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INTRODUCTION
Oxidative damage to lipids was character-
ized in terms of the nature of the oxi-
dant, the type of lipid, and the severity of
the oxidation (Simontacchi et al., 2011).
Even though malondialdehyde detection
with the thiobarbituric acid reactive sub-
stances test (TBARS) is the most currently
used assay for the determination of lipid
oxidation, it is unspecific since the reac-
tion can be reproduced by other biologi-
cal compounds (Simontacchi et al., 2011).
On the other hand, electron paramagnetic
resonance (EPR) spectroscopy showed the
capacity of detecting the presence of the
lipid radicals (LR•) formed during per-
oxidation, by yielding unique and stable
products with spin traps (Malanga and
Puntarulo, 2012). Nitric oxide (NO) is rec-
ognized both, as a signaling molecule that
regulates many enzyme activities, but as
a toxic agent as well. It has been found
that NO is able to protect animal and
plant cell types from oxidative damage
resulting from superoxide (O−

2 ), hydro-
gen peroxide (H2O2) and alkyl peroxides
by acting as a terminator of free rad-
ical chain reactions (Wink et al., 1995,
1996; Yalowich et al., 1999; Beligni and
Lamattina, 2002; Sharpe et al., 2003).
Reactive oxygen species (ROS) and reactive
nitrogen species (RNS) interact through
the reaction of O−

2 with NO, to gen-
erate peroxynitrite (ONOO−) at a rate
close to diffusion. ONOO− acts as both,
a nitrating agent and a powerful oxidant
capable of modifying proteins (formation
of nitrotyrosine), lipids (lipid oxidation,
lipid nitration), and nucleic acids (DNA

oxidation and DNA nitration) (Gisone
et al., 2004).

The purpose of this commentary is to
point out that NO complex interactions
with other cellular components lead to a
wide range of effects depending on the bio-
logical system under study and the oxida-
tive stress condition.

LIPID PEROXIDATION AND NO IN
PHOTOSYNTHETIC ORGANISMS
In cultures of the green algae Chlorella
vulgaris no significant changes were
observed in either of the parameters
showed in Table 1, in the stationary phase
as compared to the log phase of growth.
However, Qian et al. (2009) demonstrated
in Chlorella vulgaris that, depending on its
concentration, NO increased the activity
of antioxidant enzymes to protect against
the oxidative damage caused by herbicide
stress. Data from Simontachi et al. (2004)
showed that the NO steady state concen-
tration in homogenates from sorghum
embryonic axes reached a maximum at
24–30 h after the starting of imbibition,
in coincidence with the initiation of an
active germination. The generation of LR•
in sorghum axes was drastically increased
at 36 h of imbibition from non-detectable
values at 24 h, coincidentally with the sig-
nificant decline in the content of cellular
NO (Table 1).

To analyze the role of NO during senes-
cence, Jasid et al. (2009) sprayed daily
soybean cotyledons with an NO donor
solution (sodium nitroprusside, SNP),
from day 5 to 25. Differently from nat-
urally senescent cotyledons, where NO

content reached a maximum at day 10
of seedling development and declined, in
SNP-treated cotyledons NO content was
higher, and remained unchanged from day
10 to 25 after germination, as compared to
control values. While naturally senescent
cotyledons experimented no change in the
content of LR• during the studied period,
SNP-treated cotyledons showed a decrease
as time progressed (Table 1).

Shi et al. (2005) suggested that the
protective effect of NO on the oxidative
damage of thylakoid membrane proteins
in Phaseolus vulgaris beans under UV-B
radiation may be mediated by increasing
the level of expression of genes encod-
ing ROS-scavenging enzymes. Moreover,
Jasid et al. (2006) showed that isolated
chloroplasts from soybean leaves exposed
to 2 μM NO for 30 min, decreased the
rate of LR• generation (Table 1). Also,
Jasid et al. (2008) reported that axes
from sorghum seeds incubated 24 h in the
presence of SNP, showed a significantly
higher NO content as compared to con-
trol axes, and LR• content evaluated in
the microsomal fractions was significantly
lower, as compared to control membranes
(Table 1).

LIPID PEROXIDATION AND NO IN
NON-PHOTOSYNTHETIC ORGANISMS
Data in Table 1 show that seasonality
affects oxidative metabolism in diges-
tive glands (DG) from Nacella magel-
lanica limpets isolated from the Beagle
Channel, Tierra del Fuego, Argentina. A
significant increase in both LR• and NO
content in summer, as compared to winter,
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Table 1 | Nitric oxide and lipid peroxidation under stress conditions in photosynthetic and non-photosynthetic organisms.

Biological system Stress condition Lipid peroxidation NO References

TBARS LR•

PHOTOSYNTHETIC ORGANISMS

Intact cells

Chlorella cells Development No change day
12–18

No change day 12–18 No change day
12–18

Malanga and Puntarulo, 1995;
Estevez et al., 2001; Estévez
and Puntarulo, 2005

Homogenates

Sorghum embryonic axes Development nd Increased from 36 to 48 Decreased from
36 to 48 h

Simontachi et al., 2004

Soybean cotyledons Senescence nd No change day 10–25 Non-detectable at
day 25

Jasid et al., 2009

+SNP nd Decrease 58% day 10–25 No change day
10–25

Sub-cellular structures

Chloroplasts from
soybean leaves

+GSNO 250 μM nd Decrease 29% 2 μM NO (supple-
mentation)

Jasid et al., 2006

Microsomes from
sorghum embryonic axes

+SNP 1 mM nd Decrease 43% Increase 140% Jasid et al., 2008

NON-PHOTOSYNTHETIC ORGANISMS

Invertebrates

Nacella magellanica Summer vs. winter nd 1.7-fold increase 1.6-fold increase Malanga et al., 2007

Mya arenaria Fe 500 μM 4-fold increase day
0–17

nd 4-fold decrease
day 0–17

González et al., 2010

Mammals

Fetus rat brain γ radiation 2 h No change No change 6-fold increase Gisone et al., 2003

γ radiation 4 h Increase 51% nd No change Gisone et al., 2003

Rat liver Fe 500 mg/kg 2.7-fold increase nd No change Galleano and Puntarulo, 1992;
Rousseau et al., 2011

nd stands for non-determined.

was reported (Malanga et al., 2007).
However, studies on toxicological effects
of Fe exposure under laboratory condi-
tions showed that significant increases in
lipid peroxidation were temporarily asso-
ciated to decreases in NO content in DG
from the bivalve Mya arenaria after 17
days of treatment (González et al., 2010)
(Table 1).

In vivo γ irradiation of rat fetuses did
not significantly affect neither the con-
tent of LR• nor the content of TBARS
in the brain up to 2 h post-irradiation
(pi). However, 4 h after the exposure, a
significant increase in the TBARS con-
tent was measured. These results are con-
sistent with the hypothesis that changes
could be produced in the brain at the
early stages after exposure to γ radiation
to limit free radical-dependent damage,
since increased lipid peroxidation was only

detected after 4 h pi. Gisone et al. (2003)
showed that total NO synthase activity
was increased after 30 and 60 min pi, and
returned to control values after 2 h pi, and
accordingly NO content was significantly
increased (Table 1).

Galleano and Puntarulo (1992) showed
that liver homogenates from Fe-dextran
overloaded male Wistar rats showed a
significant increase in TBARS 6 h post-
injection, as compared to control rats
(Table 1). Later, Galleano et al. (2001)
pointed out that the significant increase
in NO, assayed as DETC2–Fe–NO adducts
5 h after Fe administration could be an
artifact due to the excess of Fe during
the measurement. Recently, Rousseau et al.
(2011) showed that one of the molec-
ular footprints left by the reactions of
ROS with biomolecules, the level of pro-
tein 3-nitrotyrosines, was not increased by

Fe-dextran administration, suggesting that
Fe overload in liver did not change NO
cellular content (Table 1).

CONCLUDING REMARKS
The results summarized here implied the
existence of a very complex regulatory
interplay between NO and ROS. The mul-
tiple effects of NO on the process of
lipid peroxidation imply that the net result
will depend on the balance of compet-
ing factors. The rate and location of
NO formation, and also the rate of for-
mation of O−

2 , or other mitigating fac-
tors, will all contribute to the degree and
the nature of the effect on lipid oxi-
dation in a particular system. Detailed
analysis of the molecular mechanisms
in each condition is required. In this
regard, no yet deeply studied NO reac-
tions, such as NO binding to Fe and
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endogenous thiols and other nitrosyl–Fe
complexes that seems to favor Fe release
from the cell avoiding its accumulation,
could reveal to be a key factor in NO
cellular interactions and should be further
characterized.
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