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Several types of channels play a role in the maintenance of ion homeostasis in
subcellular organelles including endoplasmatic reticulum, nucleus, lysosome, endosome,
and mitochondria. Here we give a brief overview of the contribution of various
mitochondrial and other organellar channels to cancer cell proliferation or death. Much
attention is focused on channels involved in intracellular calcium signaling and on ion fluxes
in the ATP-producing organelle mitochondria. Mitochondrial K+ channels (Ca2+-dependent
BKCa and IKCa, ATP-dependent KATP, Kv1.3, two-pore TWIK-related Acid-Sensitive K+
channel-3 (TASK-3)), Ca2+ uniporter MCU, Mg2+-permeable Mrs2, anion channels (voltage-
dependent chloride channel VDAC, intracellular chloride channel CLIC) and the Permeability
Transition Pore (MPTP) contribute importantly to the regulation of function in this organelle.
Since mitochondria play a central role in apoptosis, modulation of their ion channels by
pharmacological means may lead to death of cancer cells. The nuclear potassium channel
Kv10.1 and the nuclear chloride channel CLIC4 as well as the endoplasmatic reticulum
(ER)-located inositol 1,4,5-trisphosphate (IP ) receptor, the ER-located Ca2

3
+ depletion

sensor STIM1 (stromal interaction molecule 1), a component of the store-operated Ca2+
channel and the ER-resident TRPM8 are also mentioned. Furthermore, pharmacological
tools affecting organellar channels and modulating cancer cell survival are discussed.
The channels described in this review are summarized on Figure 1. Overall, the view
is emerging that intracellular ion channels may represent a promising target for cancer
treatment.
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MITOCHONDRIA
The “impermeable” mitochondrial inner membrane (IMM)
allows the formation of an electrochemical proton gradient which
drives the aerobic synthesis of ATP. The “semipermeable” outer
membrane (OMM) encloses a periplasmic space where proteins
with fundamental roles in cell death are stored until a sufficiently
strong pro-apoptotic signal arrives. Mitochondria have assumed
a peculiar role in cancer cell physiology (Ralph and Neuzil, 2009).
They are crucial for the control of intracellular Ca2+ homeostasis,
and produce reactive oxygen species (ROS). ROS are involved in
the regulation of physiological processes, but may also be harm-
ful if produced excessively. Mitochondria are the checkpoint of
the intrinsic pathway of apoptosis: the release of caspase cofac-
tors, such as cytochrome c (cyt c) and SMAC/Diablo, results in
the assembly of the apoptosome and in commitment of the cell
to apoptosis. In cancer cells mitochondrial metabolism is deregu-
lated to optimize the production of glycolytic intermediates for
anabolic reactions. Much effort has been devoted to discover
drugs inducing cancer cell death by targeting tumor-specific alter-
ations of mitochondrial metabolism or by stimulating OMM
permeabilization and thus, allowing the release of apoptotic co-
factors (Fulda et al., 2010). Mitochondrial ion channels play a
role in this process by influencing organellar membrane poten-
tial, ROS production, volume, calcium homeostasis, and possibly
morphology. The mitochondrial channels characterized over the

last two decades include outer membrane-located VDAC and
MAC in the IMM, potassium channels mtKATP, mtBKCa, mtIKCa,
mtKv1.3, TASK-3, the non-selective permeability transition pore
PTP, chloride channels, and the calcium uniporter (e.g., Zoratti
et al., 2009; Shoshan-Barmatz et al., 2010; Rizzuto et al., 2012;
Szabò et al., 2012).

CHANNELS OF THE OUTER MITOCHONDRIAL MEMBRANE INVOLVED
IN APOPTOSIS/CANCER
Mitochondrial apoptosis-induced channel (MAC)
OMM permeabilization has been proposed to involve oligomers
of pro-apoptotic Bax, which display ion channel activity in phos-
pholipid bilayers (e.g., Tait and Green, 2010). However, the
hypothesis that Bax alone is sufficient to induce cyt c release
has been challenged, given that a single point mutant of Bax did
not mediate cell death in Bax/Bak-less mouse embryonic fibrob-
lasts despite forming channels with properties similar to WT Bax
(Brustovetsky et al., 2010; Szabò et al., 2011). A pore (mito-
chondrial apoptosis-induced channel, MAC) with an estimated
diameter sufficient to allow the passage of cyt c was detected by
patch clamp (Martinez-Caballero et al., 2009). The timing of cyt c
release in apoptotic cells correlated with the onset of MAC activity
and with the translocation of Bax to mitochondrial membranes.
MAC, whose formation requires Bim-induced activation of Bax
and a still unidentified protein, is considered as a target for novel
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FIGURE 1 | Ion channels involved in regulation of apoptosis and/or

tumorigenesis are shown in different organelles. Channels for whose
crucial role pharmacological and/or genetic in vivo evidence is available are
shown in red.

cancer therapies (Peixoto et al., 2012) but specific MAC activators
are not available yet. The BH3 mimetic ABT-737, an efficient anti-
cancer agent in vivo, activates MAC by disrupting Bcl-2/Bax/Bim
complexes (Dejean et al., 2010).

Mitochondrial voltage dependent anion channel (VDAC)
The major protein of the OMM, porin or VDAC is deeply
involved in apoptosis. The role of VDAC1 and of the other iso-
forms VDAC2 and VDAC3 in cell death is multi-faceted and com-
plex (e.g., McCommis and Baines, 2012; Shoshan-Barmatz and
Golan, 2012; Shoshan-Barmatz and Mizrachi, 2012). Formation
of a large pore comprising VDAC and Bax/Bak was proposed to
account for cyt c release (Tsujimoto and Shimizu, 2000; but see
Martinez-Caballero et al., 2009). Alternatively, dimers and higher
oligomers of VDAC1 might form the conduit for the efflux of
cyt c (Shoshan-Barmatz et al., 2010). Binding of anti-apoptotic
Bcl-2 and BclxL to VDAC1 (with resulting inhibition of porin)
(Shimizu et al., 2000) has an anti-apoptotic action (e.g., Arbel
et al., 2012). In contrast, block of VDAC1 by the phosphoroth-
ioate oligonucleotide G3139 (Tan, 2012) or by avicins (plant
saponins with anticancer activity) is pro-apoptotic, presumably
by reducing flux of metabolites across the OMM (Haridas et al.,
2007). VDAC2 inhibits Bak activation and apoptosis (Cheng et al.,
2003), and Bak reportedly relocates from the OMM to the ER in
the absence of VDAC2 (Raghavan et al., 2012). In contrast, Bax-
induced cyt c release from mitochondria isolated from WT or
VDAC1−, VDAC3− and VDAC1/VDAC3-null cells was reported
to be the same (Baines et al., 2007).

VDAC may inhibit apoptosis and promote tumorigenesis
through specific interactions with enzymes favoring glycolysis. It
is being examined as a cancer-specific target since tumor cells have
elevated glycolysis and increased expression of VDACs (Grills
et al., 2011). Overexpression of Hexokinase-2 (HK2) and its asso-
ciation with VDAC are key features of glycolytic cancers (e.g.,
Wolf et al., 2011). HK2 binding to the conduit channeling ATP
out of mitochondria provides a metabolic benefit to cancer cells
(Warburg effect) and it antagonizes cell death via inhibition of
Bax-induced cyt c release (Pastorino et al., 2002; Gall et al., 2011)
and/or inhibition of the Mitochondrial Permeability Transition
(MPT) (Chiara et al., 2008). HK detachment seems to favor

cell death by disruption of aerobic glycolysis and of the energy
balance of the cell, regulation of ROS production, altered inter-
action of Bcl2 family proteins with mitochondria, facilitation of
VDAC oligomer formation (e.g., Shoshan-Barmatz et al., 2010;
Shoshan-Barmatz and Golan, 2012). Therefore, a major oncolog-
ical target is the HK-VDAC complex (e.g., Galluzzi et al., 2008;
Simamura et al., 2008; Fulda et al., 2010; Mathupala and Pedersen,
2010). HK2 can be dissociated from mitochondria by peptides
interfering with HK-VDAC association, by erastin (Yagoda et al.,
2007) and by 3-bromopyruvate (e.g., Cardaci et al., 2012; Ko
et al., 2012; Pedersen, 2012; Shoshan, 2012). Antifungal drugs
clotrimazole and bifonazole and the plant hormone methyl jas-
monate (MJ) are also effective. MJ is particularly promising since
it has selective anticancer activity in preclinical studies (Fulda
et al., 2010). Finally, the anti-cancer agent furanonaphthoquinone
(FNQ) induces caspase-dependent apoptosis via the production
of ROS, which is enhanced by VDAC1 overexpression (Simamura
et al., 2008). A systematic search for compounds acting at the level
of VDAC to antagonize cancer remains to be performed.

ION CHANNELS OF THE INNER MITOCHONDRIAL MEMBRANE
INVOLVED IN APOPTOSIS/CANCER
Permeability transition pore (MPTP)
When the IMM becomes freely permeable to solutes, the conse-
quences for the cell can be catastrophic. Thus, the selective induc-
tion of IMM permeabilization in cancer cells is a strategy worth
pursuing in oncotherapy. A number of cellular stresses and cyto-
toxic agents trigger the prime example of such a catastrophe, i.e.,
the mitochondrial permeability transition (MPT), considered as
a final common pathway of cell death (Brenner and Grimm, 2006;
Bernardi, 2013). The MPT is caused by the opening of a large
Ca2+- and oxidative stress-activated pore [the mitochondrial
megachannel, MMC, with a conductance of up to 1.5 nS (Szabó
and Zoratti, 1991)] which makes the IMM permeable to ions and
solutes up to about 1500 Da MW, leading to matrix swelling.

MPT is considered to bear substantial responsibilities in the
tissue damage caused by, e.g., ischemia/reperfusion and oxidative
stress. In cancer cells, instead, signaling pathways are activated
which desensitize the mitochondria to MPT induction (Rasola
et al., 2010; Matassa et al., 2012; Traba et al., 2012), while
chemotherapeutic agents causing oxidative stress may activate sig-
nals causing death via the MPT (Chiara et al., 2012). Cyclosporin
A (CSA), a cyclic endecapeptide, is a powerful inhibitor of the
MPTP (Fournier et al., 1987; Crompton et al., 1988; Broekemeier
et al., 1989) (and also of calcineurin and thus is a widely used
immunosuppressant). CSA inhibits the MPTP via its binding to
matrix cyclophilin (CyP) D, a peptidyl-prolyl cis-trans isomerase
(PPIase). Patients treated with CSA to prevent transplant rejec-
tion have a high incidence of cancer not only because of the drug’s
immunosuppressive action, but also because CSA inhibits the
MPTP (Norman et al., 2010). The molecular nature of the MPTP
is being finally delineated: the dimeric form of ATP synthase and
CypD as regulator are currently proposed as components (Baines
et al., 2005; Bernardi, 2013; Giorgio et al., 2013).

For oncological applications MPT inducers are relevant,
despite the likelihood of noxious side-effects, for example on
the nervous system. A large number of compounds, often used
at relatively high concentrations, have been shown to induce
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the MPT in cultured cells, often as a consequence of oxidative
stress and/or disruption of Ca2+ homeostasis. Some MPTP-
targeting molecules such as 4-(N-(S-glutathionylacetyl) amino)
phenylarsenoxide are currently being evaluated in clinical trials
for cancer treatment of refractory tumors (Brenner and Moulin,
2012; Elliott et al., 2012).

Signaling pathways which modulate occurrence of the MPT
have been elucidated, a key component being GSK3α/β whose
activation, e.g., by induction of oxidative stress by gold com-
plex AUL12, favors MPTP opening (Chiara and Rasola, 2013).
A large portion of MPTP openers are natural compounds like
jasmonates (e.g., Raviv et al., 2013), betulinic acid, the synthetic
retinoid CD437 (Lena et al., 2009; Javadov et al., 2011), berberine
(Pereira et al., 2007, 2008), honokiol (Li et al., 2007), α-bisabolol
(Cavalieri et al., 2009) and shikonin (Han et al., 2007), just to
name a few. Data on in vivo anti-tumor activities are available
for all these compounds (Fulda et al., 2010). Mitochondria-
penetrating peptides, such as mastoparan-like sequences, pep-
tides of the innate immunity systems, or the molecules developed
by Kelley’s group (e.g., Risso et al., 2002; Jones et al., 2008; Horton
et al., 2012) also induce MPT. Some MPTP-targeting molecules
such as 4-(N-(S-glutathionylacetyl) amino) phenylarsenoxide are
currently being evaluated in clinical trials for cancer treatment of
refractory tumors (Brenner and Moulin, 2012; Elliott et al., 2012).

IMM potassium channels Kv1.3, BKca, IKca, and TASK-3 in the
regulation of apoptosis/cancer
A functional mitochondrial counterpart of the potassium chan-
nel Kv1.3 has been identified in the IMM of several cell types
(mtKv1.3) (Szabò et al., 2005; Gulbins et al., 2010). It is
expected to participate in regulation of mitochondrial mem-
brane potential, volume, and ROS production. A crucial role
of mtKv1.3 in apoptosis became evident since expression of a
mitochondria-targeted Kv1.3 construct was sufficient to sensi-
tize apoptosis-resistant CTLL-2 T lymphocytes, which lack Kv
channels. MtKv1.3 has been identified as a target of Bax and
physical interaction between the two proteins in apoptotic cells
has been demonstrated (Szabó et al., 2008; Szabò et al., 2011).
Incubating Kv1.3-positive isolated mitochondria with Bax trig-
gered apoptotic events including membrane potential changes
(hyperpolarization followed by depolarization due to the opening
of MPTP), ROS production and cyt c release, whereas Kv1.3-
deficient mitochondria were resistant. Highly conserved Bax
lysine 128 protrudes into the intermembrane space (Annis et al.,
2005) and mimics a crucial lysine in Kv1.3-blocking peptide tox-
ins. Mutation of Bax at K128 (BaxK128E) abrogated its effects on
Kv1.3 and mitochondria, as well as in Bax/Bak-less double knock-
out (DKO) mouse embryonic fibroblasts, indicating a toxin-like
action of Bax on Kv1.3 to trigger mitochondrial phenomena.

Psora-4, PAP-1 and clofazimine, three membrane-permeant
inhibitors of Kv1.3, can induce death by directly targeting
the mitochondrial channel, while membrane-impermeant Kv1.3
inhibitors ShK or Margatoxin did not induce apoptosis (Leanza
et al., 2012a,b). Importantly, the membrane-permeant drugs
killed cells also in the absence of Bax and Bak, in agreement
with the above model. Genetic deficiency or siRNA-mediated
downregulation of Kv1.3 abrogated the effects of the drugs.
Intraperitoneal injection of clofazimine reduced tumor size by

90% in an orthotopic melanoma B16F10 mouse model in vivo,
while no adverse effects were observed in several healthy tissues.
Similar results were obtained with primary human cancer cells
from patients with chronic lymphocytic leukemia (Leanza et al.,
2013). The selective action of these drugs on tumor cells is related
to a synergistic effect of a higher expression of Kv1.3 and of an
altered redox state of cancer cells. The fact that clofazimine is
already used in the clinic for the treatment of e.g., leprosis (Ren
et al., 2008) and shows an excellent safety profile supports the
feasibility of targeting mtKv1.3 for therapy.

The large conductance calcium- and voltage-activated K+
channel BKCa (KCa1.1) has been revealed also in intracellular
membranes, including nuclear membrane, ER, Golgi and mito-
chondria (Xu et al., 2002; O’Rourke, 2007; Singh et al., 2012).
Patch clamp experiments with recombinant Bax showed an inhi-
bition of BKCa, which might contribute to opening of the MPTP
during cell death (Cheng et al., 2011).

The intermediate conductance potassium channel (IKCa;
KCa3.1), selectively inhibited by clotrimazole and TRAM-34,
has been recorded from the inner mitochondrial membranes of
human cancer cells (De Marchi et al., 2009; Sassi et al., 2010).
TRAM-34 used alone did not induce apoptosis (Sassi et al., 2010;
Quast et al., 2012), but it synergistically increased sensitivity to
the death receptor ligand TRAIL in melanoma cells (Quast et al.,
2012). Given that both TRAM-34 and TRAIL have a relatively
good safety profile, co-administration of the two drugs might be
exploited for melanoma treatment.

Recently TASK-3 (KCNK9), a two-pore potassium channel,
was identified in mitochondria of melanoma and keratinocyte
(Rusznák et al., 2008) as well as healthy intestinal epithelial cells
(Kovács et al., 2005). Reduced expression of TASK-3 resulted in
compromised mitochondrial function and cell survival in WM35
melanoma cells (Kosztka et al., 2011). Whether TASK-3 protein
gives rise to a functional channel in the IMM and whether it will
become an oncological target remain to be determined.

OTHER IMM CHANNELS LINKED TO TUMORIGENESIS: UNCOUPLING
PROTEIN UCP, Mg2+ CHANNEL Mrs-2 AND CALCIUM UNIPORTER MCU
Uncoupling protein-2 (UCP-2), which mediates proton leak
(Cannon and Nedergaard, 2004; Fedorenko et al., 2012), has
been proposed to regulate cell survival by decreasing mito-
chondrial ROS, since a depolarizing proton leak is expected to
diminish superoxide production (Baffy et al., 2011). UCP2 over-
expression reportedly prevents oxidative injury, thereby possibly
contributing to a higher apoptotic threshold assisting survival
of cancer cells. Over-expression of UCP2 was found in numer-
ous types of tumors and has been shown to protect cells from
oxidative stress (Arsenijevic et al., 2000; Zhang et al., 2007)
and even to abolish chemotherapeutic agent- induced apopto-
sis (Derdak et al., 2008). Ectopic expression of UCP2 in MCF7
breast cancer cells leads to a decreased mitochondrial mem-
brane potential and increased tumorigenic properties as mea-
sured by cell migration, in vitro invasion, and anchorage inde-
pendent growth. Interestingly, UCP2 over-expression has also
been proposed to directly contribute to the Warburg pheno-
type (Samudio et al., 2008) and to development of tumors in
an orthotopic model of breast cancer (Ayyasamy et al., 2011).
Cisplatin downregulated the expression of UCP2 in colon cancer

www.frontiersin.org September 2013 | Volume 4 | Article 227 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Membrane_Physiology_and_Membrane_Biophysics/archive


Leanza et al. Organellar ion homeostasis in apoptosis

cells (Santandreu et al., 2010), suggesting that UCP2 over-
expression is involved in the development of a variety of cancers.
UCP2 can be considered as a promising oncological target.

Mitochondria accumulate Mg2+ via Mrs2, a Mg2+–selective
channel of the IMM (Kolisek et al., 2003). An early increase in
cytosolic Mg2+ occurs during apoptosis (Chien et al., 1999) and
this ion seems to be required for cytochrome c release (Kim
et al., 2000). Long-lasting knock-down of Mrs2 caused cell death
by inducing loss of respiratory complex I and mitochondrial
membrane depolarization (Piskacek et al., 2009). A subtrac-
tive hybridization method applied on vincristine or adriamycin
resistant and parental human gastric adenocarcinoma cell lines
highlighted upregulation of Mrs2 (Chen et al., 2009), suggesting
that high expression of Mrs2 may protect against death (Wolf and
Trapani, 2009).

The molecular identification of the mitochondrial Ca2+ “uni-
porter” (MCU), responsible for the low-affinity uptake of calcium
into the mitochondrial matrix (Kirichok et al., 2004), has recently
been achieved (Baughman et al., 2011; De Stefani et al., 2011).
MCU participates in the control of Ca2+ signaling in the whole
cell, and may thus be a very useful tool to influence the myr-
iad cellular calcium-dependent processes, including cell death
(Rizzuto et al., 2012). Subthreshold apoptotic signals were shown
to synergize with cytosolic Ca2+ waves (Pinton et al., 2001)
resulting in opening of MPTP. Cells overexpressing MCU under-
went more pronounced apoptosis upon challenging with H2O2

and C2-ceramide (De Stefani et al., 2011). Overexpression of an
MCU-targeting microRNA, miR-25, in colon cancer cells resulted
in MCU downregulation, impaired calcium uptake and increased
resistance to apoptosis (Marchi et al., 2013). Thus, MCU seems to
be a crucial protein for tumorigenesis and its specific pharmaco-
logical activators, if identified, might become useful tools.

ION CHANNELS IN OTHER ORGANELLES WITH A ROLE IN
APOPTOSIS/TUMORIGENESIS
The intracellular chloride channel CLIC4/mtCLIC has both a sol-
uble and a membrane-inserted form and can be localized to the
mitochondrial inner membrane (Fernández-Salas et al., 1999),
cytoplasm, ER membrane, and the nucleus. CLIC4 overexpres-
sion induced apoptosis associated with loss of mitochondrial
membrane potential, cytochrome c release, and caspase activation
(Fernández-Salas et al., 2002). On the other hand, inhibition of
CLIC4 expression triggered mitochondrial apoptosis under star-
vation and enhanced autophagy in glioma cells (Zhong et al.,
2012). Marked changes in expression and subcellular localiza-
tion of CLIC4 occur early in tumorigenesis. In particular, reduced

CLIC4 expression and nuclear localization in cancer cells is asso-
ciated with the altered redox state and CLIC4 acts as an important
suppressor of squamous tumor development and progression
(Suh et al., 2012).

A functional “oncogenic” potassium channel, Kv10.1 has been
described in the nuclear inner membrane (Chen et al., 2011)
where it might participate in setting nuclear [K+] thereby affect-
ing gene expression. The PM Kv10.1 is also rapidly internal-
ized to lysosomes (Kohl et al., 2011), whose patch clamping
has been achieved (Wang et al., 2012). The possible influ-
ence of these channels on cancer cell survival remains to be
determined.

Finally, we should briefly mention other intracellular chan-
nels involved in Ca2+ signaling, (Ca2+ permeable channels are
discussed in detail by other contributions in this special issue).
For example the calcium-permeable ion channel TRPM8, overex-
pressed in several tumors, has been located to the ER (Zhang and
Barritt, 2004), resulting in decreased ER [Ca2+] and increased
resistance to apoptosis (Bidaux et al., 2007). Patients suffering
of breast cancers with high ER-located STIM1 levels have signifi-
cantly reduced survival (McAndrew et al., 2011). The PM-located
other component, ORAi1 contributes to altered calcium home-
ostasis as well (Monteith et al., 2012). Expression of ER-resident
IP3 receptors acting as Ca2+ store release channels is altered in
glioblastoma (Kang et al., 2010). Repression of IP3- mediated
Ca2+ elevation by Bcl-2 has been proposed to contribute to the
pathophysiology of chronic lymphocytic leukemia (Zhong et al.,
2011).

In summary, while considerable further work is required to
clarify the mechanisms by which intracellular channels contribute
to tumorigenesis and tumor progression, or intervene in cell
death, a few in vivo studies targeting these channels underline the
importance of pursuing this line of research.
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Sarkadi, L., Szücs, G., Nemes, Z.,

et al. (2005). TASK-3 immunore-
activity is present but shows dif-
ferential distribution in the human
gastrointestinal tract. Virchows Arch.
446, 402–410. doi: 10.1007/s00428-
005-1205-7

Leanza, L., Zoratti, M., Gulbins, E.,
and Szabò, I. (2012a). Induction of
apoptosis in macrophages via Kv1.3
and Kv1.5 potassium channels. Curr.
Med. Chem. 19, 5394–5404. doi:
10.2174/092986712803833281

Leanza, L., Henry, B., Sassi, N., Zoratti,
M., Chandy, K. G., Gulbins, E.,
et al. (2012b). Inhibitors of mito-
chondrial Kv1.3 channels induce
Bax/Bak-independent death of can-
cer cells. EMBO Mol. Med. 4,
577–593. doi: 10.1002/emmm.201
200235

Leanza, L., Trentin, L., Becker, K. A.,
Frezzato, F., Zoratti, M., Semenzato,
G., et al. (2013). Clofazimine,
Psora-4 and PAP-1, inhibitors of
the potassium channel Kv1.3, as
a new and selective therapeutic
strategy in chronic lymphocytic
leukemia. Leukemia 27, 1782–1785.
doi: 10.1038/leu.2013.56

Lena, A., Rechichi, M., Salvetti, A.,
Bartoli, B., Vecchio, D., Scarcelli,
V., et al. (2009). Drugs target-
ing the mitochondrial pore act
as cytotoxic and cytostatic agents
in temozolomide-resistant glioma
cells. J. Transl. Med. 7:13. doi:
10.1186/1479-5876-7-13

Li, L., Han, W., Gu, Y., Qiu, S.,
Lu, Q., Jin, J., et al. (2007).
Honokiol induces a necrotic cell
death through the mitochon-
drial permeability transition pore.
Cancer Res. 67, 4894–4903. doi:
10.1158/0008-5472.CAN-06-3818

Marchi, S., Lupini, L., Patergnani, S.,
Rimessi, A., Missiroli, S., Bonora,
M., et al. (2013). Downregulation
of the mitochondrial calcium
uniporter by cancer-related miR-
25. Curr. Biol. 23, 58–63. doi:
10.1016/j.cub.2012.11.026

Martinez-Caballero, S., Dejean, L. M.,
Kinnally, M. S., Oh, K. J., Mannella,
C. A., and Kinnally, K. W. (2009).
Assembly of the mitochondrial
apoptosis-induced channel, MAC.
J. Biol. Chem. 284, 12235–12245.
doi: 10.1074/jbc.M806610200

Matassa, D. S., Amoroso, M. R.,
Maddalena, F., Landriscina, M., and
Esposito, F. (2012). New insights
into TRAP1 pathway. Am. J. Cancer
Res. 2, 235–248.

Mathupala, S. P., and Pedersen, P.
L. (2010). Voltage dependent
anion channel-1 (VDAC-1) as
an anti-cancer target. Cancer
Biol. Ther. 9, 1053–1056. doi:
10.4161/cbt.9.12.12451

McAndrew, D., Grice, D. M., Peters, A.
A., Davis, F. M., Stewart, T., Rice,
M., et al. (2011). ORAI1-mediated
calcium influx in lactation and in
breast cancer. Mol. Cancer Ther.
10, 448–460. doi: 10.1158/1535-
7163.MCT-10-0923

McCommis, K. S., and Baines, C.
P. (2012). The role of VDAC in
cell death: friend or foe. Biochim.
Biophys. Acta 1818, 1444–1450. doi:
10.1016/j.bbamem.2011.10.025

Monteith, G. R., Davis, F. M., and
Roberts-Thomson, S. J. (2012).
Calcium channels and pumps in
cancer: changes and consequences.
J. Biol. Chem. 287, 31666–31673.
doi: 10.1074/jbc.R112.343061

Norman, K. G., Canter, J. A., Shi, M.,
Milne, G. L., Morrow, J. D., and
Sligh, J. E. (2010). Cyclosporine
A suppresses keratinocyte cell
death through MPTP inhibi-
tion in a model for skin cancer
in organ transplant recipients.
Mitochondrion 10, 94–101. doi:
10.1016/j.mito.2009.10.001

O’Rourke, B. (2007). Mitochondrial
ion channels. Annu. Rev. Physiol.
69, 19–49. doi: 10.1146/annurev.
physiol.69.031905.163804

Pastorino, J. G., Shulga, N., and Hoek, J.
B. (2002). Mitochondrial binding of
hexokinase II inhibits Bax-induced
cytochrome c release and apoptosis.
J. Biol. Chem. 277, 7610–7618. doi:
10.1074/jbc.M109950200

Pedersen, P. L. (2012). 3-
Bromopyruvate (3BP) a fast
acting, promising, powerful, spe-
cific, and effective “small molecule”
anti-cancer agent taken from lab-
side to bedside: introduction to a
special issue. J. Bioenerg. Biomembr.
44, 1–6. doi: 10.1007/s10863-012-
9425-4

Peixoto, P. M., Dejean, L. M., and
Kinnally, K. W. (2012). The
therapeutic potential of mito-
chondrial channels in cancer,
ischemia-reperfusion injury, and
neurodegeneration. Mitochondrion
12, 14–23. doi: 10.1016/j.mito.2011.
03.003

Pereira, G. C., Branco, A. F., Matos,
J. A., Pereira, S. L., Parke, D.,
Perkins, E. L., et al. (2007).
Mitochondrially targeted effects
of berberine [Natural Yellow 18
5,6-dihydro-9,10-dimethoxybenzo
(g)-1,3-benzodioxolo(5,6-a) quino-
lizinium] on K1735-M2 mouse
melanoma cells: comparison with
direct effects on isolated mitochon-
drial fractions. J. Pharmacol. Exp.
Ther. 323, 636–649. doi: 10.1124/
jpet.107.128017

Pereira, C. V., Machado, N. G., and
Oliveira, P. J. (2008). Mechanisms

of berberine (natural yellow
18)-induced mitochondrial dys-
function: interaction with the
adenine nucleotide translocator.
Toxicol. Sci. 105, 408–417. doi:
10.1093/toxsci/kfn131

Pinton, P., Ferrari, D., Rapizzi, E.,
Di Virgilio, F., Pozzan, T., Rizzuto,
R. (2001). The Ca2+ concentra-
tion of the endoplasmic reticulum
is a key determinant of ceramide-
induced apoptosis: significance for
the molecular mechanism of Bcl-2
action. EMBO J. 20, 2690–2701. doi:
10.1093/emboj/20.11.2690

Piskacek, M., Zotova, L., Zsurka,
G., and Schweyen, R. J. (2009).
Conditional knockdown of hMRS2
results in loss of mitochondrial
Mg(2+) uptake and cell death.
J. Cell Mol. Med. 13, 693–700. doi:
10.1111/j.1582-4934.2008.00328.x

Quast, S. A., Berger, A., Buttstädt,
N., Friebel, K., Schönherr, R.,
and Eberle, J. (2012). General
Sensitization of melanoma cells
for TRAIL-induced apoptosis by
the potassium channel inhibitor
TRAM-34 depends on release of
SMAC. PLoS ONE 7:e39290. doi:
10.1371/journal.pone.0039290

Raghavan, A., Sheiko, T., Graham, B.
H., and Craigen, W. J. (2012).
Voltage-dependant anion channels:
novel insights into isoform function
through genetic models. Biochim.
Biophys. Acta 1818, 1477–1485. doi:
10.1016/j.bbamem.2011.10.019

Ralph, S. J., and Neuzil, J. (2009).
Mitochondria as targets for cancer
therapy. Mol. Nutr. Food Res. 53,
9–28. doi: 10.1002/mnfr.200800044

Rasola, A., Sciacovelli, M., Pantic, B.,
and Bernardi, P. (2010). Signal
transduction to the permeability
transition pore. FEBS Lett. 584,
1989–1996. doi: 10.1016/j.febslet.
2010.02.022

Raviv, Z., Cohen, S., and Reischer-
Pelech, D. (2013). The anti-cancer
activities of jasmonates. Cancer
Chemother. Pharmacol. 71, 275–285.
doi: 10.1007/s00280-012-2039-z

Ren, Y. R., Pan, F., Parvez, S., Fleig,
A., Chong, C. R., Xu, J., et al.
(2008). Clofazimine inhibits human
Kv1.3 potassium channel by per-
turbing calcium oscillation in T
lymphocytes. PLoS ONE 3:e4009.
doi: 10.1371/journal.pone.0004009

Risso, A., Braidot, E., Sordano, M. C.,
Vianello, A., Macrì, F., Skerlavaj,
B., et al. (2002). BMAP-28, an
antibiotic peptide of innate immu-
nity, induces cell death through
opening of the mitochondrial
permeability transition pore. Mol
Cell Biol. 22, 1926–1935. doi:
10.1128/MCB.22.6.1926-1935.2002

Frontiers in Physiology | Membrane Physiology and Membrane Biophysics September 2013 | Volume 4 | Article 227 | 6

http://www.frontiersin.org/Membrane_Physiology_and_Membrane_Biophysics
http://www.frontiersin.org/Membrane_Physiology_and_Membrane_Biophysics
http://www.frontiersin.org/Membrane_Physiology_and_Membrane_Biophysics/archive


Leanza et al. Organellar ion homeostasis in apoptosis

Rizzuto, R., De Stefani, D., Raffaello,
A., and Mammucari, C. (2012).
Mitochondria as sensors and reg-
ulators of calcium signalling. Nat.
Rev. Mol. Cell Biol. 13, 566–578. doi:
10.1038/nrm3412

Rusznák, Z., Bakondi, G., Kosztka, L.,
Pocsai, K., Dienes, B., Fodor, J.,
et al. (2008). Mitochondrial expres-
sion of the two-pore domain TASK-
3 channels in malignantly trans-
formed and non-malignant human
cells. Virchows Arch. 452, 415–426.
doi: 10.1007/s00428-007-0545-x

Samudio, I., Fiegl, M., McQueen, T.,
Clise-Dwyer, K., and Andreeff,
M. (2008). The Warburg effect
in leukemia-stroma cocultures is
mediated by mitochondrial uncou-
pling associated with uncoupling
protein 2 activation. Cancer Res.
68, 5198–5205. doi: 10.1158/0008-
5472.CAN-08-0555

Santandreu, F. M., Roca, P., and Oliver,
J. (2010). Uncoupling protein-2
knockdown mediates the cytotoxic
effects of cisplatin. Free Radic. Biol.
Med. 49, 658–666. doi: 10.1016/j.
freeradbiomed.2010.05.031

Sassi, N., De Marchi, U., Fioretti, B.,
Biasutto, L., Gulbins, E., Francolini,
F., et al. (2010). An investigation
of the occurrence and properties
of the mitochondrial intermediate-
conductance Ca2+-activated K+
channel mtKCa3.1. Biochim.
Biophys. Acta 1797, 1260–1267. doi:
10.1016/j.bbabio.2009.12.015

Shimizu, S., Ide, T., Yanagida,
T., and Tsujimoto, Y. (2000).
Electrophysiological study of a
novel large pore formed by Bax and
the voltage-dependent anion chan-
nel that is permeable to cytochrome
c. J. Biol. Chem. 275, 12321–12325.
doi: 10.1074/jbc.275.16.12321

Shoshan, M. C. (2012). 3-Bromo-
pyruvate: targets and outcomes. J.
Bioenerg. Biomembr. 44, 7–15. doi:
10.1007/s10863-012-9419-2

Shoshan-Barmatz, V., Keinan, N.,
Abu-Hamad, S., Tyomkin, D., and
Aram, L. (2010). Apoptosis is reg-
ulated by the VDAC1 N-terminal
region and by VDAC oligomer-
ization: release of cytochrome c,
AIF and Smac/Diablo. Biochim.
Biophys. Acta 1797, 1281–1291. doi:
10.1016/j.bbabio.2010.03.003

Shoshan-Barmatz, V., and Golan, M.
(2012). Mitochondrial VDAC1:
function in cell life and death and a
target for cancer therapy. Curr. Med.
Chem. 19, 714–735.

Shoshan-Barmatz, V., and Mizrachi, D.
(2012). VDAC1: from structure to
cancer therapy. Front. Oncol. 2:164.
doi: 10.3389/fonc.2012.00164

Simamura, E., Shimada, H., Hatta, T.,
and Hirai, K. (2008). Mitochondrial
voltage-dependent anion channels
(VDACs) as novel pharmacologi-
cal targets for anti-cancer agents.
J. Bioenerg. Biomembr. 40, 213–217.
doi: 10.1007/s10863-008-9158-6

Singh, H., Stefani, E., and Toro, L.
(2012). Intracellular BKCa (iBKCa)
channels. J. Physiol. 590, 5937–5947.
doi: 10.1113/jphysiol.2011.215533

Suh, K. S., Malik, M., Shukla, A.,
Ryscavage, A., Wright, L., Jividen,
K., et al. (2012). CLIC4 is a tumor
suppressor for cutaneous squa-
mous cell cancer. Carcinogenesis.
33, 986–995. doi: 10.1093/carcin/
bgs115

Szabó, I., Bock, J., Grassmé, H.,
Soddemann, M., Wilker, B., Lang,
F., et al. (2008). Mitochondrial
potassium channel Kv1.3 mediates
Bax-induced apoptosis in lympho-
cytes. Proc. Natl. Acad. Sci. U.S.A.
105, 14861–14866. doi: 10.1073/
pnas.0804236105

Szabò, I., Bock, J., Jekle, A.,
Soddemann, M., Adams, C.,
Lang, F., et al. (2005). A novel
potassium channel in lymphocyte
mitochondria. J. Biol. Chem. 280,
12790–12798. doi: 10.1074/jbc.M41
3548200

Szabò, I., Leanza, L., Gulbins, E., and
Zoratti, M. (2012). Physiology
of potassium channels in the
inner membrane of mitochondria.
Pflugers Arch. 463, 231–246. doi:
10.1007/s00424-011-1058-7

Szabò, I., Soddemann, M., Leanza, L.,
Zoratti, M., and Gulbins, E. (2011).
Single-point mutations of a lysine
residue change function of Bax and
Bcl-xL expressed in Bax- and Bak-
less mouse embryonic fibroblasts:
novel insights into the molecular
mechanisms of Bax-induced apop-
tosis. Cell Death Differ. 18, 427–438.
doi: 10.1038/cdd.2010.112

Szabó, I., and Zoratti, M. (1991). The
giant channel of the inner mito-
chondrial membrane is inhibited by
cyclosporin A. J. Biol. Chem. 266,
3376–3379.

Tait, S. W., and Green, D. R. (2010).
Mitochondria and cell death:
outer membrane permeabilization
and beyond. Nat. Rev. Mol. Cell
Biol. 11, 621–632. doi: 10.1038/nrm
2952

Tan, W. (2012). VDAC blockage by
phosphorothioate oligonucleotides
and its implication in apopto-
sis. Biochim. Biophys. Acta 1818,
1555–1561. doi: 10.1016/j.bbamem.
2011.12.032

Traba, J., Del Arco, A., Duchen, M.
R., Szabadkai, G., and Satrústegui,
J. (2012). SCaMC-1 promotes
cancer cell survival by desensitiz-
ing mitochondrial permeability
transition via ATP/ADP-mediated
matrix Ca(2+) buffering. Cell Death
Differ.19, 650–660. doi: 10.1038/
cdd.2011.139

Tsujimoto, Y., and Shimizu, S. (2000).
VDAC regulation by the Bcl-2 fam-
ily of proteins. Cell Death Differ. 7,
1174–1181. doi: 10.1038/sj.cdd.440
0780

Wang, X., Zhang, X., Dong, X.
P., Samie, M., Li, X., Cheng,
X., et al. (2012). TPC proteins
are phosphoinositide- activated
sodium-selective ion channels in
endosomes and lysosomes. Cell 151,
372–383. doi: 10.1016/j.cell.2012.
08.036

Wolf, A., Agnihotri, S., Micallef, J.,
Mukherjee, J., Sabha, N., Cairns,
R., et al. (2011). Hexokinase 2 is
a key mediator of aerobic glycol-
ysis and promotes tumor growth
in human glioblastoma multiforme.
J. Exp. Med. 208, 313–326. doi:
10.1084/jem.20101470

Wolf, F. I., and Trapani, V. (2009).
Multidrug resistance phenotypes
and MRS2 mitochondrial magne-
sium channel: two players from
one stemness. Cancer Biol. Ther. 8,
615–617. doi: 10.4161/cbt.8.7.8152

Xu, W., Liu, Y., Wang, S., McDonald,
T., Van Eyk, J. E., Sidor, A., et al.
(2002). Cytoprotective role of Ca2+-
activated K+ channels in the car-
diac inner mitochondrial mem-
brane. Science 298, 1029–1033. doi:
10.1126/science.1074360

Yagoda, N., von Rechenberg, M.,
Zaganjor, E., Bauer, A. J., Yang, W.
S., Fridman, D. J., et al. (2007). RAS-
RAF-MEK-dependent oxidative cell
death involving voltage-dependent
anion channels. Nature 447,
864–868. doi: 10.1038/nature05859

Zhang, K., Shang, Y., Liao, S., Zhang,
W., Nian, H., Liu, Y., et al.
(2007). Uncoupling protein 2
protects testicular germ cells from
hyperthermia-induced apoptosis.
Biochem. Biophys. Res. Commun.
360, 327–332. doi: 10.1016/j.bbrc.
2007.06.071

Zhang, L., and Barritt, G. J. (2004).
Evidence that TRPM8 is an
androgendependent Ca2+ chan-
nel required for the survival of
prostate cancer cells. Cancer Res.
64, 8365–8373. doi: 10.1158/0008-
5472.CAN-04-2146

Zhong, F., Harr, M. W., Bultynck, G.,
Monaco, G., Parys, J. B., DeSmedt,
H., et al. (2011). Induction of
Ca2+-driven apoptosis in chronic
lymphocytic leukemia cells by
peptide-mediated disruption of
Bcl-2–IP3 receptor interaction.
Blood 117, 2924–2934. doi: 10.1182/
blood-2010-09-307405

Zhong, J., Kong, X., Zhang, H., Yu,
C., Xu, Y., Kang, J., et al. (2012).
Inhibition of CLIC4 enhances
autophagy and triggers mito-
chondrial and ER stress-induced
apoptosis in human glioma U251
cells under starvation. PLoS ONE
7:e39378. doi: 10.1371/journal.
pone.0039378

Zoratti, M., De Marchi, U., Gulbins,
E., and Szabò, I. (2009). Novel
channels of the inner mitochondrial
membrane. Biochim. Biophys. Acta
1787, 351–363. doi: 10.1016/j.
bbabio.2008.11.015

Conflict of Interest Statement: The
authors declare that the research
was conducted in the absence of any
commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 17 May 2013; accepted: 05
August 2013; published online: 03
September 2013.
Citation: Leanza L, Biasutto L, Managò
A, Gulbins E, Zoratti M and Szabò
I (2013) Intracellular ion channels
and cancer. Front. Physiol. 4:227. doi:
10.3389/fphys.2013.00227
This article was submitted to Membrane
Physiology and Membrane Biophysics,
a section of the journal Frontiers in
Physiology.
Copyright © 2013 Leanza, Biasutto,
Managò, Gulbins, Zoratti and Szabò.
This is an open-access article dis-
tributed under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) or licensor are cred-
ited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use, dis-
tribution or reproduction is permitted
which does not comply with these terms.

www.frontiersin.org September 2013 | Volume 4 | Article 227 | 7

http://dx.doi.org/10.3389/fphys.2013.00227
http://dx.doi.org/10.3389/fphys.2013.00227
http://dx.doi.org/10.3389/fphys.2013.00227
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Membrane_Physiology_and_Membrane_Biophysics/archive

	Intracellular ion channels and cancer
	Mitochondria
	Channels of the Outer Mitochondrial Membrane Involved in Apoptosis/Cancer
	Mitochondrial apoptosis-induced channel (MAC)
	Mitochondrial voltage dependent anion channel (VDAC)

	Ion Channels of the Inner Mitochondrial Membrane Involved in Apoptosis/Cancer
	Permeability transition pore (MPTP)
	IMM potassium channels Kv1.3, BKca, IKca, and TASK-3 in the regulation of apoptosis/cancer

	Other IMM Channels Linked to Tumorigenesis: Uncoupling Protein UCP, Mg2+ channel Mrs-2 and Calcium Uniporter MCU

	Ion Channels in Other Organelles with a Role in Apoptosis/Tumorigenesis
	Acknowledgments
	References


