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Aging is a complex process characterized by a gradual decline in organ functional reserves,
which eventually reduces the ability to maintain homeostasis. An exquisite feature of
elderly subjects, which constitute a growing proportion of the world population, is the high
prevalence of cardiovascular disorders, which negatively affect both the quality of life and
the life expectancy. It is widely acknowledged that physical activity represents one of the
foremost interventions capable in reducing the health burden of cardiovascular disease.
Interestingly, the benefits of moderate-intensity physical activity have been established
both in young and elderly subjects. Herein we provide a systematic and updated appraisal
of the literature exploring the pathophysiological mechanisms evoked by physical activity
in the elderly, focusing on the functional role of the β adrenergic system.
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INTRODUCTION
Aging is a multifaceted process characterized by a gradual
decline in organ functional reserves (Santulli and Iaccarino, 2013;
Trindade et al., 2013). Numerous theories of aging have been
proposed hitherto and all of them somehow relate the lifespan
of each single species to mechanisms essential for the mainte-
nance of several biological activities (Raj et al., 2012). The free
radical theory relates to the failure of defenses against reac-
tive oxygen species (Davis and Williams, 2012; Joiner et al.,
2012); the somatic mutation theory relates to an impaired
DNA repair (Agronin, 2013); the autoimmune theory proposes
that the immune system fails to distinguish self from non-
self antigens (Menconi et al., 2008); others relate aging to the
loss of epigenetic controls, including but not limited to DNA
methylation, or to detrimental effects of toxic chemicals (Sahin
et al., 2011; Akbarian et al., 2013; Santulli and Totary-Jain,
2013).

Although the process seems to be continuous and irreversible,
aging itself does not mean disease. Indeed, aging is not a patho-
logical condition but an entirely natural phenomenon. Age-linked
modifications, however, whose mechanisms have to be looked
at the cellular and molecular level, indubitably pave the way for
disease (Marks, 2008).

AGING OF CARDIOVASCULAR SYSTEM
Aging is associated with evident changes in the cardiovascular sys-
tem that reflect alterations of biochemical adaptive mechanisms
(Santulli and Iaccarino, 2013). Normal aging, even in the absence
of co-morbidities, results in cardiovascular stiffening (Lakatta,
2003; Santulli, 2012b).

THE HEART
Significant alterations of measures of ventricular filling and relax-
ation have been described with aging, including a reversal of the
early and late mitral inflow velocities (E/A ratio), a prolongation
of isovolumetric relaxation time, a modification of the dynamic
longitudinal wall relaxation, and diastolic suction (propagation
velocity of early mitral inflow). All these differences have been
reported across a wide range of physiological filling pressures
(Prasad et al., 2007).

The incidence of left ventricular hypertrophy (LVH), heart fail-
ure (HF), and atrial fibrillation (AF) increases dramatically with
age (Santulli, 2013). In particular, the prevalence of LVH also
increases with rising blood pressure and body mass index (Lanni
et al., 2007; Sorriento et al., 2010; de Simone et al., 2013). Cross-
sectional studies of subjects without hypertension indicate that
left ventricular wall thickness increases progressively with age.
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Moreover, in older hospitalized patients without clinically appar-
ent cardiovascular disease, in whom overall cardiac mass was not
increased, cardiomyocyte enlargement was observed at autopsy
(Olivetti et al., 1995).

The elderly appear to be particularly predisposed to the devel-
opment of HF. Such a diagnosis is indeed the leading cause of
hospitalizations in people >65 years of age (Rosca and Hoppel,
2010; Santulli, 2013). In seniors, the underlying substrate for
HF, particularly with preserved ejection fraction (occurring in
about one-third to one-half of older patients with HF), may in
part be the age-associated modification in ventricular compliance
and relaxation (Marin-Garcia and Goldenthal, 2008; Oghlakian
et al., 2011). Albeit such mechanical changes may not be enough
to explain the cause of HF with preserved systolic function by
themselves, superimposed conditions including diabetes, coro-
nary disease, or hypertension may tip the scale toward increased
filling pressures and pulmonary congestion (Prasad et al., 2007;
Ahuja et al., 2013; Hohendanner et al., 2013; Kohlhaas and Maack,
2013). Regular lifelong physical activity preserves cardiac com-
pliance (in the absence of co-morbid conditions) and thereby
decreases left ventricular end-diastolic pressure (Prasad et al.,
2007).

Lastly, AF is detected in approximately 3–4% of healthy vol-
unteers over age 60 years without clinical coronary artery disease.
Such a rate is 10-fold higher than in the general adult population
(Santulli et al., 2012b). Overall prevalence of AF has been quan-
tified to be 17.8% in people aged 85 years and above (Santulli,
2013). The lifetime risk to develop AF at the age of 55 years
is 23.8% in men and 22.2% in women (Boriani et al., 2006;
Santulli, 2013). Notably, the development of a rapid irregular
pattern of electrical activity, including AF, may have detrimen-
tal consequences for hearts that are relatively stiff and relax slowly
(D’Ascia et al., 2011; Santulli et al., 2012c; Du et al., 2013; Santulli,
2013).

THE VESSELS
At the vascular level, cross-sectional studies in humans have
shown that wall thickening and dilatation are prominent struc-
tural changes that occur within large elastic arteries during
aging. The carotid intimal-media thickness increases 2- to 3-
fold between 20 and 90 years of age (Lakatta, 2003). The aortic
wall thickening that occurs with aging consists mainly of inti-
mal thickening (Virmani et al., 1991). Age-associated increase
in intimal thickening is accompanied by both luminal dilatation
and a reduction in distensibility or compliance, resulting in an
increase in vessel stiffness. Pulse wave velocity (PWV), a rela-
tively convenient, non-invasive index of stiffening (Safar et al.,
2005), increases with age. Such increase is determined in part
by the intrinsic stress/strain relationship (stiffness) of the vascu-
lar wall and by the mean arterial pressure. Augmented PWV has
traditionally been linked to structural alterations in the media,
including increased collagen, reduced elastin content, elastin frac-
tures, and calcification. Prominent age-associated increases in
PWV have been demonstrated in populations with little or no
atherosclerosis, thus indicating that stiffening can occur inde-
pendently of atherosclerosis (Boutouyrie et al., 2002). However,
more recent data emerging from epidemiological studies indicate
that increased large vessel stiffening also occurs in the context

of atherosclerosis and diabetes (Milan et al., 2011; Kollias et al.,
2012). A potential link might be that stiffness is governed not only
by the structural changes within the matrix, as noted above, but
also by endothelial regulation of smooth muscle tone and of other
aspects of vascular wall structure/function (Costanzo et al., 2010).
Of interest, abnormalities of the endothelium have been identi-
fied to occur early on in the pathophysiology of atherosclerosis,
diabetes, and hypertension (Iaccarino et al., 2004; Santulli et al.,
2012a,e).

PHYSICAL ACTIVITY AND CARDIOVASCULAR SYSTEM
Physical training is associated with improvements in blood pres-
sure regulation, lipid profile, abdominal fat reduction, insulin
sensitivity, and hemodynamic, inflammatory and psychoso-
cial parameters (Piepoli et al., 2004; Woodman et al., 2005;
Korantzopoulos and Goudevenos, 2007; Niederseer et al., 2007;
Werner et al., 2009; Berry et al., 2012). In addition, engaging in
physical activity of any intensity (including low-intensity ones)
likely positively impacts insulin action and blood glucose control
acutely (Colberg, 2012; Santulli et al., 2012e). Aerobic exercise
training may significantly lower blood pressure in older hyper-
tensive individuals, improving endothelial function and vascular
tone (Hagberg et al., 1989; Dengel et al., 2006). In particular,
swimming exercise has been shown to elicit hypotensive effects
and improvements in vascular function in previously seden-
tary older adults (Nualnim et al., 2012). A recent meta-analysis
explored the effects of different kinds of physical exercise on
blood pressure in adult subjects (Cornelissen and Smart, 2013).
Combined training was shown to lower only diastolic blood
pressure, whereas endurance, dynamic resistance, and isometric
resistance training lowered both systolic and diastolic blood pres-
sure. Isometric resistance training appeared to have the potential
for the largest reductions in systolic blood pressure.

EFFECTS OF EXERCISE ON SKELETAL MUSCLE
Life-long endurance exercise training has been shown to prevent
age-associated declines of exercise capacity and cardiac compli-
ance in healthy subjects (Arbab-Zadeh et al., 2004). Moreover,
several months to a year of exercise training can increase exer-
cise capacity in healthy subjects (Fujimoto et al., 2010) and HF
patients (Sullivan et al., 1988). The improved exercise capacity in
HF appears to be related to improvements in peripheral arterial
function and skeletal muscle metabolism (Beere et al., 1999). A
single bout of strenuous exercise in a previously sedentary subject
unleashes a broad array of cellular and molecular processes, which
serve to quickly prepare for the next episode of physical exertion.
The opposite can also occur quickly, as evidenced by the marked
muscle atrophy and decline in exercise performance following
forced bed rest in older individuals, which likely mimics the con-
dition resulting from the frequent hospitalizations experienced by
older HF patients (Kitzman and Haykowsky, 2012).

WORKLOAD AND CARDIAC PERFORMANCE
Coats and colleagues proved in a milestone study that home-
based physical training programs are feasible even in severe
chronic HF and have a beneficial effect on exercise tolerance,
peak oxygen consumption, and symptoms (Coats et al., 1990).
Indeed, heart rates at submaximal workloads and rate-pressure
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products are significantly reduced by training, and a significant
improvement in patient-rated symptom scores has been also
reported. Such findings have been confirmed by other investiga-
tors (Hambrecht et al., 2000; Kemps et al., 2010), demonstrating
that exercise training in patients with stable HF improves the
work capacity by enhancing endothelial function and skeletal
muscle aerobic metabolism. In addition, physical exercise is asso-
ciated with reduction of peripheral resistance and results in small
but significant improvements in stroke volume and reduction in
cardiomegaly. In a very well-designed study Belardinelli and col-
leagues recently demonstrated that moderate supervised training,
at 60% of peak oxygen consumption (VO2), performed twice
weekly for 10 years confers a sustained improvement in quality of
life compared with non-trained patients (Belardinelli et al., 2012).
Such sustained improvements are associated with reduction in
major cardiovascular events, including hospitalizations for HF
and cardiac mortality (Belardinelli et al., 2012; Santulli, 2013) and
a sustained improvement in quality of life (Khazanie and Granger,
2013). Thus, the commonly held belief that rest is the mainstay of
treatment of chronic HF should no longer be accepted.

EXERCISE AND CARDIAC STRUCTURE
Diastolic dysfunction has been strongly related to decreased exer-
cise capacity in a large population referred for exercise echocar-
diography and not limited by ischemia, (Grewal et al., 2009).
Increased resting and post-exercise left ventricular filling pres-
sures have been also associated with a reduction in exercise
capacity. Of note, unlike many other factors that are an inevitable
consequence of aging, diastolic dysfunction may be a preventable
factor in the development of exercise intolerance. However, it is
not completely clear whether alterations in several markers of
diastolic function with senescence are a specific manifestation of
the aging process or reflect a secondary cardiac adaptation to a
more sedentary lifestyle. This issue has been elegantly addressed
by Prasad and colleagues, who demonstrated that, in contrast to
chamber compliance, age-dependent modifications of ventricular
relaxation are only minimally influenced by lifelong endurance
training (Prasad et al., 2007). Hence, changes in ventricular
compliance with senescence are strongly influenced by physical
activity, whereas changes in ventricular relaxation appear to be
more likely specific to cardiac senescence and may result from
alterations in cardiac regulatory proteins that occur with aging
(Loffredo et al., 2013).

PHYSICAL ACTIVITY AND ATRIAL FIBRILLATION
There are currently controversial results concerning the effect
of physical training on AF. In young and middle-aged adults,
high-intensity endurance training is associated with higher risk
of lone AF (Molina et al., 2008; Mont et al., 2008). On the other
hand, a recent report indicated that greater habitual light-to-
moderate physical activities are associated with significantly lower
risk of new-onset AF in older adults (Mozaffarian et al., 2008).
Several factors may explain such apparently divergent findings.
AF is a common clinical manifestation of remarkably heteroge-
neous cardiac and non-cardiac conditions, including coronary
artery disease, valvular disease, hypertension, sleep apnea, alco-
hol use, pericarditis, hyperthyroidism, and genetic predisposition

(D’Ascia et al., 2011; Santulli and D’Ascia, 2012). Lone AF should
exclude subjects with hypertension, clinical or structural car-
diopulmonary disease, or age >60 years; hence, lone AF explicitly
does not exist in older adults (Fuster et al., 2006; Santulli, 2011).
Pathophysiology of lone AF, which represents ≤10% of AF cases
in the population, may be indeed very different from the much
more common AF seen with structural heart disease, hyperten-
sion, other disorders, or aging. Thus, physical training could
increase incidence of lone AF in young and middle-aged adults
but may also attenuate numerous other AF risk factors reduc-
ing overall incidence of AF, particularly later in life when risk
rises so steeply (Santulli et al., 2012d). Furthermore, activity
intensity might modify effects on AF, depending on the balance
between acute triggering versus reduction of chronic vulnerabil-
ity to AF. Then, since nearly 1 in 5 subjects aged ≥65 years are
supposed to develop AF during the next 10 years (Mozaffarian
et al., 2008), habitual light to moderate physical activity might be
an exceptional prescription to help lower such a risk.

AGING, PHYSICAL EXERCISE, AND BETA ADRENERGIC
SYSTEM: THE MOLECULAR EVIDENCE
CARDIOVASCULAR β ADRENERGIC SYSTEM
Several experimental findings indicate an age-associated decrease
in catecholamine-responsiveness in the elderly. In particular, an
age-associated decrease in β adrenergic receptor (βAR) sensi-
tivity and density has been shown in the cardiac muscle and
has been mainly attributed to down-regulation and impaired
coupling of βAR to adenylate cyclase (Lakatta, 2003). The age-
linked decline in cardiac βAR response, which is consistent across
species, seems to be primarily due to a down-regulation of β1ARs,
as reported in aged explanted human hearts (White et al., 1994).
Further, a reduction in the sensitivity of βARs, measured by
isoproterenol-induced changes in the catecholamine stimulated
adenylate cyclase activity in the myocardium (O’Connor et al.,
1981) and in pulse rate and blood pressure (Vestal et al., 1979),
had been reported.

Young individuals are more responsive than elderly subjects
to isoproterenol-induced increases in blood flow in the brachial
artery (van Brummelen et al., 1981). Such features are similar
to what seen in patients with HF. Hence, most of the modifica-
tions that occur in the sympathetic nervous system with aging
(hyposensitivity to adrenergic stress, increased circulating cate-
cholamines and decreased βAR responsiveness) are also common
in HF patients (Santulli, 2012b).

AGING AND βAR SIGNALING ABNORMALITIES
The age-linked decline in adrenergic responsiveness impairs also
vasodilatation, increasing thereby total peripheral resistances
(Santulli and Iaccarino, 2013). A generalized impairment of
βAR-mediated vasorelaxation has been indeed shown both in
human hypertensive patients (Izzo et al., 2008) and in ani-
mal models of hypertension (Borkowski et al., 1992; Iaccarino
et al., 2004; Santulli et al., 2009). The age-associated decrease
in βAR-mediated relaxation has been proposed to be due to
decreased receptor density, less efficient coupling to adenylate
cyclase, impaired generation of cyclic AMP, or attenuated activa-
tion of downstream components (Santulli et al., 2013). However,

www.frontiersin.org August 2013 | Volume 4 | Article 209 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Vascular_Physiology/archive


Santulli et al. Aging, physical exercise, and βARs

there is not a single factor that can entirely explain the age-related
deterioration of βAR function (Santulli et al., 2011a; Lampri and
Elli, 2013). The primary trigger of such homeostatic imbalance
seems to be associated with an age-related alteration in the ability
of βAR to respond to agonists at the cellular level. βAR affinity for
the ligand is dependent upon its phosphorylation, which in turn
is in the domain of G protein-coupled receptor kinases (GRKs)
and GRK2 in particular (Santulli et al., 2011b; Fusco et al., 2012).
Intriguingly, both GRK2 expression and activity increase in vas-
cular tissue with aging (Santulli et al., 2013). Furthermore, the
transgenic overexpression of GRK2 in the vasculature leads to
impaired βAR signaling and vasodilatative response, causing a
hypertensive phenotype in rodents Such a point of view has been
supported in humans by the observation that GRK2 expression
correlates with blood pressure as well as impaired βAR-mediated
adenylate cyclase activity (Sorriento et al., 2012; Santulli et al.,
2013). The deterioration in βAR function and subsequent cAMP
generation (Davinelli et al., 2012) is a common factor under-
lying hypertension, atherosclerosis, vascular insufficiency, and
orthostatic hypotension, all conditions associated to important
morbidity and mortality (Santulli, 2012a; Vu et al., 2012).

PHYSICAL EXERCISE AND βAR
The βAR system is activated in lymphocytes during prolonged
aerobic physical exercise both in healthy subjects and in HF
patients (Maki, 1989; Mancini et al., 1989). The number of
lymphocyte βAR increases after dynamic exercise by a β2AR
mechanism (Maisel et al., 1990). Such increase can indeed be
mimicked by acute administration of exogenous βAR agonists
such as isoproterenol and epinephrine but not by norepinephrine
(Hazeki, 1973; Deblasi et al., 1986). Moreover, it can be blocked by
non-selective βAR antagonists such as propranolol and the β2AR-
selective ICI 118,551 but not by the β1AR-selective bisoprolol
(Van Tits et al., 1990).

The effects of exercise on cardiovascular catecholamine
responsiveness have been extensively studied, pointing out the
functional role of βAR. An increased responsiveness to isopro-
terenol has been demonstrated in the myocardium of trained
rodents, when compared with sedentary controls (Takeda et al.,
1985; Libonati and MacDonnell, 2011). Such responses have
been shown to be independent of training-induced alterations
in cardiac hypertrophy or hypertrophic marker expression. An

increased sensitivity of β2AR has been indicated as a mechanism
underpinning the increased vasodilator response to isoproterenol
after exercise (Gaballa et al., 2000; Santulli and Iaccarino, 2013).
Several studies have also shown the importance of the βAR sys-
tem in the relaxant response of coronary arteries during exercise.
Indeed, the β2AR receptor selective antagonist ICI 118,551 is
able to significantly decrease coronary blood flow velocity and
increase late diastolic coronary resistance during a running ses-
sion (DiCarlo et al., 1988; Traverse et al., 1995).

Other recent studies have shown in animal models that phys-
ical exercise ameliorates sensitivity of βAR when the vasodila-
tor response mediated by such receptors has been previously
reduced by the aging process. In particular, a 6-week training
program of 5 days/week swimming exercise improved vasodilator
response to the non-selective βAR agonist isoproterenol, in coro-
nary arteries, compared with the sedentary group (Santulli and
Iaccarino, 2013). Similarly, a 10- to 12-week treadmill program
of 5 days/week running exercise, with 60-min sessions, improved
vasodilator response to isoproterenol in gastrocnemius muscle
vessels from old rodents, but not in young animals (Donato et al.,
2007).

Collectively, the aforementioned studies show the beneficial
effects of physical training on vascular sensitivity in the aging
process. However, βAR responsiveness to exercise is not homo-
geneous, depending on several factors, including the region of
vascular bed to be studied. Indeed, regions of different diam-
eters in the same artery might respond differently to physical
exercise. Another noteworthy variable is the type of artery stud-
ied: resistance and conductance vessels show indeed different
responses.

SUMMARY
Aging has become one of the most critical issues for industrialized
nations, because population average age, and thus the incidence
of age-associated disorders, has markedly risen to create a major
burden as patients draw heavily on the need for continuing med-
ical treatment and hospital and other community services. In the
present review, we examined the relationship between physical
training and aging, focusing on the functional role of βARs. The
amelioration of βAR responsiveness, obtained through means of
regular physical training, contributes to the clinical improvement
in cardiovascular health reported in elderly subjects.
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