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Computational models of cardiac electrophysiology have been used for over half a century
to investigate physiological mechanisms and generate hypotheses for experimental
testing, and are now starting to play a role in clinical applications. There is currently a
great deal of interest in using models as diagnostic or therapeutic aids, for example using
patient-specific whole-heart simulations to optimize cardiac resynchronization therapy,
ablation therapy, and defibrillation. However, if models are to be used in safety-critical
clinical decision making, the reliability of their predictions needs to be thoroughly
investigated. In engineering and the physical sciences, the field of “verification, validation
and uncertainty quantification” (VVUQ) [also known as “verification and validation” (V&V)]
has been developed for rigorously evaluating the credibility of computational model
predictions. In this article we first discuss why it is vital that cardiac models be developed
and evaluated within a VVUQ framework, and then consider cardiac models in the context
of each of the stages in VVUQ. We identify some of the major difficulties which may need
to be overcome for cardiac models to be used in safely-critical clinical applications.

Keywords: modeling, software, verification, validation, uncertainty quantification

Mathematical and computational modeling is ubiquitous in the
physical sciences and in engineering. One great challenge for the
physiological sciences is to develop models of biological pro-
cesses that are as credible, as predictive, and as useful as those
used throughout physics and engineering. The great intricacy and
variety of physiological models make this is a highly ambitious
goal. However, reliable physiological models have the potential
to provide a wealth of information for clinical decision making,
treatment, and the development of medical products. In addition,
we are entering a revolutionary new era of medicine, in which
patient-specific genetic, anatomical and physiological informa-
tion will facilitate early accurate diagnosis and patient-optimized
therapy; translational research in the form of mechanistic com-
puter models is expected to play a large role in this revolution.
Accordingly, much effort has been expended in mechanistic phys-
iological modeling, of which cardiac electrophysiological (CEP)
modeling is one of the most advanced fields. It is now possi-
ble to run sophisticated whole-heart simulations using realistic
anatomically-detailed geometries, predicting at high spatial and
temporal resolution CEP activity from sub-cellular dynamics to
the resultant electrocardiogram. Figure 1 illustrates the compo-
nents that make up a CEP model. Electrophysiological models
of the isolated cardiac myocyte are known as cell models, the
first of which was proposed in the 1960s (Noble, 1962), building
upon the pioneering Nobel Prize-winning work of Hodgkin and
Huxley (1952). There are now over a hundred cardiac cell mod-
els, some predicting dozens of quantities such as: transmembrane
potential; open channel probability of ion channel gates; currents
corresponding to up to 25 channels, pumps and exchangers; and
concentrations of various subcellular ionic species.

Cardiac models have long been an integral tool for mechanistic
investigation, generating and testing hypotheses, and designing
experiments. That there are hundreds of publications involving
modeling attest to the maturity and importance of modeling
in the field. Currently, there is great interest in translating CEP
modeling efforts to clinical settings, to aid in diagnosis and
treatment. Potential applications attracting significant research
interest include (Trayanova, 2012): (i) optimizing lead place-
ment and waveforms for defibrillation therapy; (ii) identifying
sites for ablation therapy to reduce cost and time in the clinical
CEP lab and minimize damage to the heart; and (iii) optimizing
lead placement for cardiac resynchronization therapy (CRT) (this
application requires models of CEP coupled to cardiac mechan-
ics and hydrodynamics). However, to use models as a clinical tool
upon which safety-critical decisions are based, it is clear that the
credibility and reliability of predictions will need to be thoroughly
and rigorously evaluated. Whilst CEP modeling provides a pow-
erful example of mechanistic insights gained via tight integration
of modeling and experiment, the validity of these models in the
clinical setting has yet to be established.

To determine the credibility of computational model predic-
tions, the engineering and physical sciences communities have
developed the field of verification, validation and uncertainty
quantification (VVUQ)—often referred to as verification and val-
idation (V&V)—which provides formalism, methodologies and
best practices for evaluating the reliability of computational mod-
els (National Research Council, 2012). VVUQ has been a suc-
cessful framework for enabling the use of models in numerous
safety-critical fields. In this article we first argue that is it cru-
cial that the cardiac electrophysiological community begins to
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FIGURE 1 | Cardiac models. Models of isolated cardiac cells (typically
systems of ordinary differential equations) are known as cell models.
Top left schematic illustrates channels, pumps, and exchangers modeled
in a (relatively simple) cell model. Cell models can be used to predict
quantities such as action potential, or they may be coupled to partial
differential equations governing spatial propagation [usually the so-called
monodomain or bidomain equations, see Keener and Sneyd (1998)],

and, together with a computational mesh of the heart [(here, a
high-resolution mesh of a rabbit heart (Bishop et al., 2010), comprised
of 21 million elements, is shown)], used to simulate whole-heart EP
activity. Heart models can be embedded in torso/body models to
enable simulation of body surface potentials and ECGs. Bottom right
images (body and ECG) taken from Zemzemi et al. (2013) reproduced
with permission from Wiley.

develop and evaluate models within the context of VVUQ. We
then discuss such evaluation of CEP modeling and each of the
stages of VVUQ, and identify some of the major difficulties which
may need to be overcome for models to be used in safely-critical
clinical applications.

A FRAMEWORK FOR ASSESSING COMPUTATIONAL MODELS
To present precise definitions of each term in VVUQ, we must
distinguish between mathematical and computational models.
A mathematical model is the underlying equations proposed to
model a process, derived based on various simplifying assump-
tions. Mathematical models are usually too complex to solve
analytically, so software is created to solve the mathematical
model numerically, which is the computational model. Then:

• Verification is the process of ensuring that the computational
model accurately solves the underlying mathematical model.

• Validation is the process of using data to evaluate the extent that
the computational model accurately represents the real-world
process which it attempts to simulate.

• Uncertainty quantification is the process of determining how
uncertainty in inputs to the computational model (such as
parameters and initial conditions) affect the results of the
model.

The results of all of these stages are then used together to evaluate
the credibility of model predictions, sometimes defined as simula-
tions for which there is no corresponding data available. Figure 2
illustrates these stages for CEP applications.

VVUQ has been used extensively in engineering and the phys-
ical sciences. For example, the American Society of Mechanical

Engineers (ASME) have produced a Guide for V&V in computa-
tional solid mechanics and a Standard for V&V in computational
fluid dynamics and heat transfer (ASME, 2006, 2009, 2012). In
recognition of the huge potential of twenty-first century com-
putational modeling, the U.S. National Research Council was
recently asked to compile a comprehensive report on VVUQ
(National Research Council, 2012). One recommendation of this
report, illustrating the belief that computational modeling will
become a fundamental tool in twenty-first century science and
the resultant importance of VVUQ, is that a basic understanding
of VVUQ should be expected of the next generation of sci-
entists as part of their core training. The use of modeling at
NASA provides a further example of the importance of VVUQ,
and also an example of the catastrophic consequences that are
possible if the trustworthiness of models is not carefully estab-
lished. The Columbia Disaster in 2003 is believed to be due,
in part, to engineering decisions based on “incorrect” model
predictions, as well as engineers not acting upon other model
predictions where it was felt the trustworthiness was not clear
(Columbia Accident Investigation Board, 2003; Sainani, 2012). As
a result of the tragedy, NASA developed a comprehensive VVUQ-
based standard for assessing their models (NASA, 2009). The
Center for Devices and Radiological Health at the U.S. Food and
Drug Administration (FDA) is currently developing a VVUQ-
based framework for evaluating model results submitted as scien-
tific evidence to support medical device regulatory submissions
(Sainani, 2012). Reassuringly, VVUQ is also used by the nuclear
modeling community (Harvego et al., 2010), amongst others.
For detailed introductions to V&V/VVUQ, see for example
Oberkampf et al. (2004), Oberkampf and Roy (2010), National
Research Council (2012). For examples of VVUQ in practice, see
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FIGURE 2 | Stages in developing and evaluating a model for a particular

cardiac application. Verification and validation activities are labeled with
dashed arrows. If uncertainty quantification is performed, parameter values
are represented as probability distributions (not shown), and this uncertainty

is propagated forward so that the calculated quantities of interest are also
probability distributions. Note that the overall procedure can be iterative,
where validation and UQ results are used to refine the model/experiments;
this aspect is not illustrated.

for example ASME (2012), the case studies in National Research
Council (2012), and Pathmanathan and Gray (2013).

VVUQ has, however, rarely been explicitly employed in car-
diac modeling, partly due to a lack of knowledge on VVUQ, and
because cardiac models are currently mostly used for hypothesis-
generation, hence requiring less stringent evaluation of credibil-
ity. For models to be used in diagnostic or surgical guidance,
incorrect predictions may have huge repercussions on patient-
safety, public health and public confidence, as well as financial
implications, and rigorous testing is clearly required before such
guidance can take place. VVUQ provides a formal way to do
this (Post and Votta, 2005), hence it is important that cardiac
models begin to be evaluated in this context. Also, given the suc-
cess of VVUQ in other fields, and the adoption of VVUQ in
model-evaluation strategies by NASA and the FDA, a VVUQ-
based assessment may be expected of proposed clinical cardiac
models, at least in the U.S.

VERIFICATION: DOES THE SOFTWARE DO WHAT IT IS DESIGNED
TO DO?
Let us consider cardiac modeling in the context of each stage
of VVUQ, beginning with verification. The following is a brief
discussion of verification of CEP models; for more details
see Pathmanathan and Gray (2013). Verification involves con-
firming that a solver (software) correctly solves the equations it
claims to solve. This is especially difficult with cardiac solvers
involving propagation [i.e., tissue-level/whole-heart solvers, such
as Vigmond et al. (2003), Bradley et al. (2011), Mirams et al.
(2013)]. Verification involves attempts to minimize two types
of error: (i) programming error, which can be avoided or iden-
tified using good software engineering practices, not discussed
here; and (ii) numerical error, the difference between the com-
puted solution and the true (generally unknown) solution of the
equations. Numerical error is unavoidable, but should decrease
to zero as the computational mesh resolution increases and

time-steps decrease. Demonstrating that this is the case is one
goal of verification, but is highly non-trivial. One approach
for verifying solvers is to compare different solvers on a com-
mon, unambiguously-defined, “benchmark” problem. This is
common in other fields [astronomy (Frenk et al., 2009), mete-
orology (Andren et al., 2006), seismic data processing (Hatton
and Roberts, 1994)], but only recently has such a compari-
son been carried out for CEP solvers (Niederer et al., 2011).
Surprisingly large differences between solvers were observed, later
explained in Pathmanathan et al. (2012). To complement this
test, Pathmanathan and Gray (2013) developed a range of com-
plex but non-physiological cardiac EP problems for which the
true solution is known, and can be used to help verify solvers.
In general, however, more benchmark problems—both with and
without known solutions—need to be developed, on which cur-
rent and future tissue-level solvers can be rigorously tested.

The second part of verification is determining bounds on
numerical error in the final application, i.e., the simulation used
to make predictions and then base decisions. This should be per-
formed for the specific output “quantities of interest” (QOIs)
[such as action potential duration (APD), conduction velocity, or
when re-entrant activity self-terminates] upon which the decision
making will be based. Understanding the magnitude of numeri-
cal errors is very important, for the same reason that experimental
measurements should be associated with uncertainties. However,
determining such estimates may be extremely challenging in car-
diac modeling, especially for simulations involving fibrillation
(Pathmanathan and Gray, 2013).

VALIDATION: THERE IS NO SUCH THING AS A TRULY “VALIDATED
MODEL”
Validation involves the comparison of model simulations and
experimental results. However, the goal should never be to
declare a model “validated”; at best a model can be consid-
ered credible in precisely-defined “contexts of use” (National
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Research Council, 2012). Methods for comparisons of simu-
lations and experiments range from simple “by-eye” qualita-
tive comparisons, to more formal and quantitative approaches.
More advanced approaches involve careful design of validation
experiments (Oberkampf et al., 2004), together with statistical
methods for comparing experiment and simulation, which fall
broadly within two statistical philosophies: so-called “frequentist”
and “Bayesian” approaches. Frequentist approaches to validation
include Oberkampf and Barone (2006), which advocates care-
ful development of “validation metrics”; Bayesian approaches
include Kennedy and O’Hagan (2001), Wang et al. (2009), and
involve accounting for a priori knowledge. The Bayesian approach
can be much more complex statistically (e.g., Kennedy and
O’Hagan, 2001), but can be extremely powerful, capable of unit-
ing validation, calibration (defined later) and UQ (Kennedy and
O’Hagan, 2001). As far as we are aware, no advanced method-
ology, either frequentist or Bayesian, has been utilized for CEP
model validation.

Validation should involve comparison of the same QOIs in
models and experiments. In physiology this is often hindered
by difficulties in making direct experimental measurements of
important quantities. Sometimes additional modeling is used to
estimate a variable from indirect recordings of the model vari-
able, introducing further complexity. In considering an improved
paradigm for validation of cardiac models, it is also worth dis-
tinguishing between two distinct validation stages. As mentioned
above, there are over a hundred cardiac cell models (see the
CellML repository, www.cellml.org). An early stage in applying a
cardiac simulation to a particular problem is choosing an appro-
priate cell model (see Figure 2). One may ask two validation
questions: (V1) how much validation has been performed on that
cell model (“how good is the chosen cell model in general?”); and
(V2) how much validation was performed on the overall model
for the proposed application (“how good is the overall tool, for
this application?”). For example, if patient-specific whole-heart
simulations were being used to optimize CRT lead placement, the
ideal situation would be to choose a highly-validated and cred-
ible human cell model, embed it in whole-heart computations,
and perform rigorous frequentist or Bayesian validation on the
simulated QOIs (perhaps local activation times, or ejection frac-
tion) that would be analysed and used by the physician in deciding
lead placement. Certainly, the more rigorous the validation of the
overall tool (V2), the better. In contrast, the level of validation
required of the cell model (V1) is more debatable. In principle,
performing validation of the overall tool might make validation of
the cell model less necessary. However, to maximize the ability to
an evaluator to make an informed decision on model credibility, it
may be important that the strengths and weaknesses of the chosen
cell model are made transparent, especially given the enormous
complexity of these models. Currently, cell models show signifi-
cant variability in predictions, and credibility is highly doubtful
for many QOIs. The idea of functional curation (Cooper et al.,
2011) may provide a solution to some of these limitations. Here,
the aim is to develop the computational infrastructure that would
allow a comprehensive set of virtual protocols to be automati-
cally applied to existing, altered, or newly-developed cell models.
This would allow immediate identification of quantities for which

a cell model does and does not reproduce experiment results—
a powerful tool for development, validation, and assessment of
prediction credibility.

UNCERTAINTY QUANTIFICATION: WHERE ARE THE UNCERTAINTIES
AND HOW ARE PREDICTIONS AFFECTED?
All models contain parameters (which in this context includes
initial conditions) which need to be measured or otherwise deter-
mined. However, parameter values are often associated with high
levels of uncertainty. Many parameters will vary across a popu-
lation or within an individual. Measurable parameters will suffer
from inherent experimental uncertainty. Parameters which can-
not be directly measured are often determined through calibration
of a model, which typically provides a “best” or “most likely”
value of a parameter, but again there is underlying uncertainty.
Uncertainty quantification (UQ) involves characterizing uncer-
tainty in the inputs to models, and determining how they affect
the output QOIs. It is closely related to sensitivity analysis (SA),
but whilst SA normally involves determining the effect of out-
puts to arbitrary variations in a chosen input, UQ makes direct
use of pre-existing information on the uncertainty in inputs, usu-
ally in the form of probability distributions. The general aim of
UQ is to use probability distributions to represent input param-
eters (rather than single values), and propagate these forward
through the model to obtain probability distributions for result-
ing QOIs. This can be extremely computationally-demanding,
but may be hugely more informative than performing one simula-
tion with one parameter set and obtaining a single value of a QOI.
Complete parameter uncertainty quantification may only be pos-
sible for simpler models with less parameters, but a simple model
with UQ can be far more useful than a complex model with no
UQ. UQ can help rigorously determine “most likely” parameter
combinations, and also identify cases when multiple parameter
combinations fit data equally well. For more details on UQ, see
for example Kennedy and O’Hagan (2001), Roy and Oberkampf
(2010).

Whilst SA has been performed in cardiac modeling (e.g., Sobie,
2009), the only example to our knowledge of true UQ in car-
diac modeling is Elkins et al. (2013), where uncertainty in
dose-response curves (of several compounds on four major ion
channels) was characterized, and the resultant uncertainty in
action potential computed. Comprehensive UQ is one of the
major challenges in applying rigorous VVUQ to cardiac mod-
els. Complex cell models can involve hundreds of parameters, the
majority obtained through calibration to experimental current-
voltage relationships, usually with no information on uncertainty
or variability. Systematically characterizing all the uncertainties,
and propagating these forward to obtain uncertainties of QOIs,
would demand huge effort and computational resources. A more
tractable approach may be to use a mixture of scientific insight
and sensitivity analyses to identify a set of important parameters
for a given application, and perform rigorous UQ on these.

CREDIBILITY OF PREDICTIONS AND THE NEED FOR TRANSPARENCY
After VVUQ has been performed, one aspect remains: using all
available information to assess the credibility of predictions in a
specific application. This assessment depends crucially on whether
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the prediction scenario is interpolative or extrapolative of the vali-
dation experiments. If the QOI being predicted is the same as that
compared in the validation stage, and if the prediction scenario
is in some sense contained within validation experiments (for
example, suppose experimental validation of a simulated APD is
performed at two pacing rates, and APD predicted at an interme-
diate rate), the prediction is interpolative. If not (e.g., prediction
at a non-intermediate rate; or validation of action potential fol-
lowed by prediction of calcium transients), it is extrapolative.
Assessing extrapolative predictions is especially difficult. In this
case there is no objective set of rules for evaluating credibil-
ity; instead a subjective assessment must be made based on (i)
understanding of the model, (ii) physiological insight and (iii)
VVUQ results. One issue currently prohibiting the first of these
for CEP models is the unknown or variable origin of parame-
ters within cell models—often entire sub-systems are taken or
derived from previous cell models, and it can be difficult to trace
back the origin of particular parameters. For example, Niederer
et al. (2009) carefully identified “inheritance trees” for two major
cell models, illustrating how model parameters originated from
experiments covering a wide range of species and temperatures.
In Figure 2, each cell model in the scientific literature is shown as
directly linked to its supporting calibration and validation infor-
mation, but in reality such information is not easily available. For
the future, and specifically to facilitate informed assessment of
extrapolative predictions, it is important that cell models become
completely transparent, in particular that origins of parameters,
calibration datasets, and validation results are all readily accessi-
ble, as well as models’ assumptions, limitations and appropriate
“contexts of use.”

FINAL THOUGHTS
Post and Votta (2005) recently argued that computational mod-
eling is entering a very dangerous period. It is true that the
consequences of inaccurate predictions in computational bio-
medicine are extremely high. However, the potential long-term
benefits of reliable models, including a revolutionary new era of
patient-optimized clinical practice, are immense. To safely reach
this goal, it is vital that knowledge established by the engineering
and physical sciences, for developing and evaluating models used
in safety-critical decision making, is taken advantage of. Applying
such ideas and techniques to models of cardiac electrophysiol-
ogy will be a huge challenge, but one with enormous potential
rewards.
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