 170 patients were included

in the final analysis. Of these 85 participants were identified with
mild (57%), 37 with moderate (18%), 25 with high (13%), and
23 (12%) cardiovascular risk. Demographic and cardiac risk fac-
tors according to the Framingham model are shown in Table 1
(Lloyd-Jones, 2010).

Both entropy and CCM had significant ANOVA results
[F(172, 3) = 9.51; <0.0001]. Bonferroni post hoc analysis indicated
a significant difference between mild, high and very high cardiac
risk groups with the entropy feature (Table 2). CCM detected a
difference in temporal dynamics of the RR intervals between the
mild and very high CVD risk groups.

Post hoc analysis of SDNN for the CVD risk groups was also
significant at 0.05 between mild and very high CVD risk. Figure 1
indicates that entropy steadily decreases with increased CVD risk
and tone increases with increasing CVD risk (Figure 1).

CCM similarly decreases with advance of CVD risk (Figure 2).
The increase in tone indicates a reduction in sympathovagal bal-
ance and the decrease in CCM indicates that this reduction in
sympathovagal balance may be due to a reduction in parasym-
pathetic influence on HRV. Entropy decreases with CVD risk
progression, indicating a loss of ANS activity.

The results of the T-E analysis were then transformed into 2D
space shown in Figure 3. Rectangles show the mean and standard
errors of Tone and Entropy values of each group. The symbols

Table 1 | Study population framingham CVD risk parameters and demographics.

Mild Moderate High Very high P-values

Number 85 37 25 23

Gender, M(F) 25 (60) 16 (21) 16 (9) 14 (9)

Age (years) 60.2 ± 12.4 63.1 ± 12.4 66.5 ± 11.4 66.1 ± 12.4 0.020

SBP(mmHg) 126.5 ± 16 132.6 ± 16.7 132.3 ± 17.7 141.3 ± 18.8 0.001

TC/HDL(mmol/L) 3.6 ± 1.1 4.2 ± 1.1 2.78 ± 1.1 3.5 ± 1.2 0.040

DM, yes(no) 22 (63) 15 (22) 12 (13) 16 (7)

BMI 27.5 ± 6.3 28.2 ± 3.6 26.1 ± 4.9 27.7 ± 5.7 0.451

HbA1c(%) 6.1 ± 0.8 6.2 ± 0.6 6.2 ± 1 6.10 ± 0.5 0.100

HT, yes(no) 40 (45) 16 (21) 15 (10) 13 (10)

Results are provided as mean ± SD; BMI, body mass index; HbA1c, glycosylated hemoglobin; TC/HDL, total cholesterol to high density lipoprotein cholesterol; SBP,

systolic blood pressure; DM, diabetes mellitus; HT, hypertension.

Table 2 | Heart rate variability results for CVD risk groups.

HRV features Mild (85) Moderate (37) High (25) Very high (23) p

Tone −0.584 ± 0.783 −0.388 ± 0.586 −0.265 ± 0.515 −0.319 ± 0.349 0.070

Entropy 2.476 ± 0.630 2.176 ± 0.567 2.007 ± 0.699* 1.699 ± 0.530** 0.0001

CCM 0.526 ± 0.384 0.430 ± 0.347 0.314 ± 0.141 0.280 ± 0.180** 0.001

SDNN(ms) 50.33 ± 24.13 46.97 ± 18.32 39.68 ± 18.37 38.64 ± 13.38** 0.05

RMSSD(ms) 46.23 ± 28.08 43.04 ± 21.94 39.12 ± 23.21 38.41 ± 17.82 0.51

VLF(s2) 0.80 ± 0.81 0.72 ± 0.56 0.54 ± 0.59 0.44 ± 0.27 0.13

LF(nu) 0.60 ± 1.09 0.48 ± 0.55 0.41 ± 0.40 0.32 ± 0.41 0.34

HF(nu) 1.05 ± 1.65 0.90 ± 0.89 0.69 ± 0.77 0.65 ± 0.64 0.53

LF/HF 0.59 ± 0.30 0.59 ± 0.28 0.82 ± 0.63 0.63 ± 0.58 0.65

*p < 0.01 for Mild vs. High; **p < 0.01 for Mild vs. Very high.
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FIGURE 1 | Tone and entropy mean ± SD values for each of the four

CVD risk groups.

FIGURE 2 | CCM mean ± SD values for each of the four CVD risk

groups.

show the tone-entropy results for each participant with respect
to CVD risk category. The important finding is that the distribu-
tion of results on the T-E plot roughly follow a curvilinear trend
from top left to bottom right, showing as outlined in the text
that there is an increase in tone and a decrease in entropy as one
goes from the mild CVD risk group to the very high risk group
(see Table 1).

Excitation-inhibition characterizes HRV and is the basis for
calculating tone in the T-E algorithm. Figure 4 indicates the
histograms based on the probability of excitations and inhi-
bitions occurring in any heart rate recording. The histograms
indicate that the relationship between excitations and inhibi-
tions are clearly different between the four CVD risk groups
(Figure 4).

The Mild CVD risk histogram has a wide spread of both accel-
eration and inhibitions in heart rate with inhibitions on the left
being slightly more common. The moderate CVD risk group
(B) indicates that there is a loss of both inhibitions and exci-
tations with the remaining beat intervals occurring at a higher
percentage. With high CVD risk (C) the variance (spread of
the histogram) of inhibition and excitations are still reduced
but in addition the percentage of the different beat lengths
occurring is also reduced. The histogram for very high CVD

FIGURE 3 | Tone-Entropy plot of all subjects in four groups.

risk (D) is characterized by a further reduction in variance
or spread of the histogram and inhibitions and excitations all
occur less often but with inhibitions dominating the heart rate
variance.

DISCUSSION
CVD risk as determined by the FRS requires data for gender and
age, diabetes status, blood pressure, cholesterol level as well as
smoking status. From a clinical perspective determining the final
Framingham risk score is based on analysis of blood samples,
which is an invasive procedure and requires samples to be sent to
a testing laboratory. Simpler methods that are non-invasive but
are correlated with the FRS may provide an alternative where the
FRS cannot be calculated or provide additional clinical informa-
tion. Our study focused on whether the magnitude of CVD risk as
determined by FRS is correlated with HRV measured by the T-E
and CCM algorithms.

Current measures of the autonomic balance of heart rate reg-
ulation include time and frequency domain as well as nonlinear
measures (Goldberger and West, 1987; Pincus, 1991; Alam et al.,
2009; Karmakar et al., 2009a; Voss et al., 2009; Cysarz et al.,
2011). Time and frequency domain measures provide a global
characterization of the HRV over the recording interval, which
can range between 2 min to 24 h (Dekker et al., 2000; Rennie
et al., 2003; Kiviniemi et al., 2011). To obtain a better under-
standing of the optimal ANS control of the heart rate, more
dynamic measures of heart rate such as nonlinear methods are
required. Quantitative Poincaré plot analysis was used to assess
the changes in CCM of HRV signals during parasympathetic
blockade was discussed in our previous study (Karmakar et al.,
2011). The lowest value of CCM has also been found during
atropine infusion which reduced the parasympathetic activity and
reduces instantaneous changes in HRV signal. On the other hand,
it was also found to be increased with increase in parasympa-
thetic activity during administration of low-dose scopolamine.
Variability (increasing or decreasing) in the temporal structure
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FIGURE 4 | Excitation—inhibition histograms associated with CVD risk category. (A) mild; (B) moderate; (C) high; (D) very high risk; Excitation (black
bars)—inhibition (red bars) histograms associated with CVD risk category.

of the Poincaré plot (measured as CCM) reflects the change in
parasympathetic activity harmoniously. An advantage of nonlin-
ear methods is that they are not sensitive to the non-stationarity
of ECG signals (Peng et al., 1995). T-E has a number of advan-
tages over the conventional methods of HRV analysis in that
it is robust against non-stationarity and respiratory influence
and not sensitive to differences in length of recordings. Similarly
CCM can be applied to short recordings and provides tem-
poral/dynamic information about HRV not obtained by other
methods (Karmakar et al., 2011). This latter point makes tone,
entropy and CCM especially useful for clinical investigation
where short time recordings are more likely to be used. T-E pro-
vides also an alternative visualization of the functionality of the
ANS with respect to CVD risk as shown in Figure 2 and CCM
is a dynamic rather than a static measure of HRV. CCM there-
fore provides information on the magnitude of the beat-to-beat
influence from a lag of one beat to ten beats, which has been
shown to be important in HRV and is subject to parasympa-
thetic influence (Lerma et al., 2003), necessitating a means of
exploring this influence. CCM, rather than analyzing beat-to-beat
variation in fact analyses the relationship between an initial beat
and any beat downstream from n to n + 1. In this work we have
used n = 3.

Our results show that mild risk of less than 10%, moder-
ate (10–15%), high (15–20%) and very high risk (>20%), in
accordance with the Australian and New Zealand Guidelines, is
associated with decreasing entropy and CCM and an increasing
tone. The lack of a significant result between mild and moderate
may be in part due to the minor difference in CVD risk % between
the current groups. Previous work by Yoo et al. (2011) divided
the cohort into those with less or greater than 10% CVD risk
and showed a significant relationship between the FRS and time
and frequency domain parameters (Yoo et al., 2011). Our analy-
sis using the four main CVD risk groups of the FRS showed only

a significant result for SDNN, the global time domain measure.
No frequency domain measures were significant. We propose
that entropy and CCM are more suitable measures to identify
CVD risk in terms of the FRS due to their robust nature against
non-stationarity and measuring total activity and the dynamic
nature of the heart rate interval changes over the time of the
recording.

Analysis of the distribution of accelerations and inhibitions
as shown in Figure 4 are related to the tone-entropy results.
The mild CVD risk group has the widest histogram and the
lowest peak, which indicates the highest entropy and lowest
tone and therefore a higher HRV. Mild CVD risk has the most
active sympatho-vagal modulation of heart rate and optimum
sympatho-vagal balance. Narrower histograms as seen in Figure 4
with higher peaks indicate loss of ANS activity by a decrease
in entropy and loss of sympatho-vagal balance indicated by the
increase in tone. The trend of increasing tone and decreasing
entropy continues as CVD risk increases. Moderate, high and very
high CVD risk histograms are narrower with higher tone values
and therefore a lower sympatho-vagal balance. This is especially
prominent in the moderate CVD risk group. T-E analysis thus
indicates subtle physiological changes in heart rate modulation
not previously identified. These results correlate with previous
physiological and pharmacological experiments (see Figures 2, 8;
Oida et al., 1997).

The results for T-E and CCM analysis correlate with the CVD
risk as determined by the FRS. HRV changes in response to
various factors including ANS activity. In turn ANS activity is
dependent on age, smoking, diabetes and blood pressure, all being
variables of the Framingham CVD risk equation. TE and CCM
are able to differentiate the mild to high and very high CVD
risk groups as defined by the Framingham CVD risk score. As
such HRV parameters may be seen as a single measure that is
non-invasive and provides an alternative for identifying CVD risk.
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However, we are not suggesting a new or better classification
of risk compared to the FRS but rather that T-E and CCM
correlate well with the accepted Framingham CVD risk score
and the associated categories and provide a better stratifica-
tion compared to the time and frequency domain parameters
as can be seen in Table 2. In essence we are proposing that
the entropy and CCM measure are able to stratify CVD risk
groups as defined by FRS to mild, high and very high CVR
risk groups. This has the advantage that a noninvasive, easy to
perform method can be used in the first instance to identify
individuals with increased risk of CVD. This becomes important
when blood samples for instance cannot be taken for ethical, eth-
nic or other reasons. In addition HRV has been shown to be a
sensitive marker for sudden cardiac death and also for inflam-
mation as an atherosclerosis process as well as risk of arrhythmic
events.

A future study of ours is to determine tone, entropy and CCM
in a larger, younger cohort as most people below 40 are unlikely to
have a very high risk of CVD and therefore may be missed in tra-
ditional CVD risk assessment despite other factors included in the
Framingham risk equation being abnormal. In addition we are
investigating the individual influence of the Framingham CVD
risk factors on HRV either separately or in combination. This
will provide a basis for reviewing younger patients with raised
blood pressure and raised cholesterol levels but in a low CVD risk
category due to age.
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