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Voltage-dependent KT channels (Kv) are involved in a number of physiological processes,
including immunomodulation, cell volume regulation, apoptosis as well as differentiation.
Some Kv channels participate in the proliferation and migration of normal and tumor cells,
contributing to metastasis. Altered expression of Kv1.3 and Kv1.5 channels has been found
in several types of tumors and cancer cells. In general, while the expression of Kv1.3
apparently exhibits no clear pattern, Kv1.5 is induced in many of the analyzed metastatic
tissues. Interestingly, evidence indicates that Kv1.5 channel shows inversed correlation
with malignancy in some gliomas and non-Hodgkin's lymphomas. However, Kv1.3 and
Kv1.5 are similarly remodeled in some cancers. For instance, expression of Kv1.3 and
Kv1.5 correlates with a certain grade of tumorigenicity in muscle sarcomas. Differential
remodeling of Kv1.3 and Kv1.5 expression in human cancers may indicate their role in
tumor growth and their importance as potential tumor markers. However, despite of this
increasing body of information, which considers Kv1.3 and Kv1.5 as emerging tumoral
markers, further research must be performed to reach any conclusion. In this review, we
summarize what it has been lately documented about Kv1.3 and Kv1.5 channels in human
cancer.
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VOLTAGE-DEPENDENT K+ CHANNELS Kv1.3 AND Kv1.5
Potassium channels are one of the most diverse and ubiquitous
families of membrane proteins and are encoded by more than
75 different genes (Caterall et al., 2002). Voltage-dependent K™
channels (Kv), a superfamily comprised of 12 subfamilies (Kv1-
Kv12), play a key role in the maintenance of resting membrane
potential and the control of action potentials (Hille, 2001). Kv
channels also contribute to a wide variety of cellular processes
including the maintenance of vascular smooth muscle tone (Yuan
et al,, 1998), cell growth (DeCoursey et al., 1984), the regulation
of cell volume (Deutsch and Lee, 1988), adhesion (Itoh et al.,
1995), mobility, epithelial transport (Kupper et al., 1995), home-
ostasis (Xu et al., 2003), insulin release (Xu et al., 2004), and
apoptosis (Storey et al., 2003). Kv channels also control leukocyte
membrane potential and play a role in immune system responses
(Cahalan and Chandy, 2009). Accordingly, several studies have
reported that Kv channels are involved in the activation, pro-
liferation, differentiation, and migration of leukocytes (Cahalan
and Chandy, 1997; Wulff et al., 2003; Panyi et al., 2004; Beeton
et al., 2005; Felipe et al., 2006). Given their pivotal role in cell
physiology, abnormalities in Kv functions can lead to several
channelopathies (Ashcroft, 2000).

The voltage dependent Kt channels Kv1.3 and Kv1.5 are mem-
bers of the Shaker (Kv1) family of K* channels and are implicated
in tissue differentiation and cell growth (Felipe et al., 2006).
Although Kv1.3 was first cloned from brain tissue, its expression

is widely distributed throughout the body (Swanson et al., 1990;
Bielanska et al., 2009, 2010). This channel is highly expressed in
lymphocytes and the olfactory bulb (Stuhmer et al., 1989), and
several studies have reported that it is also expressed in the hip-
pocampus (Veh et al., 1995), epithelia (Grunnet et al., 2003),
adipose tissue (Xu et al., 2004), and both skeletal, and smooth
muscle (Villalonga et al., 2008; Bielanska et al., 2012a,b).

Kv1.3 currents exhibit a characteristic cumulative inactivation
and a marked C-type inactivation. The single channel conduc-
tance of Kv1.3 is 13 pS, and the voltage required for activation
is —35mV. In contrast, the Kv1.5 channel was first isolated from
the human ventricle and is also expressed in the atria (Tamkun
et al., 1991). Similar to the Kv1.3 channel, Kv1.5 is also ubig-
uitously expressed (Swanson et al., 1990; Bielanska et al., 2009,
2010). For example, Kv1.5 is expressed in the immune sys-
tem, the kidney, skeletal and smooth muscle and, to a lesser
extent, the brain (Coma et al., 2003; Vicente et al., 2003, 2006;
Villalonga et al., 2008; Bielanska et al., 2012a,b). Kv1.5 cur-
rents contribute to the ultra-rapid activating K™ current in
the heart known as Iy, which plays a role in the repolariza-
tion of an action potential (Lesage et al., 1992). The conduc-
tance of the Kv1.5 channel is 8 pS, and the voltage required for
activation is ~24 mV. Unlike Kv1.3, Kv1.5 inactivation is slow
and lacks cumulative inactivation. Such a different biophysical
features may explain their distinct regulation in a number of cell

types.
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Kvl.3 and Kvl.5 are inhibited by 4-aminopyridine (4-AP)
and tetraethylammonium (TEA), which are general K™ chan-
nel blockers (Grissmer et al., 1994). Psora-4 is another potent
chemical inhibitor of both Kv1.3 and Kv1.5 and has a compar-
atively lesser effect on the rest of the Kv isoforms (Vennekamp
et al., 2004). Highly specific toxins such as charybdotoxin and
margatoxin (Leonard et al., 1992; Garcia-Calvo et al., 1993) as
well as the anemone peptide ShK and their derivatives (Cahalan
and Chandy, 1997) have proven to be highly effective for Kv1.3.
On the other hand, Kv1.5 is highly insensitive to Kv1.3 blockers
and has no known specific pharmacology. However, new chemi-
cals such as S0100176 (from Sanofi-Aventis) (Decher et al., 2004)
or diphenyl phosphine oxide-1 (DPO-1) have been discovered to
potently inhibit Kv1.5 (Du et al., 2010).

Leukocytes express a diverse and unique repertoire of Kv pro-
teins, however, Kv1.3 and Kv1.5 are considered the major Kv chan-
nels (Cahalan et al., 2001; Vicente et al., 2003, 2006; Wulff et al.,
2004; Beeton et al., 2005; Cahalan and Chandy, 2009; Rangaraju
et al,, 2009; Sole et al., 2009; Felipe et al., 2010). In macrophages,
dendritic cells and B lymphocytes, Kv currents are mainly medi-
ated by Kv1.3, however, in contrast to T-lymphocytes, they also
express Kvl.5 (Douglass et al., 1990; Vicente et al., 2003, 2006;
Waulff et al., 2004; Mullen et al., 2006; Villalonga et al., 2007a,b;
Zsiros et al., 2009; Villalonga et al., 2010a,b). We have previously
shown that Kv1.5 subunits can coassemble with Kv1.3 subunits
to generate functional heterotetrameric channels in macrophages.
Interestingly, changes in the stoichiometry of the heterotetramers
lead to the formation of new channels, which display differ-
ent biophysical and pharmacological properties and influence
the activation of specific cellular responses (Vicente et al., 2003,
2006, 2008; Villalonga et al., 2007a,b). The voltage for activation
of Kv1.3 channel is more hyperpolarized than for Kv1.5. Thus,
at physiological membrane potentials of most mammalian cells
(from —30 to —60 mV), Kv1.3/Kv1.5 heteromeric channels with a
high Kv1.3 ratio would be much more activated than those with
low ratios of Kv1.3. The distinct voltage activation threshold of
the two channels would explain why different subunit composi-
tion in Kv1.3/Kv1.5 complexes can lead to specific alteration of
cellular excitability and determine different cell responses. Thus,
the expression level of both subunits can influence the degree
of cell proliferation, differentiation or activation. In this context,
the Kv1.3/Kv1.5 ratio may be an accurate indicator of cell acti-
vation. For example, high levels of Kv1.5 would suggest a cell
was maintaining an immunosuppressive state, whereas increased
ratios of Kv1.3/Kv1l.5 might indicate cell activation (Villalonga
et al., 2007a,b; Felipe et al., 2010; Villalonga et al., 2010a,b).
Leukocytes also express several regulatory subunits (Vicente et al.,
2005; Sole et al., 2009) which may associate with Kv1.3/Kv1.5
complexes to enhance diversity and modulate a wide variety of
physiological activities (McCormack et al., 1999). In fact, both
channels Kv1.3 and Kvl.5, are able to assemble with Kvf sub-
units to form functional Kv channels. Kvf subunits alter current
amplitude and gating, confer rapid inactivation, and promote
Kv surface expression (Nakahira et al., 1996; Sewing et al., 1996;
McCormack et al., 1999). In addition, heterologous expression
of Kv1.3 and Kv1.5 with Kvf subunits in Xenopus oocytes and
mammalian cells, dramatically modifies the rate of inactivation

(Sewing et al., 1996) and the K current density (McCormack
etal., 1999), respectively.

Although most studies have been performed in adult tissues,
Kv channels are differentially expressed throughout development.
To date, several important differences in Kv expression during
neonatal development have been reported (Roberds and Tamkun,
1991; Lesage et al., 1992; Felipe et al., 1994; Coma et al., 2002;
Grande et al., 2003; Tsevi et al., 2005). We have recently stud-
ied the expression pattern of Kv1.3 and Kvl1.5 in detail during
the early stages of human development, and we have noted the
following observations: (1) numerous tissues express Kv1.3 and
Kvl.5 channels, (2) both channels are abundantly expressed in
fetal liver (Bielanska et al., 2010), which serves as a hematopoietic
tissue during early gestation, (3) adult hepatocytes did not express
Kv1.3 (Vicente et al., 2003), (4) Kv1.5 is strongly expressed in fetal
muscle and heart, whereas Kv1.3 abundance is low, (5) human
fetal skeletal muscle expresses slightly more Kv1.3 than adult mus-
cle fibers (Bielanska et al., 2010), and (6) the Kv1.5 channel is
predominantly located in adult skeletal muscle and exhibits a
cell cycle-dependent regulation pattern (Villalonga et al., 2008).
We also examined brain tissue because it undergoes profound
changes during the early fetal stages, such as cell proliferation,
differentiation and migration. Kv1.3 localizes to the central and
peripheral nervous systems, while Kv1.5 overlaps mostly with the
central nervous system (Bielanska et al., 2010). In summary, we
concluded that Kv1.3 and Kv1.5 channels followed a differen-
tial developmental expression profile, which eventually defines
an adult phenotype and influences final physiological functions
(Roberds and Tamkun, 1991; Lesage et al., 1992).

THE ROLE OF Kv1.3 AND Kv1.5 IN CELL PROLIFERATION

Accumulating evidence suggests that many drugs and toxins that
specifically block the activity of Kv channels decrease cell pro-
liferation (Amigorena et al., 1990; Day et al., 1993; Wonderlin
and Strobl, 1996; Chittajallu et al., 2002; Conti, 2004; Pardo,
2004; Kunzelmann, 2005; Felipe et al., 2006; Arcangeli et al., 2009;
Wulffet al., 2009). For example, non-specific K+ channel blockers
such as 4-AP, TEA and quinidine exert anti-proliferative effects
in several different mammalian cell models (Mauro et al., 1997;
Hoffman et al., 1998; Liu et al., 1998; Vaur et al., 1998; Wohlrab
and Markwardt, 1999; Faehling et al., 2001; Wohlrab et al., 2002;
Roderick et al., 2003).

Although the underlying mechanisms regarding how these
channels promote proliferation is still a subject of debate (Roura-
Ferrer et al., 2008; Villalonga et al., 2008), there are sev-
eral events that may be controlled by Kv during cell growth,
including membrane potential, Ca>* signaling and cell vol-
ume (Wonderlin and Strobl, 1996; Conti, 2004; Pardo, 2004;
Felipe et al., 2006). For example, during the early phases of cell
cycle progression (G1/S), cells undergo a transient hyperpolariza-
tion which involves Kv channel activity (Wonderlin and Strobl,
1996). Interestingly, cancer cells are typically more depolarized
in comparison with terminally differentiated cells (Pardo, 2004;
O’Grady and Lee, 2005), although a transient hyperpolarization
is required for the progression of the early G1 phase of the cell
cycle (Wonderlin and Strobl, 1996). Thus, one would hypothesize
that a blockage of K* flux, which would lead to depolarization,
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should interfere with cell proliferation by inhibiting transient
hyperpolarization.

Conversely, during lymphocyte proliferation, The combined
action of Kv1.3 and KCal provides enough hyperpolarization to
allow the Ca?* influx required for proliferation. The resultant
negative shift in membrane potential generates the required driv-
ing force for Ca®t entry through Ca** channels (CRAC) from the
extracellular space and its release from the inner stores (Arcangeli
et al., 2009). Furthermore, cell growth is associated with cell vol-
ume increases throughout the G1 phase of the cell cycle (Lang
et al., 2000). In fact, glioma cells exhibit their highest prolif-
eration rates within a relatively narrow range of cell volumes,
with decreased proliferation both over and under this optimal
range. So, the rate of cell proliferation it is optimal within a cell
volume window and appears to be controlled by low and high
cell size checkpoints (Rouzaire-Dubois et al., 2004). Changes in
membrane potential and cell volume are necessary for cell cycle
progression, both of which require the action of K™ channels
(Pardo, 2004).

The role of Kv channels in cell growth has been exten-
sively studied in cells of the immune system. For instance,
Kv1.3 is known to play an essential function in the activation
of T lymphocytes (Panyi, 2005), which is dependent upon an
increase in voltage-gated K* conductance (McCormack et al.,
1999). Moreover, a selective inhibition of Kv1.3 channels pre-
vents cell activation and has been shown to exhibit immuno-
suppressive effects (Shah et al., 2003). Although previous studies
have argued against a role of Kv1.3 in proliferation and activa-
tion of B-lymphocytes (Amigorena et al., 1990; Partiseti et al.,
1993), it has been published that Kv1.3 protein levels increase
in proliferating hippocampal microglia and control macrophage
proliferation (Kotecha and Schlichter, 1999; Vicente et al., 2003;
Villalonga et al., 2007a,b). Kv1.5 channels also play a crucial
role in the activation and proliferation of oligodendrocytes, hip-
pocampal microglia, macrophages and myoblasts (Attali et al.,
1997; Kotecha and Schlichter, 1999; Villalonga et al., 2007a,b,
2008, 2010a,b). In macrophages, Kv1.3 depletion impairs cell
growth and migration, both of which are characteristic features
of cancer development (Villalonga et al., 2010a,b). Recently, we
have determined that Kv1.5 is involved in the proliferation and
migration of human B-cells (Vallejo-Gracia et al., 2013).

Several studies have demonstrated that Kv1.5 channels play a
definitive role in muscle cell signaling. In this context, we have
reported that regulation of Kv1.3 and Kvl1.5 expression is cell
cycle-dependent in L6E9 myoblasts. In fact, Kv1.5 expression
changes throughout cell cycle progression with maximum expres-
sion occurring during the G1/S phase (Villalonga et al., 2008)
and increased expression has also been noted during myogenesis
(Vigdor-Alboim et al., 1999). Furthermore, our pharmacological
evidence implies a role for Kv1.5 in the cell proliferation process
(Villalonga et al., 2008). An alternative theory suggests that the
role of the Kv1.3 channel in skeletal muscle could be connected
to insulin sensitivity (Xu et al., 2004). However, Kv1.5 is thought
to inhibit skeletal muscle cell proliferation through a mechanism
involving the accumulation of cyclin-dependent kinase inhibitors
(such as p219P~1 and p27XP1) and a marked decrease in the
expression of cyclins A and D1 (Villalonga et al., 2008).

It is well established that glial cells abundantly express Kv chan-
nels, including those that are part of the Shaker (Kvl) subfamily
(Verkhratsky and Steinhauser, 2000), and different Kv channels
are closely related to the cell cycle progression of human glia
(Sontheimer, 1994). For instance, in rat oligodendrocyte precur-
sor cells, the transition of quiescent cells into the G1 phase of the
cell cycle is accompanied by increased levels of Kv1.3 and Kv1.5
proteins (Chittajallu et al., 2002). Moreover, the specific inhi-
bition of Kv1.3 elicited a G1 arrest, while a reduction in Kv1.5
protein mediated by antisense oligonucleotide transfection had
no effect on cell growth (Attali et al., 1997; Chittajallu et al., 2002).
In contrast, Kv1.5 antisense treatment inhibited cell growth in
astrocytes (MacFarlane and Sontheimer, 2000). Because block-
age of Kv1.5 sufficiently decreased the proliferation of astrocytes
but not oligodendrocytes, this channel may play different func-
tional roles in different types of cells. In fact, these differential
results, together with the involvement of Kv1.5 in cell growth
(Attali et al., 1997; MacFarlane and Sontheimer, 2000; Soliven
et al., 2003; Wang, 2004; Lan et al., 2005; Villalonga et al., 2008),
argue against a singular role for these channels in cell prolifer-
ation. In addition, both Kv1.3 and Kv1.5 have been shown to be
involved in promoting apoptosis. Psora-4, PAP-1 and clofazimine,
three distinct membrane-permeable inhibitors of Kv1.3, induce
cell death by directly targeting the mitochondrial channel in mul-
tiple human and mouse cancer cell lines (Leanza et al., 2012) and
efficiently induce apoptosis of chronic lymphocytic leukemia cells
(Leanza et al., 2013).

There is no clear understanding how K* channels actu-
ally promote cell proliferation but possible mechanisms such
as membrane voltage changes, cell volume regulation and the
effect of mitogenic signals have been proposed (Wonderlin and
Strobl, 1996). Exists a correlation between membrane poten-
tial and mitotic activity. Thus, terminally differentiated cells in
GO phase are very hyperpolarized whereas rapidly cycling tumor
cells never entering GO and are very depolarized (Binggeli and
Weinstein, 1986). Mitogenic stimulation induces a short hyper-
polarization at early G1, followed by depolarization. Although
subsequent hyperpolarization during G1 has not been reported
for all cell types, it is frequently observed and is believed to be
essential for proliferation. Changes in membrane potential also
alters the [Ca®*]; concentration and promotes nutrient trans-
port. Cell growth (increase in cell size) and proliferation (increase
in number) are also closely related processes (Rouzaire-Dubois
and Dubois, 1998). Thus, during progression through the cell
cycle, the cell volume continuously changes. Particularly during
G1/S transition and around the M phase large volume changes
occur. It affects the concentration of enzymes that controls cell
growth. Alteration in cell volume also regulate concentration of
nutrients as well as cell-cycle effectors. Finally, cell cycle is con-
trolled by distinct effectors such as oscillating cyclins and cyclin-
dependent kinases. Inhibition of K currents causes membrane
depolarization and accumulation of the cyclin-dependent kinase
inhibitors p27 and p21 (Ghiani et al., 1999). Thus, cell cycle-
relevant proteins may be directly regulated by membrane voltage.
Current evidence points that voltage-sensitive K™ channels con-
trol cancer cell proliferation but the pathways involved are still
unclear.
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Same channels can participate in the stimulation of both cell
proliferation and apoptosis. This paradox may depend on the
temporal pattern of K* channel activation. Thus, oscillating K*
channel activity typical of proliferating cells has completely differ-
ent effects as sustained K channel activation typical of apoptotic
cells. Activation of K™ channels during apoptosis is much more
pronounced than during proliferation causing a drastic fall in
the [K']; compared to during cell cycling (Cain et al., 2001;
Bock et al., 2002). Since many of the growth-and mitosis-related
enzymes require a minimal [K*];, a loss of K™ reduce the pro-
liferative activity (Hughes et al., 1997; Bortner and Cidlowski,
1999; Cain et al., 2001; Bock et al., 2002). Therefore, activation
of both CI~ and K* channels must stay within a certain con-
ductance to support proliferation, otherwise programmed cell
death is triggered (Bock et al., 2002). Another important factor
could be in Ca®* signaling. Oscillatory Ca®* rises were associated
with proliferation and have not been observed during apopto-
sis. In contrast, a steady Ca’* increase appears to be needed for
apoptotic enzymes activity (Kunzelmann, 2005).

Kv1.3 AND Kv1.5 IN SOLID CANCERS

In addition to their role in proliferation, migration and invasion
(Conti, 2004; Pardo, 2004; Felipe et al., 2006; Villalonga et al.,
2010a,b), potassium channels appear to contribute to the devel-
opment of cancer (Kunzelmann, 2005). Kv channels are expressed
in a number of tumors and cancer cell lines (Nilius and Wohlrab,
1992; Chin et al., 1997; Skryma et al., 1997; Laniado et al., 2001).
Moreover, induced tumors in experimental models also exhibit
high levels of several voltage-gated K™ channels, including Kv1.3
and Kv1.5 (Villalonga et al., 2007a,b).

Over the past decade, many studies have found that these
channels are aberrantly expressed in different human tumor cells
(Table 1), and the expression of both Kv1.3 and Kv1.5 channels
is altered in a variety of human cancers including prostate can-
cer (Abdul and Hoosein, 2002a,b, 2006), colon cancer (Abdul
and Hoosein, 2002a,b), breast cancer (Abdul et al., 2003; Brevet
et al., 2009; Liu et al., 2010), lung cancer (Pancrazio et al., 1993;
Wang et al., 2002), liver cancer (Zhou et al., 2003), smooth
muscle cancers (Bielanska et al., 2012a), skeletal muscle can-
cers (Bielanska et al., 2012b), kidney cancer, bladder cancer, skin
cancers (Bielanska et al., 2009) and gliomas (Preuf3at et al., 2003).

The number of tumor cells diminishes when K™ channels are
blocked with toxins or drugs. For example, K* channel blockers
exhibit anti-proliferative effects in several human cancers such as
prostate tumors (Rybalchenko et al., 2001; Abdul and Hoosein,
2002a; Fraser et al., 2003), hepatocarcinoma (Zhou et al., 2003),
mesothelioma (Utermark et al., 2003), colon cancer (Abdul and
Hoosein, 2002b), breast carcinoma (Strobl et al., 1995; Abdul
etal., 2003), glioma (Preuflat et al., 2003), and melanoma (Nilius
and Wohlrab, 1992; Allen et al., 1997; Artym and Petty, 2002).

GASTROINTESTINAL CANCERS

Many Kv channels, including Kv1.3, Kv1.5, Kv1.6, Kv2.1, and
Kv2.2, are present in immortalized gastric epithelial cells and
several gastric cancer cells (AGS, KATOIII, MKN28, MKN45,
MGC803, SGC7901, SGC7901/ADR, and SGC7901/VCR).
Interestingly, downregulation of Kv1.5 significantly inhibits

cell proliferation and the tumorigenicity of SGC7901 cells.
However, the authors conclude that Kv1.5 is necessary, but not
sufficient, for gastric cancer cell proliferation (Lan et al., 2005).
In addition, siRNA-mediated depletion of Kv1.5 abolished the
depolarization-induced influx of Ca?*. Thus, Kv1.5 channels
may be involved in tumor cell proliferation by controlling Ca**
entry. In addition, Ixs currents are related to the development
of multi-drug resistance in gastric cancer cells (Wu et al., 2002).
Therefore, these studies could provide a novel strategy to reverse
the malignant phenotype of gastric cancer cells.

Proliferation of several human colon cancer cell lines
(SW1116, LoVo, Colo320DM, and LS174t) was increased by two
K* channel activators, minoxidil and diazoxide. In contrast, sev-
eral Kv blockers, including dequalinium and amiodarone, caused
a marked growth-inhibition of human colon cancer cell lines.
Glibenclamide is another Kv channel blocker that inhibits cellu-
lar proliferation (Abdul and Hoosein, 2002a,b). Proliferation of
the colorectal carcinoma cell line DLD-1 is drastically reduced
in the presence of 4-AP. However, inhibition of Ca?t-sensitive
K* channels and ATP-sensitive K™ channels did not have an
effect on cell proliferation. Interestingly, K™ channel inhibitors
blocked [Ca?T]; influx, suggesting that K™ channel activity may
control the proliferation of colon cancer cells by modulating Ca?*
entry (Yao and Kwan, 1999). Although colon biopsies exhibited an
increase in Kv1.3 and Kv1.5 expression, this phenomenon may be
an artifact of the massive presence of inflammatory cells, which
express high levels of both channels (Bielanska et al., 2009).

BREAST CANCER

Kv1.3 expression has been examined by immunohistochemistry
in healthy human breast samples and their matched cancer tis-
sue counterparts. While Kv immunostaining is not observed in
normal human breast tissues, most cancer specimens show mod-
erate staining in the epithelial compartment. In addition, the
K™ channel activator minoxidil stimulates the growth of MCF-7
human breast cancer cells. On the contrary, K* channel block-
ers such as dequalinium and amiodarone have marked inhibitory
effects on MCE-7 cell proliferation (Abdul et al., 2003). Other K
channel-blockers also inhibit breast cancer growth (Strobl et al.,
1995) and potentiate the growth-inhibitory effects of tamoxifen
on human breast (MCF-7, MDA-MB-231), prostate (PC3, MDA-
PCA-2B), and colon (Colo320DM, SW1116) cancer cell lines
(Abdul et al., 2003). However, the expression of Kv1.3 in breast
cancer is not well defined. Kv1.3 expression is increased in breast
cancer biopsies in comparison with healthy breast tissues (Abdul
et al., 2003). However, Brevet et al. argues that less Kv1.3 expres-
sion is found in cancerous samples, and claims that Kv1.3 gene
promoter methylation is increased. Because Kv1.3 expression cor-
relates with both poorly differentiated tumors and a younger age
of patients with tumors, the authors suggest that a loss of Kv1.3
may be a marker for poor prognosis of breast tumors (Brevet
et al., 2009). Immortalized human mammary epithelial cells with
different tumorigenic properties demonstrated that the expres-
sion of Kv1.3 varies depending on the tumorigenicity and stage of
the breast cancer (Jang et al., 2009). In addition, we have recently
found that Kv1.3 and Kv1.5 expression increases concomitantly
with an elevation of infiltrating inflammatory cells surrounding
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Table 1 | Expression of Kv1.3 and Kv1.5 in solid cancers and tumoral cells.

Tissues Tumors and cell lines Features Kv1.3 Kv1.5 References
Stomach Stomach cancer epithelium cells Positive in infiltrating Absent Low Bielanska et al., 2009
inflammatory cells
Colon Colon adenocarcinoma Positive in infiltrating Moderate (75%) Moderate (80%) Bielanska et al., 2009
inflammatory cells
Breast Brast cancer N.A. High (30%) N.D. Abdul et al., 2003
Moderate (68%)
Low (12%)
Breast adenocarcinoma Grade | tumor High* N.D. Brevet et al., 2009
Grade Il tumor High*
Grade Il tumor Low*
Mammary epithelial M13SV1 cells Inmortalized Low * N.D. Jang et al., 2009
mammary epithelial m13sv1r2 cells Weakly tumorigenic High *
Mammary epithelial Highly tumorigenic High *
M13SV1R2-N1cells
Mammary duct carcinoma Positive in infiltrating Absent Absent/ Low (30%)  Bielanska et al., 2009
inflammatory cells
Prostate Prostate cancer PC3, DU145, N.A. High (47 %) N.D. Abdul and Hoosein,
LNCaP MDA-PCA-2B cell lines Moderate (29%) 2002a
Low (24%)
LNCaP cell lines High K* currents High* N.D. Laniado et al., 2001
Weakly metastatic
PC3 cell lines Low K* currents Low*
strongly metastatic
AT-2 cell lines High KT currents High* N.D. Fraser et al., 2000
weakly metastatic
Mat-LyLu cell lines Low K* currents Low*
strongly metastatic
Prostatic hyperplasia Benign High (89%) N.D. Abdul and Hoosein, 2006
Human prostate cancer Primary High (52 %)
Smooth muscle  Leiomyoma Benign Low Low Bielanska et al., 2012a
Leiomyosarcoma Aggressive High Low
Skeletal muscle  Embryonal rabdomyosarcoma Low aggressiveness Low Low Bielanska et al., 2012a
Alveolar rabdomyosarcoma High aggressiveness High High
Rabdomyosarcoma N.A. Absent Low (30%) Bielanska et al., 2009
Brain Astrocytoma Low malignancy Low* High* PreuRat et al., 2003
Oligodendroglioma High malignancy Low* Moderate*
Glioblastoma High malignancy Low* Low*
Astrocytoma Low malignancy Absent/Low Low (70%) Bielanska et al., 2009
Glioblastoma High malignancy Absent/Low Low (40%)
Kidney Kidney carcinoma N.A. Absent Moderate (60%) Bielanska et al., 2009
Bladder Bladder carcinoma N.A. Absent/ Low Low (60%) Bielanska et al., 2009
Lung Lung adenocarcinoma Positive in infiltrating Absent Low (60%) Bielanska et al., 2009

inflammatory cells

(Continued)
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Table 1| Continued

Tissues Tumors and cell lines Features Kv1.3 Kv1.5 References

Pancreas Pancreas adenocarcinoma Positive in infiltrating Absent Moderate (90%) Bielanska et al., 2009
inflammatory cells

Ovary Positive in infiltrating Absent Absent Bielanska et al., 2009
inflammatory cells

Skin Sguamous skin cell carcinoma N.A. Absent High (100%) Bielanska et al., 2009

Parenthesis indicates the percentage of expressing cells. *Expression compared to healthy and control samples. N.D, not determined; N.A, not available.

the tumor nodule in breast carcinoma samples (Bielanska et al.,
2009). This finding could shed light on the debate, however, more
studies must be undertaken to elucidate these mechanisms.

PROSTATE CANCER

Expression of Kv1.3 and Kv1.5 channels has also been extensively
studied in prostate cancer cells. Four different human prostate
cancer (Pca) cell lines, two of which were androgen-unresponsive
(PC3, DUI145) and two of which were androgen-responsive
(MDA-PCA-2B, LNCaP), were examined by immunohisto-
chemistry to determine expression levels of Kv1.3. Strong
immunostaining for Kv1.3 was detected in normal prostate
samples, whereas most of the Pca specimens showed strong
and moderate Kv1.3 staining (Abdul and Hoosein, 2002a). In
addition, different K+ channel activators, such asminoxidil,
1-ethyl-2-benzimidazolinone, and diazoxide, had significant
growth-stimulatory effects on PC3 cells. In contrast, K+
channel-blockers such as dequalinium, amiodarone, and gliben-
clamide, caused a dose-dependent growth inhibition of both
androgen-unresponsive and androgen-responsive Pca cell lines.
Furthermore, channel blockers triggered morphological feature
changes such as nuclear shrinkage and fragmentation, suggest-
ing an activation of apoptotic signaling mechanisms (Abdul and
Hoosein, 2002a). Although the highly metastatic PC3 cell line
expressed Kv1.3 (Laniado et al., 2001), its expression was inversely
related to metastasis in prostate cancer (Abdul and Hoosein,
2002a). In another report, Kv density inversely correlated with
the metastasis of human prostate cancer cell lines (Laniado et al.,
2001). Thus, lower Kv-staining in clinical Pca specimens com-
pared to Kv-staining levels in normal prostate cells may correlate
with an increased probability of metastatic disease (Abdul and
Hoosein, 2002a). Voltage-gated K+ currents have been character-
ized by electrophysiology in rat (Mat-LyLu and AT-2) and human
(PC3 and LNCaP) PCa cell lines (Skryma et al., 1997; Rane,
2000; Laniado et al., 2001; Rybalchenko et al., 2001). Both the
strongly metastatic MAT-LyLu and the weakly metastatic AT-2
cell lines expressed Kv1.3 currents. Interestingly, Kv1.3 currents
had different biophysical properties in the two rat prostate cancer
cell lines, which displayed markedly different metastatic abilities.
Thus, MAT-LyLu cells displayed significantly smaller maximal K™
current densities and an increased negative resting potential when
compared to AT-2 cells. Taken together, these data suggest that K+
currents in the MAT-LyLu cells may be less active than those in the
AT-2 cells (Fraser et al., 2000). Therefore, human prostate cancer

cells with different metastatic ability displayed a differential mod-
ulatory action of Kt channels. This finding, together with the
exclusive expression of voltage-gated Nat channels in MAT-LyLu
cells (Grimes et al., 1995), suggests a role for voltage-dependent
ion channels in metastatic cell behavior (Laniado et al., 1997;
Fraser et al., 2003). High epithelial Kv1.3 expression has also been
observed in all normal prostate and benign prostatic hyperplasias
(BPH), whereas only half of primary human prostate cancer (Pca)
samples express Kv1.3. Furthermore, reduced Kv1.3 protein levels
in Pca correlated with high tumor grade and a poor prognosis.
Because there was a significant inverse correlation between Kv1.3
levels and prostate tumor stage, Kv1.3 expression may be a useful
diagnostic or prognostic marker for prostate cancer (Abdul and
Hoosein, 2006).

MUSCLE SARCOMAS

Kv channels are crucial for the modulation of arterial tone
and the control of vascular smooth muscle cell proliferation
(Michelakis et al., 1997) and migration (Cidad et al., 2010;
Cheong et al., 2011). Although myofibers are terminally differ-
entiated, some myoblasts may proliferate by re-entering the cell
cycle. Margatoxin, a specific blocker of Kv1.3, reduces prolifera-
tion and migration of mouse and human vascular smooth muscle
cells. However, margatoxin does not fully abrogate migration,
suggesting that a Kvl.3-independent component is involved in
this process (Cheong et al., 2011). During vascular smooth muscle
proliferation, Kv1.3 expression increases while Kv1.5 expression
decreases (Cidad et al., 2010). Thus, Kv1.3 expression is altered
during myoblast proliferation and differentiation, although it
does not play a substantial role in either process (Villalonga et al.,
2008). Conversely, Kv1.5 channel expression seems to contribute
to vascular smooth muscle tone (Yuan et al., 1998).

In a recent study, we analyzed Kv1.3 and Kv1.5 expression in
human samples of smooth muscle tumors [such as leiomyoma
(LM) and leiomyosarcoma (LMS)] and compared the tumor sam-
ples to their healthy specimen counterparts. LM and LMS are a
benign uterus tumor and an aggressive retroperitoneal neoplasm,
respectively. Kv1.3 is poorly expressed in healthy muscle and in
indolent LM samples but was significantly induced in malignant
LMS. Similar to Kv1.3, Kv1.5 is almost absent in healthy biopsies,
but Kv1.5 staining was heterogeneous and faint in LM samples. In
contrast, Kv1.5 displayed a poor and homogeneous expression in
aggressive LMS samples. Interestingly, a clear positive correlation
between the expression of Kv1.3 and Kv1.5 and the aggressiveness
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of the smooth muscle neoplasm was noted. These results sug-
gested that Kv1.3 and Kv1.5 could be used as potential molecular
targets for the treatment of aggressive smooth muscle sarcomas
(Bielanska et al., 2012a,b).

Kvl.3 and Kvl.5 undergo alterations in different types of
human skeletal muscle sarcomas (Bielanska et al., 2009, 2012b).
Kv1.3 is absent in the less aggressive embryonal rhabdomyosar-
coma (ERMS), whereas its expression in the aggressive alveolar
rhabdomyosarcoma (ARMS) is notable and equivalent to that
found in fetal muscle. Kv1.5, which weakly stains healthy adult
skeletal muscle, strongly stains fetal tissues in a manner similar to
that of Kv1.3. In addition, ERMS specimens show heterogeneous
expression of Kv1.5, which could indicate different stages of pro-
liferation and/or differentiation of individual cells. In contrast,
ARMS samples express homogeneous and highly expressed lev-
els of Kv1.5 (Bielanska et al., 2012b). Therefore, the expression of
both Kv1.3 and Kv1.5 channels increased significantly with respect
to the tumor aggressiveness grade in ERMS and ARMS.

GLIOMAS

In addition to contributing to the proliferation of normal glia,
Kv1.3 is detected in human gliomas, which are brain tumors aris-
ing from glial cells. Gliomas emerge from both astrocytic and
oligodendrocytic lineages and consist of low and high malig-
nancy grades, respectively. Preulat and coworkers have reported
that some Kv1.3 and Kvl.5 differential expression occurs with
respect to the malignancy grade of the tumor. For example, Kv1.5
expression is elevated in astrocytomas, moderate in oligoden-
drogliomas, and low in glioblastomas. Although the expression of
Kv1.5 inversely correlates with glioma malignancy, no such corre-
lation is evident for Kv1.3. These data suggest that reduced levels
of Kv1.5 protein in biopsies when compared to the levels found in
adjacent healthy tissues may be a good candidate biomarker for
both glioma detection and outcome prediction (Preuf3at et al.,
2003). Other studies have revealed abundant Kvl.3 and Kvl1.5
expression in brain tumors and suggested that while Kv1.3 expres-
sion is notable in astrocytomas, Kv1.5 expression is elevated in
glioblastomas (Bielanska et al., 2009). Although it is not known
whether Kv1.3 and Kv1.5 expression is increased in gliomas vs.
healthy cells, Kv1.5 expression also occurred more in diffuse astro-
cytoma than in high grade ones. Moreover, glioblastoma patients
with higher Kv1.5 expression had slightly better survival (Arvind
etal., 2012).

OTHER SOLID CANCERS

Recently, we have performed an extensive analysis of Kv1.3 and
Kv1.5 protein expression in a wide variety of human tumors. Our
results indicated that most cancers experienced an alteration of Kv
gene expression. We found that Kv1.3 is present in healthy stom-
ach, kidney, skeletal muscle, and lymph node, whereas expression
of Kv1.3 was low in the breast, ovary, pancreas, bladder, lung,
colon, and brain. Taken together, these data demonstrated that
Kvl1.3 is more ubiquitously expressed than was suggested by
previous studies. In addition, most tumors showed no major dif-
ferences in Kv1.3 expression when compared to healthy tissues.
However, Kv1.3 expression was downregulated in kidney, blad-
der, and lung carcinomas (Bielanska et al., 2009). On the other

hand, Kv1.5 expression was evident in most of the analyzed tis-
sues but not in the breast. The abundance of Kv1.5 was low in
the ovary, urinary bladder, and lung. Interestingly, unlike Kv1.3,
Kv1.5 expression was increased in most human tumors. For exam-
ple, stomach, pancreatic, and bladder tumors expressed more
Kvl.5 than healthy specimens, however, Kv1.5 expression was
decreased in renal adenocarcinoma when compared to healthy
tissues. Because this channel is involved in K™ transport and cell
volume regulation (Felipe et al., 1993), a decrease in Kv1.5 expres-
sion would likely be accompanied by a loss of renal function.
Finally, Kv1.5 expression was unaffected in ovary and lung tumors
(Bielanska et al., 2009).

The immunohistochemical analysis of Kv1.3 and Kv1.5 chan-
nels in all of these cancers demonstrated that in most cases,
stronger Kv1.3 and Kv1.5 expression is mainly confined to the
inflammatory cells surrounding the tumors (Bielanska et al.,
2009).

It is tempting to speculate that because these human speci-
mens are usually from patients who have already been diagnosed
with some type of cancer, most of them show histological signs
of reactivity and should be interpreted with caution. This was
the case for stomach, pancreatic, and breast cancers (Bielanska
et al., 2009) and it may explain differences between our studies
and those performed by Hoosein and coworkers in breast cancer
(Abdul et al., 2003). Contrary to this hypothesis, other cancers
such as those of the bladder, skin, ovary, and lymph node, exhib-
ited Kv1.5 induction in the tumorigenic cells (Bielanska et al.,
2009).

Kv1.3 AND Kv1.5 IN BLOOD CANCERS

LYMPHOMAS

Because Kv channels control neoplastic processes in leukocytes
such as cell activation, proliferation, migration and apoptosis
(DeCoursey et al., 1984; Gollapudi et al., 1988; Khanna et al.,
1999; Wickenden, 2002; Vicente et al., 2003, 2005; Cahalan and
Chandy, 2009; Wulff et al., 2009), these proteins are thought to be
involved in the mechanisms underlying lymphoma invasiveness
(Cruse et al., 2006; Bielanska et al., 2009; Felipe et al., 2012) and
malignancy.

In a preliminary study, we have shown that Kv1.3 and Kv1.5
are differentially altered in human non-Hodgkin’s lymphomas
(Bielanska et al., 2009), however, a more complete study was
required to confirm these initial findings. Recently, we have exam-
ined the expression of Kv1.3 and Kvl.5 in a panel of human
non-Hodgkin lymphomas. To our knowledge this was the first
study to examine Kv1.3 and Kv 1.5 expression in diffuse large
B-cell, follicular B-cell, mantle, anaplastic and T-cell lymphomas
in comparison with control lymph nodes. Furthermore, because
these human cancers exhibited different grades of malignancy, we
determined whether there was a correlative relationship between
Kvl.3 and Kvl.5 expression and the clinical aggressiveness of
these human lymphomas (Figure 1). Kv channels have previously
been proposed as tumorigenic markers and therapeutic targets
(Conti, 2004; Kunzelmann, 2005; Pardo et al., 2005; Felipe et al.,
2006; Stuhmer et al., 2006), although in most cases there was no
clear correlation between channel expression and tumorigenic-
ity (Preuf3at et al., 2003). In these studies, we found that control
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lymph nodes expressed high levels of heterogeneous Kv1.3, which
could indicate a certain mechanism of action, while Kv1.5 abun-
dance was low and homogeneous. Interestingly, Kv1.3 and Kv1.5
were differentially altered in non-Hodgkin’s human lymphomas.
For example, indolent follicular lymphomas expressed notice-
able levels of Kv1.5, while aggressive diffuse large B cell lym-
phomas showed low Kv1.5 expression. Thus, Kv1.5 expression is
inversely correlated with clinical aggressiveness in non-Hodgkin’s
lymphomas. Preufat and coworkers found a similar inverse cor-
relation between the level of Kv1.5 immunostaining and tumor
grade in gliomas (Preuflat et al., 2003). Although further studies
with a larger number of subjects for each tumor type must be per-
formed, the level of Kv1.5 protein may be useful in the diagnosis
or prognosis of some lymphomas (Table 2).

In contrast, the expression of Kv1.3, did not correlate with
either the state of de-differentiation or the nature of the lym-
phomas, although its expression was decreased in most cancers
(Bielanska et al., 2009) (Figure1). Previous studies have also
demonstrated that Kv1.3 expression showed no apparent connec-
tion with the tumorigenic state when considering the prognosis
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FIGURE 1 | Expression of Kv1.3 and Kv1.5 in human non-Hodgkin
lymphomas. A Histoscore (Hscore) was calculated to establish a
phenotypical correlation of clinical agressiveness based in the expression of
Ki67 (Castellvi et al., 2009). (o) Kv1.3 Hscore in non-Hodgkin's lymphomas.
(e) Kv1.5 Hscore. Results are mean &= SEM of Kv1.3 and Kv1.5 Hscore
plotted against Ki67 Hscore as a marker of the clinical aggressiveness of
the lymphoma. While a Pearson’s correlation coefficient of r = 0.106 with a
P < 0.866 indicated a complete absence of correlation of Kv1.3, a Pearson’s
correlation coefficient of r = 0.895 with a P < 0.040 indicated an inverse
correlation between Kv1.5 abundance and the aggressiveness of tumor.

of the tumor (Arcangeli et al., 2009; Bielanska et al., 2009). Kv1.3
expression showed no apparent correlation with malignancy or
clinical aggressiveness, similar to the findings in gliomas (Preuf3at
etal., 2003). Taken together, these data suggest that Kv1.3 may act
as a tumor suppressor. Hypoxia, which occurs commonly in solid
tumors and is associated with malignant progression (Vaupel
etal., 2004), decreased Kv1.3 protein levels and activity in human
T lymphocytes (Conforti et al., 2003). Moreover, suppression of
Kv1.3 prevents apoptosis, which would favor tumor development
(Bonnet et al., 2007).

LEUKEMIAS

Distinct Kt channel blockers have anti-proliferative effects on
human myeloblastic leukemia cells (Wang et al., 1997; Xu et al.,
1999). Moreover, membrane-permeable K channel inhibitors,
such as Psora-4, PAP-1 and clofazimine, induce apoptosis of
chronic lymphocytic leukemia cells. In contrast, these cells are
resistant to the membrane-impermeable inhibitor ShK, which
clearly suggests that the plasma membrane-located Kv1.3 is not
responsible for the observed apoptotic response. In fact, patho-
logic B cells showed higher Kv1.3 protein expression and were
sensitive to treatment, whereas healthy cells express less Kv1.3
and were resistant to the drugs (Leanza et al., 2013). Clofazimine
treatment also significantly reduced tumor size in an orthotopic
melanoma mouse model (Leanza et al., 2012). Therefore, clofaz-
imine might be a promising new therapeutic tool to treat chronic
lymphocytic leukemia patients (Leanza et al., 2013).

Because Kv1.3 expression was decreased in most cancers, some
authors have suggested that this channel may act as a tumor
suppressor. In this context, hypoxia decreased Kv1.3 protein lev-
els and inhibited proliferation of T-lymphocytes (Conforti et al.,
2003; Chandy et al., 2004; Vaupel et al., 2004). Surprisingly, the
Kv1.3 channel is also thought to play an important role in apop-
tosis in T-cells (Arcangeli et al., 2009) because elevated Kv1.3
facilitates an apoptotic response (Bock et al., 2002; Szabo et al.,
2008). Thus, it is thought that Kv1.3 promotes proliferation in
oligodendrocytes (Vautier et al., 2004) but also controls leuko-
cyte activation and is crucial for the induction of apoptosis in
lymphocytes (Storey et al., 2003; Szabo et al., 2004, 2008, 2010;
Gulbins et al., 2010). These interesting findings seem rather con-
tradictory with respect to the cellular function of Kv1.3. However,
it has been suggested that the environmental conditions in which
channel activation takes place and the magnitude of the acti-
vated conductance could determine whether the channel supports

Table 2 | Expression of Kv1.3 and Kv1.5 in blood cancers.

Tissue Kv1.3 Kv1.5 Tumors and Cell lines Features References

Lymph node  Low High Follicular B-cell lymphoma Low aggressiveness non-Hodgkin's lymphoma Vallejo-Gracia et al., 2013
Lymph node  Low Low Mantle lymphoma High aggressiveness non-Hodgkin's lymphoma  Vallejo-Gracia et al., 2013
Lymph node  Low Moderate  T-cell ymphoma High aggressiveness non-Hodgkin's lymphoma  Vallejo-Gracia et al., 2013
Lymph node  Moderate  Low Diffuse large B-cell lymphoma  High aggressiveness non-Hodgkin's lymphoma  Vallejo-Gracia et al., 2013
Lymph node Low Moderate  Anaplastic lymphoma High aggressiveness non-Hodgkin's lymphoma  Vallejo-Gracia et al., 2013
Lymph node  High N.D. Chronic lymphocytic leukenia Leanza et al., 2013

N.D, not determined.
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proliferation or apoptosis (Kunzelmann, 2005). In this context, it
is tempting to speculate that suppression of Kv1.3 activity would
slow apoptosis and favor tumor development. Moreover, increas-
ing the expression of Kv1.5 with dichloroacetate triggers apoptosis
in lung, breast, glioblastoma and endometrial cancer cell lines
(Bonnet et al., 2007; Wong et al., 2008). Furthermore, the Kt
channel blocker clofilium induces apoptosis in human promye-
locytic leukemia (HL-60) cells (Choi et al., 1999). However, these
hypotheses are supported by little evidence, and further research
is required to confirm these conclusions.

CONCLUSION

Several Kt channels are essential for cell proliferation and
appear to play a role in the development of cancer. In this
context, further investigation is needed to fully understand the
role of membrane ion channels in normal and neoplastic cell
proliferation. A large body of data indicates that tumor cells
differentially altered the expression of voltage dependent K+
channels. Furthermore, Kv1.5 and to some extent Kv1.3, are
aberrantly expressed in many human cancers. We can con-
clude that the abundance of Kv1.5 expression mostly increases
in tumor cells, whereas Kv1.3 expression is generally downreg-
ulated. Interestingly, both Kv1.3 and Kvl.5 have displayed an
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