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In industrialized countries with aging populations, heart failure affects 0.3–2% of the
general population. The investigation of 24 h-ECG recordings revealed the potential of
nonlinear indices of heart rate variability (HRV) for enhanced risk stratification in patients
with ischemic heart failure (IHF). However, long-term analyses are time-consuming,
expensive, and delay the initial diagnosis. The objective of this study was to investigate
whether 30 min short-term HRV analysis is sufficient for comparable risk stratification in
IHF in comparison to 24 h-HRV analysis. From 256 IHF patients [221 at low risk (IHFLR) and
35 at high risk (IHFHR)] (a) 24 h beat-to-beat time series (b) the first 30 min segment (c) the
30 min most stationary day segment and (d) the 30 min most stationary night segment
were investigated. We calculated linear (time and frequency domain) and nonlinear HRV
analysis indices. Optimal parameter sets for risk stratification in IHF were determined
for 24 h and for each 30 min segment by applying discriminant analysis on significant
clinical and non-clinical indices. Long- and short-term HRV indices from frequency domain
and particularly from nonlinear dynamics revealed high univariate significances (p < 0.01)
discriminating between IHFLR and IHFHR. For multivariate risk stratification, optimal mixed
parameter sets consisting of 5 indices (clinical and nonlinear) achieved 80.4% AUC (area
under the curve of receiver operating characteristics) from 24 h HRV analysis, 84.3%
AUC from first 30 min, 82.2 % AUC from daytime 30 min and 81.7% AUC from nighttime
30 min. The optimal parameter set obtained from the first 30 min showed nearly the same
classification power when compared to the optimal 24 h-parameter set. As results from
stationary daytime and nighttime, 30 min segments indicate that short-term analyses of
30 min may provide at least a comparable risk stratification power in IHF in comparison to
a 24 h analysis period.

Keywords: risk stratification, heart rate variability, short-term, long-term, daytime, nighttime, nonlinear dynamics,

ischemic cardiomyopathy

INTRODUCTION
Heart failure (HF) is a major escalating public health problem
worldwide, particularly in industrialized countries with aging
populations, being associated with both high morbidity and mor-
tality (McMurray and Stewart, 2000; Felker, 2012). Generally, HF
is a final manifestation of most cardiac diseases and is clinically
recognized by a multitude/complexity of signs and symptoms
caused by complex circulatory and neurohormonal responses to
structural and/or functional cardiac dysfunction (Guindo et al.,
1997; Rohini et al., 2012). Typically, HF is characterized by
impaired ventricular filling and/or ventricular emptying into the
aorta and pulmonary artery. Considering the aetiology of the left
ventricular dysfunction, patients with HF may be divided into
patients with ischemic HF and patients with nonischemic HF
(Kitsios and Zintzaras, 2007). As one of the most common car-
diovascular diseases, clinically identified HF affects 0.3–2% of
the general population. In the population older than 65 years,

the prevalence of HF is larger than 100 cases/1000 individuals.
The five-year mortality after initial diagnosis of HF is approxi-
mately 60–70% (McMurray and Stewart, 2000; Bleumink et al.,
2004; Strömberg and Jaarsma, 2008). An early risk prediction of
HF may contribute in assessing the prognosis of HF and in find-
ing an adequate medical treatment or finding the optimal timing
for either prophylactic defibrillator implantation or, at worst, a
cardiac transplantation. However, even today there are still no
generally accepted indications identifying HF patients with an
increased risk of sudden cardiac death (SCD). Thus, the identi-
fication of HF patients at risk still remains an important key issue
in clinical decision making (Goldberger et al., 2008; Cygankiewicz
et al., 2009; Saha and Goldberger, 2012). In recent decades, the
need to risk-stratify patients for targeted therapy has encour-
aged the search for Holter-based risk predictors of increased risk
(Stein and Reddy, 2005). Although several risk stratification stud-
ies investigated the usefulness of primarily univariate analysis of
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heart rate variability (HRV) using linear and non-linear meth-
ods, no satisfactory contribution to risk prediction in HF patients
has been achieved. HRV analysis based on beat-to-beat dynamics
may reveal specific changes of heart rate time series, allowing for
the assessment of the role of autonomic nervous system (ANS)
fluctuations in both healthy subjects and those with cardiovascu-
lar disease (Task Force, 1996). Conventional HRV analysis with
linear methods from time and frequency domain is most often
used for assessing the phase and average magnitude of changes
between successive heartbeats. Due to very complex behavior in
generating the heart rate caused by different components of the
intrinsic system’s dynamics, and especially by the nonlinear inter-
play of different physiological control loops, linear methods are
not adequate to fully describe such a complex system. Several
nonlinear HRV methods such as different fractal scaling analy-
sis, power law analysis, complexity analysis, symbolic dynamics
methods and heart rate turbulence analysis have been studied
for various diseases (Huikuri et al., 2009; Voss et al., 2009). In
a previous study (Voss et al., 2010b), the potential of long-term
(24-h) nonlinear indices of HRV for enhanced risk stratification
in patients with ischemic heart failure (IHF) was demonstrated.
However, long-term analyses are time-consuming and expensive,
and they delay the initial diagnosis. To reduce this drawback,
the objective of this study was to investigate whether a 30 min
short-term HRV analysis (symbolic dynamics indices require at
least 1500 samples—that means approximately 20–30 min) is suf-
ficient for comparable risk stratification in IHF as compared to
24 h HRV analysis. To achieve this goal, multivariate optimal
parameter sets consisting of clinical and/or linear and/or non-
linear HRV indices were calculated, analysing (a) 24 h ECGs and
(b) the first 30 min ECG segments. Furthermore, due to the cir-
cadian chronobiological pattern of HRV (c) the 30 min most
stationary day ECG segments and (d) the 30 min most stationary
night ECG segments were also analyzed. Finally, optimal parame-
ter sets determined for (a) through (d) were compared with each
other.

MATERIALS AND METHODS
DATA ACQUISITION AND PRE-PROCESSING
During the Spanish prospective multicenter MUSIC2 study
(Muerte Subita en Insuficiencia Cardiaca or Sudden Death in
Heart Failure), 24 h Holter ECGs (three orthogonal leads, 200 Hz
sampling frequency, sensitivity threshold of 10μV) were recorded
(ELA Medical SyneflashTM MMC, Plymouth, Minnesota, USA)
from patients suffering from IHF. All digitized ECGs and patients’
clinical data were stored together in a database. From all raw data
records, time series of heart rate (tachograms) consisting of suc-
cessive beat-to-beat intervals (BBI) were extracted (ELA Medical
Synetec™). Afterwards, all times series were filtered by an adaptive
filter algorithm which replaces and interpolates ventricular pre-
mature beats and artefacts generating normal-to-normal (NN)
interval time series (Wessel et al., 2000). For the performed HRV
analysis, NN interval time series of 24 h and 30 min lengths were
investigated:

– 24 h NN interval time series,
– The first 30 min NN interval time series segments,

– The 30 min most stationary day NN interval time series
segments,

– The 30 min most stationary night NN interval time series
segments.

Since ECG recordings were started at different times (latest
start time: 15:28 h and earliest stop time: 04:56 h), the NN
interval time series for day and night phases were aligned in
terms of a common start and stop time. Daytime (4 h) was
defined from 16:00 to 20:00 h and nighttime (4 h) from 24:00
to 04:00 h.

Stationarity
An additional criterion was stationarity of the 30 min day and
night segments, since some of the applied methods (e.g., fre-
quency domain analysis) require stationarity conditions. Due to
the fact that variations in time series can be caused by envi-
ronmental stimuli (various external factors) or essentially by the
dynamics of the nonlinear system (Peng et al., 1995) turn into a
problem of differentiating these variations. Stationarity requires
that statistical properties such as mean and standard deviation of
the investigated NN interval time series remain the same through-
out the investigated time segment. If the stationarity requirements
are not met, as is for most complex, not random physiological
signals, then an impact of trends with change on the mean of
the time series have to be considered in the interpretation of the
results (Seely and Macklem, 2004; Voss et al., 2009). By means of
stationary NN interval time segments, a possible bias on our final
results will be excluded or at least minimized. In accordance with
Schulz et al. (Schulz et al., 2011), we therefore extracted and used
only 30 min NN time segments for daytime and nighttime hours,
thereby fulfilling the pre-selection criterion for most stationary
segments.

The most stationary segments were extracted as:

(1) Linear interpolation of the 4 h NN interval time series (day
or night extracted NN segments) with a sampling frequency
of 4 Hz.

(2) Segmentation of the interpolated 4 h NN interval time series
in 29 min overlapping windows (shift = 1 min) of 30 min
window length.

(3) Calculation of following local indices for each window w:

• Mean value (meanNN30 minw, [ms]),
• Standard deviation (sdNN30 minw, [ms]),
• Coefficient of variation (cvNN30 minw = sdNN30 minw/

(meanNN30 minw)3, [1/ms2]).

(4) Extracting the most stationary NN interval segment with the
smallest cvNN30 min.

METHODS OF HEART RATE VARIABILITY ANALYSIS
For HRV analysis, several linear and nonlinear approaches were
proposed. Traditional linear time and frequency domain analy-
sis methods assess the phase and the average magnitude of time
series changes between consecutive beats, whereas nonlinear ones
quantify the signal properties (dynamic and structural features)
(Voss et al., 2009, 2011).
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Time and frequency domain
HRV were quantified by calculating standard indices from
the time domain (TD) and frequency domain (FD) of each
tachogram according to the recommendations provided by the
Task Force of the European Society of Cardiology (Task Force,
1996).

The following TD indices were estimated:

– meanNN = mean value of NN interval time series [ms],
– sdNN = standard deviation of NN interval time series [ms]

and
– rmssd = square root of the mean squared differences of succes-

sive NN intervals [ms].

The fast Fourier transform with a Blackman Harris window
function was applied to estimate the power spectra of the NN
interval time series. For equidistant time series, all tachograms
were linearly interpolated and subsequently resampled
(2 Hz).

Subsequently, the following FD indices were determined using
the power spectra:

– LF/HF = ratio between low-frequency (0.04–0.15 Hz) power
and high-frequency (0.15–0.4 Hz) power,

– VLF/P = normalized very low-frequency power (≤0.04 Hz),
– P = total power of the spectra [ms2].

Classical symbolic dynamics
In 1993, Voss et al. (1993, 1996); Kurths et al. (1995) introduced
the classical symbolic dynamics (SD) approach in HRV analy-
sis. SD is based on coarse-graining the original time series by
applying a defined number of symbols; it has been proven suf-
ficient for the investigation of complex systems and in describing
dynamic properties within time series. The first step of the classi-
cal SD algorithm involves the transformation of NN interval time
series into strings of symbols using the alphabet A = {0, 1, 2, 3}
according to transformation rules:

0 : μ < NNn <= (1 + α) × μ

1 : (1 + α) × μ < NNn < ∞
2 : (1 − α) × μ < NNn <= μ

3 : 0 < NNn <= (1 − α) × μ.

Here μ is the mean of all NN intervals, α is a special scaling
parameter set to 0.1 and NNn is the NN interval at the time point
n. Afterwards, words consisting of three successive symbols were
achieved from the symbol string resulting in 43 = 64 different
word types. A histogram containing the probability distribution
of each possible word type (000, 001, . . ., 333) within the sym-
bol sequence was then determined. Based on this histogram the
following SD indices were calculated:

– wpsum02 = relative portion of words consisting only of the
symbols “0” and “2”, a measure for decreased HRV,

– wpsum13 = relative portion of words consisting only of the
symbols “1” and “3”, a measure for increased HRV,

– pW000 to pW333 = probability of occurrence of each single
word type (000, 001, . . . , 333) within NN interval time series,

– pTH1 to pTH20 = number of words with a probability higher
than a threshold level pTH (1–20%).

In a further SD algorithm, symbol strings using the alphabet
A = {0, 1} were generated. Here the symbol “0” represents differ-
ences between two successive NN-intervals lower than a special
limit (e.g., 5 ms), whereas symbol “1” indicates differences that
are equal or higher to this selected limit. From the symbol strings,
words consisting of 6 successive equal symbols were achieved to
detect epochs of low or high variability. The use of 2 symbols and
of a word length of 6 symbols leads to 64 different word pattern
(26). 30 min ECG recordings with a mean heart rate of 60bpm
contain approximately 1800 NN intervals, resulting in about
28 words per word pattern (in case of a uniform distribution).
According to Voss et al. (1996), a heuristic basis of 20 as the
averaged minimal number of words per word pattern is required.
A lower number of words per word pattern would reduce the
accuracy of the word distribution estimation. The most inter-
esting word pattern consists of the symbol sequence “111111”
quantifying high variability epochs (phvar) and of the sequence
“000000” quantifying low variability (plvar) within the NN
interval time series. Additionally, we calculated the following SD
indices:

– phvar5 = portion of high-variability patterns within the NN
interval time series (>5 ms),

– plvar5 = portion of low-variability patterns within the NN
interval time series (<5 ms).

Segmented short-term symbolic dynamics. The segmented short-
term SD (SSD applied only for 24 h ECG analysis) represents
a quiet new short-term SD approach that was introduced to
describe nonlinear aspects within long-term NN interval time
series in an enhanced way (Voss et al., 2010b). SSD is based on the
classical SD analysis approach and corresponds to SD transforma-
tion rules (Voss et al., 1996). In contrast to the classical SD, SSD
was adapted for calculating long-term time series by applying a
24-h segmentation algorithm. Along these lines, 24 h NN interval
time series were segmented into time windows of 30 min dura-
tion by applying an overlap of 29 min (shift = 1 min). For each
window (s = 1 . . . S, S as the number of segments) the following
classical SD indices were estimated as:

– pW000s to pW333s = probability of occurrence of each word
type (000, 001, . . ., 333) within 30 min NN interval time series,

– pTH1s to pTH20s = number of words with a probability
higher than a threshold pTH (1–20%).

Subsequently, the mean values (m_pW000 to m_pW333) and
standard deviations (s_pW000 to s_pW333) of the indices
pW000s to pW333s and pTH1s to pTH20s were calculated.

The Shannon entropy, calculated from the distribution of
each single word type over all windows, was estimated to be a
suitable measure to quantify the dynamic behavior and com-
plexity of word type occurrences within the windowed time
series. For example, the Shannon entropy [bit] of the word type
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“111”, applying the probability of occurrence pW111i of each bin
(i = 1 . . . nob; nob is the number of bins determined via Sturges
criterion: nob = 1 + 3.32xlog(S)) is shown by:

Shannon_pW111 [bit] = −
nob∑

i = 1

pW111i × log2 pW111i.

When calculating SSD, only one NN interval segment (window)
of 30 min duration can be analyzed in case of investigation of
30 min NN interval time series, whereby SSD is then equal to SD.

Short-term symbolic dynamics. Porta et al. (2001) introduced
a modified procedure of SD: the short-term SD (STSD). Here
the length of the RR-intervals was limited to 300 NN intervals.
Firstly, STSD transforms the NN interval time series into symbol
strings using the alphabet A = {0, 1, 2, 3, 4, 5}. To this aim, the
full range of the sequences is uniformly spread out on 6 levels
(0–5). Subsequently, word patterns of length three were con-
structed using the symbol strings, resulting in 63 = 216 possible
word types. Finally, all word patterns were grouped without a loss
into pattern families, and the probability of occurrence for each
pattern family was calculated:

– ST_0V = portion of word patterns with no variation (three
successive symbols are equal, e.g., “111” or “222”),

– ST_1V = portion of word patterns with 1 variation (e.g., “355”
or “212”),

– ST_2V = portion of word patterns with 2 variations (e.g.,
“123” or “534”).

Furthermore, the indices of some additional STSD pattern fami-
lies were calculated (Heitmann et al., 2011):

– ST_ASC = portion of word patterns where three successive
symbols form an ascending ramp, e.g., “234” or “012”),

– ST_DESC = portion of word patterns where three successive
symbols form a descending ramp, e.g., “432” or “210”),

– ST_PEAK = portion of word patterns where the second symbol
is larger than the other two symbols, forming a peak, e.g., “121”
or “243”),

– ST_VAL = portion of word patterns where the second symbol
is smaller than the other two symbols, forming a valley, e.g.,
“212” or “312”),

– ST_PLATEAU = portion of word patterns where two succes-
sive symbols are equal (Plateau) and the remaining one symbol
differs, e.g., “355” or “221”).

In this study, STSD was adapted for calculating 24 h and 30 min
time series by applying a segmentation algorithm that segments
the investigated NN time series into non-overlapping windows
of 300 NN interval duration. The above-introduced STSD indices
were estimated for each window. Afterwards, the mean value (m_)
and standard deviation (s_) of each STSD index were calculated
over all windows, e.g., m_ST_1V and s_ST_1V.

Standard deviation coded symbolic dynamics. Another SD
approach was introduced by Mrowka et al. (1997)—the standard

deviation coded SD (SDSD) - where the symbol transformation
(A = {0, 1, 2, 3, 4}) of the NN interval time series was performed
by applying a sliding NN interval window j of length M that is
shifted (τ) for the entire NN interval time series of length L. In
each window, the number of consecutive NN interval differences
that have decreased compared to the a-scaled standard deviation
of the current window will be determined which correspond to
the symbol Sj of alphabet A. During this study we used a = 1,
τ = 1, M = 5, and L = 24 h or 30 min. We calculated that:

– tau1_p001 = the number of symbol types with a probability of
occurrence higher than 1%.

Detrended fluctuation analysis
To investigate the self-affinity of NN time series fluctuations over
multiple time scales, the detrended fluctuation analysis (DFA),
based on a modified random walk analysis, was introduced and
applied to physiologic time series by Peng et al. (1995). DFA quan-
tifies the presence or absence of fractal correlation properties in
noisy and non-stationary time series. Therefore, the NN interval
time series were integrated y(k)(k = 1, . . . , N, N as the length of
the NN time series) and divided into equal and non-overlapping
segments of length n. For each segment, the local trend yn(k)
was determined by least-squares fitting and subtracted from y(k).
Root-mean-square fluctuation values F(n) were then calculated.
Finally, two scaling exponents were calculated as the slope of the
double-log plot of F(n) against n.

For short-term fractal scaling, properties over a range of 4–16
beats (α1) and for long-term fractal scaling, properties over a
range of 16–64 beats (α2) were calculated.

Segmented Poincaré plot analysis
Voss et al. (2010a) introduced the segmented Poincaré plot anal-
ysis (SPPA), based on the traditional Poincaré plot analysis (PPA)
(Kamen and Tonkin, 1995), which is a nonlinear quantitative
technique of phase-space characterization. In contrast to PPA,
SPPA avoids linear correlation and quantifies nonlinear features
of NN time series.

Here the 45-degree rotated cloud of points is segmented into
12 × 12 equal rectangles whose size depends on SD1 (height) and
SD2 (width) of the Poincaré plot. Several SPPA indices repre-
senting the percentage of points found in each column and row
compared to the rate of all points were estimated based on a
12 × 12-probability matrix:

– SPPA_r_i = single probability of each row with i = 1–12,
– SPPA_c_j = single probability of each column with j = 1–12,
– SPPA_entropy = Shannon entropy of the 12 × 12 probability

matrix [bit].

PATIENTS
In the MUSIC2 study (see section Data Acquisition and Pre-
processing), 256 patients with symptomatic IHF were enrolled
during the first part (of the MUSIC2 study). The MUSIC2 study
was designed to assess risk factors for SCD in HF patients with
mild to moderate HF. HF diagnosis was confirmed by expe-
rienced cardiologists via radiography (findings of pulmonary
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congestion) and/or echocardiography (abnormal left ventricular
filling pattern and left ventricular hypertrophy), also via short-
and long-term ECG and/or stress ECG. Heart failure symptoms
corresponding to NYHA class II or III, associated with echocar-
diographic signs of systolic and/or diastolic dysfunction and sinus
rhythm, were defined as inclusion criteria. Exclusion criteria were
recent acute coronary syndrome or severe valvular disease, severe
pulmonary, hepatic, or renal disease or other concomitant no car-
diovascular disease expected to reduce life expectancy to less than
3 years. Furthermore, in this study only patients with a time lag
of more than 3 months after their last hospitalization due to HF
decompensation were enrolled. In addition, patients with a per-
centage of ectopic beats or artefacts in the NN time series more
than 10% were excluded from analysis to minimize filtering influ-
ences on the final analysis results. All IHF patients (♂ = 210,♀ = 46) received optimal medical treatment with ACE inhibitors
(73%), beta-blockers (75%) and diuretics (57%) in accordance
with institutional guidelines.

Clinical risk factors were included in this study:

– LVEF [%] = left ventricular ejection fraction,
– NYHA = New York Heart Association functional class,
– BMI [kg/m2] = body mass index,
– LVDD [mm] = left ventricular end-diastolic diameter,
– LVSD [mm] = left ventricular systolic diameter
– NT-proBNP [pmol/l] = plasma concentration of N-terminal

pro-brain natriuretic peptide.

After a 2-year follow-up, all IHF patients were split into two sub-
groups according to survival: survivors (low risk group—IHFLR:
n = 221, ♂ = 180, ♀ = 41; median age: 63 [56–71] years), and
non-survivors (high risk group—IHFHR: n = 35, ♂ = 30, ♀ = 5;
median age: 68 [61–72] years) including patients that died due to
a cardiac event. Age and gender distribution of both subgroups
did not significantly differ (age: p = 0.10, gender: p = 0.64). In
the IHFHR subgroup, 17 IHF patients who suffered from SCD
were included. The investigation conformed to the recommenda-
tions of the Declaration of Helsinki. The ethical committee of the
respective institutions approved the study protocol; all patients
gave their written informed consent before study participation.

STATISTICS
Univariate statistical analyses using the nonparametric exact two-
tailed Mann-Whitney U-test (SPPS 21.0) was performed to non-
normally distributed indices (significant Kolmogorov-Smirnov
test) to evaluate differences between IHFLR and IHFHRfor these
series: the 24 h NN time series, the first 30 min segments of NN
interval time series, the 30 min most stationary day segments of
NN interval time series, and the 30 min most stationary night
segments of NN interval time series. Significances were based on
values of p < 0.05. Due to multiple testing, the univariate signif-
icance level was adjusted to p < 0.01. In addition and based on
descriptive statistics, mean values, standard deviations, medians,
and lower and upper quartiles were calculated.

Multivariate analysis based on discriminant analysis in com-
bination with receiver operator characteristic (ROC) curves was
applied only to uncorrelated (Pearson correlation coefficient)

univariate significant indices. The sensitivity (SENS), specificity
(SPEC), area under the ROC curve (AUC) and positive predic-
tive accuracy (PPA) were determined for different parameter sets,
each consisting of five indices:

– Clinical indices sets,
– Non-clinical indices sets and
– Mixed sets of both clinical and non-clinical indices: mixed set

1 − a parameter set consisting of three clinical indices and two
non-clinical indices; mixed set 2 − a parameter set consisting
of two clinical indices and three non-clinical indices.

RESULTS
UNIVARIATE ANALYSIS
According to the univariate discrimination between IHF patients
at low risk and high risk respectively, both clinical and non-
clinical indices could prove their ability to differentiate between
these two patient groups. Table 1 presents the results of the clin-
ical indices and Tables 2–5 show the findings of the non-clinical
indices.

Clinical indices
As shown in Table 1, the BMI of the high-risk IHF group was
considerably lower (p < 0.01) than the BMI of the low-risk
IHF group. From echocardiographic indices, LVEF and LVSD
revealed slightly significant (p < 0.05) differences between IHFLR

and IHFHR. LVDD was similar when comparing both groups.
The IHFHR group was characterized by a decreased LVEF and
an increased LVSD when compared to the IHFLR group. Both
the biomarker NT-ProBNP (Figure 1) and the subjective NYHA
index were dramatically higher (p < 0.001) in patients at high
risk, than in patients at low risk.

Non-clinical indices
Tables 2–5 illustrate the statistical results for non-clinical indices,
differentiating between IHFLR and IHFHR and investigating these
series: 24 h NN time series (Table 2), the first 30 min segments
of NN interval time series (Table 3), the 30 min most station-
ary day segments of NN interval time series (Table 4) and the
30 min most stationary night segments of NN interval time series

Table 1 | Clinical indices: univariate statistical analysis results (U-test)

to discriminate between patients with ischemic heart failure at low

risk and at high risk (IHFLR and IHFHR).

Clinical index IHFLR IHFHR p

BMI [kg/m2]b 29 [26–32] 27 [24–28] 0.0019#

LVDD [mm]b 61 [56–67] 65 [60–67] 0.1125ns

LVEF [%]b 35 [26–40] 30 [25–35] 0.0211*

LVSD [mm]b 49 [41–57] 53 [51–58] 0.0233*

NT-ProBNP [pmol/l]b 70 [34–153] 184 [108–583] 2.7 × 10−6 †

NYHA (class: II/III)a 189/32
(85.5%/14.5%)

19/16
(54.3%/45.7%)

0.0001†

aNumber of patients (percentage), bmedian [lower (0.52)—upper (0.75) quartile],

p - univariate significance (nsnot significant, *p < 0.05, #p < 0.01, †p < 0.001).
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Table 2 | Analysis of 24 h Holter ECGs: univariate statistical analysis results (U-test) to discriminate between patients with ischemic heart

failure at low risk and at high risk (IHFLR and IHFHR).

Method Index IHFLR_24 h IHFHR_24 h p_24 h

HRV meanNN [ms]a 859 [773–951] 816 [730–877] 0.0431*

sdNN [ms]a 103 [80–130] 92 [60–127] 0.1184ns

rmssd [ms]a 23.46 [17.13–32.74] 24.19 [10.9–34.68] 0.6774ns

LF/HFa 2.52 [1.71–3.87] 1.74 [1.20–2.63] 0.0022#

VLF/Pa 0.11 [0.07–0.15] 0.08 [0.05–0.14] 0.0864ns

SD wpsum13a 0.61 [0.51–0.68] 0.54 [0.43–0.67] 0.0362*

pW231a 4.5x10−5 [1.2 × 10−5–1.5 × 10−4] 7.1 × 10−5 [0–3.9 × 10−4] 0.3441ns

pW333a 0.30 [0.26–0.34] 0.25 [0.22–0.33] 0.0216*

plvar5a 1.7 × 10−4 [4.2 × 10−5–7.1 × 10−4] 3.6 × 10−4 [4.1 × 10−5–4.4 × 10−3] 0.0512ns

STSD m_ST_PEAKa 0.09 [0.07–0.11] 0.10 [0.08–0.13] 0.0130*

m_ST_VALa 0.10 [0.08–0.12] 0.11 [0.09–0.14] 0.0135*

s_ST_PLATEAUa 0.09 [0.08–0.10] 0.08 [0.07–0.09] 0.0099#

SDSD tau1_p001b 4.86 ± 0.35 4.60 ± 0.50 0.0008†

DFA α1a 1.20 [1.06–1.33] 1.04 [0.90–1.25] 0.0005†

SPPA SPPA_entropy [bit]a 3.93 [3.80–4.01] 3.90 [3.77–4.00] 0.6194ns

SPPA_r_5a 7.86 [5.64–9.89] 7.90 [5.80–9.32] 0.8640ns

SPPA_r_10a 0.40 [0.28–0.51] 0.39 [0.29–0.56] 0.6246ns

SSD s_pW111a 0.10 [0.09–0.12] 0.09 [0.07–0.11] 0.0073#

Shannon_pW233 [bit]a 2.73 [2.54–2.90] 2.60 [2.13–2.77] 0.0023#

Shannon_pW332 [bit]a 2.74 [2.54–2.90] 2.57 [2.17–2.74] 0.0004†

Shannon_pW333 [bit]a 2.80 [2.61–2.93] 2.68 [2.21–2.82] 0.0025#

m_pTH5a 4.02 [3.74–4.43] 3.72 [3.46–4.11] 0.0073#

m_pTH6a 3.51 [3.25–3.79] 3.32 [3.00–3.55] 0.0032#

m_pTH7a 3.17 [2.96–3.41] 3.02 [2.67–3.22] 0.0054#

Methods: HRV, standard heart rate variability analysis (time- and frequency domain), SD, classical symbolic dynamics; STSD, short-term symbolic dynamics; SDSD,

standard deviation coded symbolic dynamics; DFA, detrended fluctuation analysis; SPPA, segmented Poincaré plot analysis; SSD, segmented short-term symbolic

dynamics; other abbreviations: amedian [lower (0.52)—upper (0.75) quartile], bmean value ± standard deviation, p—univariate significance (nsnot significant, *p <

0.05, #p < 0.01, †p < 0.001).

(Table 5). In summary, most of the indices decreased at least
in trend within the IHFHR group when compared to the IHFLR

group, independent of the considered length of the NN interval
time series and the day/night phase. With regard to the investi-
gated time length and day/night phase, only indices LF/HF from
the frequency domain and α1 from the DFA revealed compara-
bly significant differences between both risk groups (p < 0.01).
In contrast, all other indices showed differences in terms of signif-
icance. The number of significant indices (p < 0.05) was highest
when using 24 h NN interval time series (n = 16, of which seven
indices were from the SSD method which was not applied for
30 min analysis), followed by 30 min most stationary night phase
(n = 11), first 30 min of 24 h NN interval time series (n = 8), and
30 min most stationary day phase (n = 5).

Linear time and frequency domain HRV indices. Based on the
TD of traditional linear HRV analysis (Task Force, 1996), the
meanNN significantly decreased (p < 0.05) in IHFHR patients
when compared to IHFLR patients considering 24 h NN interval

time series and their first 30 min segments. Due to the selection
criteria of the most-stationary NN interval segments, the decrease
of meanNN within IHFHR was not significant, or at least in
trend different after analysing the 30 min day and night segments,
respectively. With regard to the 30 min night segment, sdNN was
significantly reduced (p < 0.05) in the IHFHR patients group.
For all other analyzed time segments, sdNN was similar in both
patient groups. From frequency domain, LF/HF, which describes
the sympathovagal balance, diminished (p < 0.05) in the IHFHR

group when compared to the IHFLR group (Figures 1–4); this was
independent of the investigated NN interval duration (24 h or any
30 min). The most considerable decrease (p < 0.001) of LF/HF in
IHFHR was noticed by HRV analysis of 30 min most stationary
day NN interval segments. With regard to IHFLR patients, anal-
ysis of the 30 min day and night segments respectively revealed a
significantly reduced VLF/P index (p < 0.05) in IHFHR patients.

Nonlinear HRV indices. From nonlinear domain, particularly
indices from symbolic dynamics considerably proved their ability
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Table 3 | Analysis of first 30 min ECG segments: univariate statistical analysis results (U-test) to discriminate between patients with ischemic

heart failure at low risk and at high risk (IHFLR and IHFHR).

Method Index IHFLR_30 min IHFHR_30 min p_30 min

HRV meanNN [ms]a 804 [703–918] 716 [671–825] 0.0165*

sdNN [ms]a 62.01 [41.51–85.98] 51.18 [28.01–79.65] 0.1046ns

rmssd [ms]a 18.50 [13.34–27.32] 21.04 [11.13–27.45] 0.7504ns

LF/HFa 2.93 [1.71–5.33] 1.88 [1.08–3.63] 0.0032#

VLF/Pa 0.24 [0.13–0.39] 0.20 [0.08–0.37] 0.2355ns

SD wpsum13a 0.39 [0.24–0.58] 0.30 [0.17–0.52] 0.1416ns

pW231a 0 [0–0] 0 [0–0] 0.3311ns

pW333a 0.19 [0.13–0.28] 0.18 [0.09–0.24] 0.1040ns

plvar5a 3.6 × 10−3 [5.4 × 10−4–2.0 × 10−2] 7.5 × 10−3 [1.9 × 10−3–4.3 × 10−2] 0.0673ns

STSD m_ST_PEAKa 0.09 [0.07–0.12] 0.11 [0.08–0.13] 0.0074#

m_ST_VALa 0.10 [0.08–0.12] 0.12 [0.09–0.14] 0.0072#

s_ST_PLATEAUa 0.07 [0.05–0.09] 0.06 [0.05–0.08] 0.7281ns

SDSD tau1_p001b 4.81 ± 0.40 4.51 ± 0.51 0.0004†

DFA α1a 1.23 [1.03–1.36] 1.01 [0.85–1.26] 0.0002†

SPPA SPPA_entropy [bit]a 3.96 [3.82–4.06] 3.86 [3.68–3.98] 0.0024#

SPPA_r_5a 9.79 [7.19–12.25] 7.95 [6.32–10.47] 0.0100#

SPPA_r_10a 0.30 [0.18–0.49] 0.35 [0.23–0.58] 0.1553ns

Methods: HRV, standard heart rate variability analysis (time- and frequency domain), SD, classical symbolic dynamics; STSD, short-term symbolic dynamics; SDSD,

standard deviation coded symbolic dynamics; DFA, detrended fluctuation analysis; SPPA, segmented Poincaré plot analysis; other abbreviations: amedian [lower

(0.52)–upper (0.75) quartile], bmean value ± standard deviation, p—univariate significance (nsnot significant, *p < 0.05, #p < 0.01, †p < 0.001).

to differentiate between IHF patients at low and high risk
of cardiac death. Considering the classical symbolic dynamics,
the index wpsum13 and the occurrence probability of word
type “333” (pW333) significantly decreased in IHFHR patients
when performing 24 h analysis (p < 0.05). This was particu-
larly the case for the analysis of 30 min night (Figure 4) time
series (p < 0.01). During the most stationary night phase, word
type “231” occurred more frequently (pW231, p < 0.01) in the
IHFHR patient group related to IHFLR. The portion of low-
variability patterns (differences <5 ms) in NN interval time series
(plvar5) for 30 min day- and night phases were significantly
larger (p < 0.05) in IHFHR patients than in IHFLR patients.
From STSD, the relative number of word patterns consisting of
three symbols with an increased (m_ST_PEAK) or a decreased
(m_ST_VAL) middle symbol was higher in the IHFHR patient
group than in the IHFLR patient group. This was particularly
the case for analysis of 30 min NN interval time series (first
30 min and night phase, p < 0.01), but also for results of the
24 h HRV analysis (p < 0.05). The standard deviation of word
patterns forming a plateau was clearly decreased (p < 0.01) in
IHFHR, but only when investigating the 24 h time series. In
contrast to IHFLR, tau1_p001 from the SDSD method noticeably
decreased in the IHFHR group, particularly considering 24 h
and first 30 min NN interval time series (p < 0.001), but also
when considering the 30 min night NN interval segments (p <

0.01). As previously explained in the method section, the seg-
mented mode of classical symbolic dynamics SSD was applied

only for the analysis of 24 h NN interval time series. From SSD,
seven indices (s_pW111, Shannon_pW233, Shannon_pW332
(Figure 1), Shannon_pW333, m_pTH5, m_pTH6, m_pTH7)
revealed their ability to differentiate considerably (at least p <

0.01) when comparing IHFHR and IHFLR patients. All SSD
indices were decreased in the high-risk patient group when com-
pared to low-risk patients. Beside the indices from symbolic
dynamics, indices from DFA and SPPA could also demonstrate
their capacity to differentiate between low- and high-risk IHF
patients, at least in part. Particularly, independent of the con-
sidered duration of time series and the different 30 min NN
interval segments (first 30 min, day and night), α1 from DFA
was highly reduced (24 h/first 30 min: p < 0.001 and day/night:
p < 0.01) in the IHFHR patients group compared to the IHFLR

group (Figure 2). From SPPA, the indices SPPA_entropy and
SPPA_r_5 were significantly decreased (p < 0.01) in the IHFHR

group, but only if investigating the first 30 min NN interval seg-
ments. Furthermore, regarding to IHFHR patients, SPPA_r_10
was increased (p < 0.01) only during the 30 min most stationary
day phase (Figure 3). In Figure 5 examples of index SPPA_r_10
for LR and HR are presented.

MULTIVARIATE ANALYSIS
According to the multivariate discrimination between IHF
patients at low- and high risk, optimal clinical indices sets, opti-
mal non-clinical indices sets and optimal mixed sets of both
clinical and non-clinical indices, each consisting of five indices,
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Table 4 | Analysis of 30 min most stationary beat-to-beat interval segments of the day phase—univariate statistical analysis results (U–test) to

discriminate between patients with ischemic heart failure at low risk and at high risk (IHFLR and IHFHR).

Method Index IHFLR_day IHFHR_day p_day

HRV meanNN [ms]a 807 [730–902] 765 [703–881] 0.0964ns

sdNN [ms]a 33.64 [23.42–52.90] 32.43 [19.32–48.43] 0.1862ns

rmssd [ms]a 15.93 [11.15–24.33] 13.79 [8.96–29.40] 0.4079ns

LF/HFa 3.11 [1.74–4.99] 1.97 [0.77–3.05] 0.0007†

VLF/Pa 0.47 [0.34–0.57] 0.36 [0.16–0.48] 0.0026#

SD wpsum13a 0.11 [0.04–0.24] 0.09 [0.02–0.23] 0.2403ns

pW231a 0 [0–0] 0 [0–4.1x10−4] 0.3001ns

pW333a 0.06 [0.03–0.13] 0.05 [0.01–0.12] 0.1731ns

plvar5a 0 [0–4.0x10−4] 0 [0–1.7x10−3] 0.0160*

STSD m_ST_PEAKa 0.09 [0.07–0.13] 0.11 [0.08–0.13] 0.1226ns

m_ST_VALa 0.10 [0.08–0.14] 0.11 [0.08–0.14] 0.3533ns

s_ST_PLATEAUa 0.06 [0.04–0.08] 0.07 [0.04–0.08] 0.5437ns

SDSD tau1_p001b 4.75 ± 0.44 4.66 ± 0.48 0.3036ns

DFA α1a 1.21 [1.02–1.35] 1.04 [0.85–1.24] 0.0070#

SPPA SPPA_entropy [bit]a 3.98 [3.81–4.09] 3.97 [3.79–4.07] 0.4538ns

SPPA_r_5a 9.96 [7.51–12.97] 8.94 [7.23–12.11] 0.3444ns

SPPA_r_10a 0.24 [0.14–0.40] 0.39 [0.25–0.62] 0.0018#

Methods: HRV, standard heart rate variability analysis (time- and frequency domain); SD, classical symbolic dynamics; STSD, short-term symbolic dynamics; SDSD,

standard deviation coded symbolic dynamics; DFA, detrended fluctuation analysis; SPPA, segmented Poincaré plot analysis; other abbreviations: amedian [lower

(0.52)–upper (0.75) quartile], bmean value ± standard deviation, p—univariate significance (nsnot significant, *p < 0.05, #p < 0.01, †p < 0.001).

Table 5 | Analysis of 30 min most stationary beat-to-beat interval segments of the night phase- univariate statistical analysis results (U–test)

to discriminate between patients with ischemic heart failure at low risk and at high risk (IHFLR and IHFHR).

Method Index IHFLR_night IHFHR_night p_night

HRV meanNN [ms]a 900 [795–1009] 874 [759–928] 0.1920ns

sdNN [ms]a 34.86 [22.61–54.35] 29.13 [14.75–44.73] 0.0188*

rmssd [ms]a 20.04 [13.13–27.62] 19.16 [7.75–32.27] 0.3701ns

LF/HFa 2.29 [1.21–3.93] 1.18 [0.65–3.60] 0.0186*

VLF/Pa 0.44 [0.32–0.57] 0.38 [0.26–0.51] 0.0444*

SD wpsum13a 0.07 [0.02–0.16] 0.04 [0–0.10] 0.0056#

pW231a 0 [0–0] 0 [0–4.8 × 10−4] 0.0023#

pW333a 0.05 [0.01–0.09] 0.02 [0–0.07] 0.0014#

plvar5a 0 [0–0] 0 [0–1.4 × 10−3] 0.0052#

STSD m_ST_PEAKa 0.09 [0.07–0.13] 0.11 [0.09–0.15] 0.0072#

m_ST_VALa 0.10 [0.07–0.14] 0.12 [0.10–0.17] 0.0035#

s_ST_PLATEAUa 0.06 [0.04–0.08] 0.06 [0.04–0.07] 0.8238ns

SDSD tau1_p001b 4.73 ± 0.45 4.49 ± 0.51 0.0055#

DFA α1a 1.20 [1.02–1.35] 1.03 [0.67–1.26] 0.0046#

SPPA SPPA_entropy [bit]a 3.97 [3.80–4.05] 3.92 [3.76–4.09] 0.5769ns

SPPA_r_5a 11.39 [8.52–14.12] 11.14 [6.81–13.82] 0.4960ns

SPPA_r_10a 0.17 [0.07–0.33] 0.13 [0.08–0.27] 0.4117ns

Methods: HRV, standard heart rate variability analysis (time- and frequency domain); SD, classical symbolic dynamics; STSD, short-term symbolic dynamics; SDSD,

standard deviation coded symbolic dynamics; DFA, detrended fluctuation analysis; SPPA, segmented Poincaré plot analysis; other abbreviations: amedian [lower

(0.52)—upper (0.75) quartile], bmean value ± standard deviation, p—univariate significance (nsnot significant, *p < 0.05, #p < 0.01).
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FIGURE 1 | Boxplots of the most significant univariate clinical, linear,

and nonlinear indices (24 h) discriminating low (LR) and high (HR) risk

groups (#p < 0.01; †p < 0.001).

were determined. Table 6 presents the discriminating results with
regard to the analysis of 24 h NN interval time series and their
first 30 min NN segments, as well as the results of the 30 min most
stationary day and night segments.

The optimal non-clinical sets obtained from the analysis
of 24 h (α1, tau1_p001, s_pW111, Shannon_pW332, m_pTH5)
and first 30 min (LF/HF, tau1_p001, SPPA_entropy, SPPA_r_5,
m_ST_PEAK) NN interval time series revealed a similar AUC
and PPA when compared to the optimal clinical parameter set
(NYHA, NT-ProBNP, BMI, LVSD, LVEF). The AUC between
IHFHR and IHFLR was noticeably lower for optimal non-clinical
parameter sets of day (LF/HF, VLF/P, plvar5, α1, SPPA_r_10)
and night (LF/HF, plvar5, pW231, tau1_p001, m_ST_VAL) NN
interval segments than the AUC of the clinical parameter set or
the non-clinical parameter sets from 24 h and first 30 min HRV
analysis. In general, the mixture of both clinical and non-clinical
indices leads to an increased AUC when compared to a purely
clinical or non-clinical parameter set, independent of the con-
sidered NN interval segments (the first 30 min, day or night) or
their durations (24 h or 30 min). The optimal mixed parameter
set regarding 24 h HRV analysis consists of two clinical indices
(NYHA and BMI) and three non-clinical indices (tau1_p001 from
SDSD, m_pTH5 and s_pW111 from SSD). With respect to the
analysis of the first 30min NN interval segments, the optimal
parameter set consists of two clinical indices (NT-ProBNP and
BMI) and three indices from two analysis methods (α1 from DFA,
SPPA_entropy and SPPA_r_5 from SPPA). Concerning the anal-
ysis of the 30 min most stationary day and night NN interval
segments, optimal AUC values were achieved by mixing three

FIGURE 2 | Boxplots of the most significant univariate linear and

nonlinear indices (first 30 min) discriminating low (LR) and high (HR)

risk groups (#p < 0.01; †p < 0.001). The clinical index is the same as in
Figure 1.

clinical indices (NYHA, NT-ProBNP, BMI) and two non-clinical
indices (day - VLF/P from frequency domain and SPPA_r_10
from SPPA; night - VLF/P, and pW231 from SD). The best AUC
value (84.3%) was obtained using the optimal mixed parameter
set from the first 30 min HRV analysis. The AUC value ranges
from the above-mentioned optimal mixed parameter sets are
comparable (80.4–84.3%).

DISCUSSION
In this study, we investigated whether 30 min short-term HRV
analysis is sufficient for comparable risk stratification in IHF
patients in comparison to 24 h HRV analysis. In a previous study
(Voss et al., 2010b), an optimal mixed parameter set consisting
of nonlinear indices from long-term (24 h) HRV analysis and
clinical indices achieved the highest discrimination power for
detecting IHF patients at high risk of cardiac death, resulting in an
enhanced risk stratification in IHF patients. Therefore, to inves-
tigate if HRV analysis of 30 min ECGs leads to a similar level
of discrimination power when compared to the analysis of 24 h
ECGs, we also included available clinical indices.

UNIVARIATE ANALYSIS
Clinical indices
The finding of a lowered clinical BMI in patients from the high
risk group was also reported in several studies (Pocock et al., 2006;
Goode et al., 2008; Cai et al., 2012), describing the BMI as an
independent predictor of cardiac death in heart failure patients.
Both increased values of LVDD and LVSD in heart failure patients
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FIGURE 3 | Boxplots of the most significant univariate clinical, linear,

and nonlinear indices (30 min day phase) discriminating low (LR) and

high (HR) risk groups (#p < 0.01; †p < 0.001).

were found to be independent risk predictors (Nolan et al., 1998;
Bruch et al., 2005) and were also enlarged in IHF patients at high
risk of cardiac death in our study. According to (Pocock et al.,
2006), strong predictors for cardiovascular death in heart fail-
ure patients or heart failure hospitalization are a reduced ejection
fraction (for EF < 45%: 5% decrease in EF leads to 13% increase
in hazard) and a higher NYHA class (with classes III and IV the
hazard increases by 32 and 54% relative to patients in class II). In
this study, the IHFHR patient group was also characterized by a
higher NYHA index and a reduced LVEF in relation to the IHFLR

patient group, reflecting the impairment of the physical perfor-
mance and the left ventricular contractile function in high-risk
patients. The biomarker NT-proBNP was dramatically increased
in IHFHR patients (the index with the highest significance being
p = 2.7 × 10−6), confirming the role of NT-proBNP as one of
the most useful indices for risk stratification of cardiac death
in heart failure patients than other clinical indices (Bayes-Genis
et al., 2007; Vazquez et al., 2009).

Non-clinical indices
Comparing the results of the univariate statistical analysis of
non-clinical indices, we can conclude that indices from the lin-
ear domain and especially from nonlinear domain in particular
from symbolic dynamics appear to be suitable for differentia-
tion between low-risk and high-risk IHF patients, independent
of the analyzed duration of NN interval time series and day
phase. Only few non-clinical indices increased in value in the
IHFHR group when compared to the IHFLR group; the majority of

FIGURE 4 | Boxplots of the most significant univariate clinical, linear,

and nonlinear indices (30 min night phase) discriminating low (LR) and

high (HR) risk groups (∗p < 0.05; #p < 0.01).

non-clinical indices decreased in the IHFHR group, independent
of the considered NN interval time series segments.

Linear time and frequency domain HRV indices. From the tra-
ditional HRV analysis (Task Force, 1996), meanNN of 24 h NN
interval time series attained only negligible significant (0.0431)
differences between IHFHR and IHFLR. The analysis of the first
30 min segment (most comparable segment of all patients—
the beginning of the ECG recording) revealed a significantly
increased heart rate (p = 0.0165) in high-risk patients. An ele-
vated resting heart rate was shown to be common in heart failure
patients with systolic dysfunction and is an established marker
of both morbidity and mortality risk (Cowie and Davidson,
2012). Increased heart rate in heart failure patients is associ-
ated with increased oxygen demand, reduced ventricular effi-
ciency and relaxation, and atherogenesis. Furthermore, our study
revealed a significantly lower sdNN in IHFHR during night-
time. Thus, a reduced sdNN indicating decreased total variability
seems to be suitable for detecting IHFHR patients. Guzzetti et al.
(Guzzetti et al., 2005b) demonstrated a decrease of nighttime
sdNN but also of 24 h sdNN as predictors of non-sudden death
in patients who died from progressive pump failure. Binici et al.
(Binici et al., 2011) showed that a decreased nighttime sdNN in
healthy subjects is associated with an increased stroke risk. Several
studies (Ponikowski et al., 1997; Nolan et al., 1998; Galinier
et al., 2000; Boveda et al., 2001; Bilchick et al., 2002) identified
depressed sdNN of daytime and 24 h as predictive for all-cause
mortality, heart failure death, and sudden death. With regard
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FIGURE 5 | SPPA plot with marked indices SPPA_r_5 and SPPA_r_10 of two patients (A): low risk, (B): high risk.

Table 6 | Multivariate classification results (discriminant analysis) of a clinical parameter set and 3 × 4 different optimal parameter sets (one

non–clinical set, two mixed sets estimated for each 24 h, first 30 min, and 30 min most stationary day and night beat–to–beat time series)

consisting each of five indices.

Parameter set Included indices SENS [%] SPEC [%] AUC [%] PPA [%]

Clinical set NYHA, NT–proBNP, BMI, LVSD, LVEF 70.8 74.4 76.9 73.9

Non–clinical set 24 h α1, tau1_p001, s_pW11, Shannon_pW332, m_pTH5 65.7 74.7 77.7 73.5

first 30 min LF/HF, tau1_p001, SPPA_entropy, SPPA_r_5, m_ST_PEAK 68.6 74.2 77.6 73.4

30 min day LF/HF, VLF/P, plvar5, α1, SPPA_r_10 71.4 60.6 71.2 62.1

30 min night LF/HF, plvar5, pW231, tau1_p001, m_ST_VAL 82.9 60.2 71.7 63.3

Mixed set 1 24 h NYHA, NT–proBNP, BMI, tau1_p001, m_pTH5 76.5 67.2 76.6 68.5

first 30 min NYHA, NT–proBNP, BMI, α1, SPPA_entropy 77.4 75.6 83.4 75.8

30 min day NYHA, NT–proBNP, BMI, VLF/P, SPPA_r_10 83.9 70.6 82.2 72.4

30 min night NYHA, NT–proBNP, BMI, VLF/P, pW231 80.6 69.0 81.7 70.6

Mixed set 2 24 h NYHA BMI, tau1_p001, m_pTH5, s_pW111 71.9 83.4 80.4 81.9

first 30 min NT–proBNP, BMI, α1, SPPA_entropy, SPPA_r_5 74.2 80.3 84.3 79.5

30 min day NT–proBNP, BMI, VLF/P, plvar5, SPPA_r_10 80.6 76.3 81.9 76.9

30 min night NT–proBNP, BMI, VLF/P, pW231, m_ST_VAL 77.4 69.2 80.4 70.3

Abbreviations:SENS, sensitivity; SPEC,specificity; AUC,area under the receiver operating characteristic curve; PPA, positive predictive accuracy; gray-marked row,

parameter set with the highest values for AUC and PPA; Mixed set 1, parameter set consisting of three clinical indices and two non-clinical indices; Mixed set 2,

parameter set consisting of two clinical indices and three non-clinical indices.

to the determined univariate significances (daytime: p = 0.1862
and 24 h: p = 0.1184) of sdNN differentiating between survival
and cardiac death and the non-inclusion of sdNN into parameter
sets using multivariate discriminant analysis, this finding could
not be proven in our study. In all likelihood, unequal recording
and analysis conditions including the length of the analyzed NN
time series, the analyzed time of day, and physical activity dur-
ing ECG recording could be responsible for inconsistent findings
concerning sdNN. A reduction of the frequency domain index
LF/HF seems to be useful for risk stratification of patients in the
IHFHR group. The highest significance (p = 0.0007) of LF/HF
was obtained when analysing the 30 min most stationary day seg-
ment, and the lowest significance (p = 0.0186) was found when
investigating the 30 min most stationary night segment. With

regard to IHFLR patients, a decrease of LF/HF in IHFHR patients
suggests a decreased cardiac sympathetic nerve activity and an
increased vagal activity, and thus a considerable imbalance of the
autonomous nervous system. An impaired sympathovagal bal-
ance can be confirmed by the normalized LF power (LFn) that
was significantly lower (e.g., 30 min day segment, p = 0.0007)
in IHFHR (0.66 [0.44–0.75]) than in IHFLR (0.76 [0.64–0.83]).
The increase of vagal activity can be proven by the normal-
ized HF power (HFn), reflecting mainly the respiratory sinus
arrhythmia that was significantly increased (e.g., 30 min day seg-
ment, p = 0.0007) in the IHFHR group [0.34 (0.25–0.56)] in
relation to the IHFLR group (0.24 [0.17–0.36]). LF/HF, LFn and
HFn are calculated based on the frequency indices LF and HF.
Their correlation is very strong (Pearson correlation coefficient
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in the range 74–85% depending on the analyzed ECG segment,
p < 0.0001), and thus they are not independent. Therefore, LFn
and HFn were excluded from the study and detailed informa-
tion about both frequency indices are not provided in this paper.
Several studies (Galinier et al., 2000; La Rovere et al., 2003;
Guzzetti et al., 2005b) proved an advanced imbalance of the
autonomous nervous system and demonstrated the usefulness of
reduced LF power as a strong predictor of SCD and also of all-
cause mortality in heart failure patients. Galinier et al. (Galinier
et al., 2000) described a significant relationship between all-cause
mortality and depressed LF power during daytime and night-
time periods. Furthermore, a significant relationship between
low LF power during daytime and sudden death, and a signif-
icant association of low nighttime LF power with progressive
heart failure death were shown. Later Guzzetti et al. (2005b) con-
firmed this finding, demonstrating that a reduction of LF power
at night and an increased LVSD are linked to sudden mortality. La
Rovere et al. (La Rovere et al., 2003) showed that a reduced LF
power during controlled breathing calculated from 8 min ECG
recordings in the morning predict sudden death with a relative
risk of 2.8. In literature, the causes of a depressed LF power in
heart failure are controversially discussed including abnormali-
ties in the central autonomic regulation, depressed sinus node
responsiveness, impaired baroreflex and beta-adrenergic receptor
sensitivity, increased chemoreceptor sensitivity and a limitation
in responsiveness to high cardiac sympathetic activation levels.
As a further index from the frequency domain, VLF/P in IHFHR

patients was significantly reduced compared to IHFLR patients
during the most stationary phases of day and night periods.
Guzzetti et al. (Guzzetti et al., 2005b) identified a reduced VLF
power during nighttime HRV as being the strongest predictor of
non-sudden death in patients who died from progressive pump
failure. VLF oscillations are related to several slow regulatory
mechanisms like physical activity, parasympathetic mechanisms,
renin-angiotensin-aldosterone system, slow respiratory patterns
and thermoregulation. Guzzetti et al. interpreted the reduction
of VLF in heart failure patients that died from progressive pump
failure to be the result of reduced physical activity in these more
ill patients when compared to the surviving patients. He did
not analyse the daytime HRV, but assumed that the relation-
ship between VLF and the risk of progressive pump failure is an
expression of a reduced physical activity, and thus VLF power
during the day period as opposed to the night period should
be the best predictor of death. When compared to our results,
we can affirm this assumption: differences of VLF/P between
low-risk and high-risk patients were more highly significant for
the daytime period (p = 0.0026) than for the nighttime periods
(p = 0.0444).

Nonlinear HRV indices. The largest amount of significant non-
linear HRV indices results from the calculation of indices of
symbolic dynamics. From the classical SD method, wpsum13 and
pW333 from 24 h and 30 min night HRV analysis were signifi-
cantly reduced in IHFHR compared to IHFLR, representing a lower
portion of high variability patterns (wpsum13) in NN time series
from high risk patients. This was particularly the case for patterns
with three consecutive considerably shortened NN intervals when

compared to meanNN (pW333) (Voss et al., 1996). During the
night period, the probability of occurrence of word type “231”
increased in the IHFHR patient group. Additionally, an increase
in probability of the intermittently low variability pattern plvar5
(successive NN differences <5 ms) in IHFHR reflects a reduction
of dynamics within the NN interval time series from high-risk
IHF patients. The increase of plvar5 was especially pronounced in
the most stationary night (p = 0.0052) and day (p = 0.0160) NN
interval segments.

From STSD, m_ST_PEAK and m_ST_VAL significantly
increased in the IHFHR patient group when compared to IHFLR

during the following time segments: whole day (24 h, p < 0.05),
the first 30 min of ECG recording (p < 0.01), and the 30 min
night segment (p < 0.01). This means that the number of unsta-
ble patterns characterized by very fast changes of the NN intervals
is increased in NN interval time series of high-risk patients,
characterized by a decreased cardiac sympathetic nerve activ-
ity and an increased vagal activity (decreased LF/HF, decreased
LFn, and increased HFn). Guzzetti et al. (Guzzetti et al., 2005a)
also observed this effect under experimental and pharmacologi-
cal conditions characterized by either sympathetic activation (tilt
test, handgrip, nitroprusside, and high-dose atropine adminis-
tration) or parasympathetic activation (phenylephrine and low-
dose atropine administration). A parasympathetic prevalence
induced an increase in ST_2V patterns (including m_ST_PEAK
and m_ST_VAL), whereas an increase in sympathetic modula-
tion and vagal withdrawal elicited a decrease in ST_2V pattern.
In another study, Porta et al. (Porta et al., 2005) found that the
number of unstable patterns (m_ST_PEAK and m_ST_VAL) sig-
nificantly increased in heart failure patients when compared to
healthy subjects, while the number of patterns with sustained
changes (ST_ASC and ST_DESC) significantly decreased. In addi-
tion to significant increases of unstable patterns, we also found
decreases of sustained patterns (only in trend) in high-risk heart
failure patients when compared to low-risk patients. It is assumed
that these findings are caused by increased electrical cardiac insta-
bilities, resulting in more NN interval alternating patterns in heart
failure patients (Porta et al., 2005). Furthermore, the portion
of word patterns forming a plateau (s_ST_PLATEAU) signifi-
cantly decreased in the IHFHR group analysing the 24 h NN
interval time series (p = 0.0099), indicating the loss of more sta-
ble patterns (s_ST_PLATEAU) in favor of more unstable patterns
(m_ST_PEAK and m_ST_VAL).

A considerable depression of the SDSD index tau1_p001 (24 h,
first 30 min, and 30 min night; p < 0.01) reflects a lowered mean
short-term variability in conjunction with a lower complexity
level in IHFHR patients when compared to IHFLR patients. In
regard to low-risk IHF patients, a strongly diminished short-
term scaling exponent α1 from DFA in IHFHR patients indicates
a lower portion of short-term correlations and a high degree of
heart rate pattern randomness within BBI time series of high-
risk IHF patients. A reduced α1 index in IHFHR was observed for
each statistical analysis regardless of the investigated NN interval
duration (24 h or 30 min) and the analyzed NN interval segment
(first 30 min, day- or night phase). Our results are in accordance
with further research groups (Makikallio et al., 2001; Tapanainen
et al., 2002; Stein et al., 2008; Salo et al., 2009), investigating
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several diseases and affirming that a decreased α1 exponent is
suited to be an independent strong predictor of cardiac death,
sudden death and total mortality. For example, Mäkikallio et al.
(Makikallio et al., 2001) demonstrated that a reduced α1 index
predicts cardiac death and SCD in heart failure with a rela-
tive risk of 2.5 and 4.1, respectively. A detailed physiological
interpretation of the association of increased risk of death and
decreased fractal correlation properties does not yet exist (Salo
et al., 2009). Nevertheless, one possible explanation for a reduced
α1 index in high-risk heart failure is the typical occurrence of high
norepinephrine levels in such patients, indicating excessive sym-
pathoexcitation. This probably leads to an increased randomness
of heart rate behavior and consequentially to the reduction of α1
(Woo et al., 1994). The discrepancy between an increased sym-
pathetic outflow (excessive sympathoexcitation) and a decreased
LF/HF ratio is possibly caused by a feedback mechanism of cir-
culating norepinephrine to sympathetic outflow, as described in
Tulppo et al. (2005).

The significant decrease of SPPA_entropy in IHFHR patients
during the first 30 min of ECG recordings (p = 0.0024) when
compared to IHFLR patients reflects a loss of complexity and
randomness in the HRV of high-risk patients. A decrease of
SPPA_r_5 during the first 30 min of ECG recordings and an
increase of SPPA_r_10 during the most stationary 30 min day seg-
ments in high-risk patients is a sign of an altered distribution of
NN oscillations. SPPA_r_5 and SPPA_r_10 describe the proba-
bility distribution of occurring points in row 5 and row 10 of
a 12 × 12-probability matrix, adjusted to the cloud of points of
a Poincaré plot rotated 45 degrees (Voss et al., 2010a). Row 10
is located on the outer regions of the cloud (far from the plot’s
main focus) and indicates rapidly increased short-term variabil-
ity of NN. Hence, an increase of SPPA_r_10 reflects more rapidly
increasing short-term HRV patterns in IHFHR patients during day
segments when compared to IHFLR patients. Row 5 is located
in the inner regions of the cloud (near the main focus of the
plot), therefore, a decrease of SPPA_r_5 indicates a reduction
of slowly changing short-term HRV patterns in IHFHR patients
during the first 30 min of ECG recordings when compared to
IHFLR patients. From SSD (not calculable for 30 min time series),
a reduction of s_pW111 indicates a lower variability of the word
type “111” (three successive, considerably extended NN intervals)
in IHFHR patients than in IHFLR patients. Considerably decreased
Shannon entropies (Shannon_pW233, Shannon_pW332 and
Shannon_pW333, p < 0.01) of distributions of the word types
“233”, “332” and “333” were observed in IHFHR when compared
to IHFLR, reflecting more dominant peaks of that word types
in the density distribution of IHFHR patients. This indicates a
more reduced single word variability within the windowed 24-
h time series in high-risk patients. The word types “233”, “332”
and “333” consisting of three consecutive shortened NN intervals
when compared to the mean NN interval, are less complex and
less random in IHFHR as opposed to IHFLR. Decreased threshold-
dependent indices m_pTH5, m_pTH6, m_pTH7 in IHFHR are
an expression of a lower number of highly frequent word types
(probability thresholds of 5, 6, and 7%). The disappearance of
some highly frequent word types leads to more dominant peaks
in the density distribution of word types, indicating a lower com-
plexity of HRV in IHFHR when compared to IHFLR. A reduced

variability and/or complexity of heart rate fluctuations could
prove to be a significant predictor of mortality (Kleiger et al.,
1987; Makikallio et al., 2001).

During this study, we also calculated indices by applying
compression entropy, multiscale entropy, correlation function
and mutual information analysis, as well as traditional Poincaré
plot analysis. However, significant results when discriminating
between low- and high risk IHF groups could not be proven.

MULTIVARIATE ANALYSIS
When considering the multivariate classification results (Table 6)
of the discriminant analysis, it could be shown that the best
parameter set obtained from the first 30 min HRV analysis
(mixed set 2 consisting of NT-proBNP, BMI, α1, SPPA_entropy,
SPPA_r_5) revealed a slightly higher classification power (AUC =
84.3%) when compared to the following optimal mixed param-
eter sets: 24 h (AUC = 80.4%), 30 min day (AUC = 82.2%) and
30 min night (AUC = 81.7%). This indicates that 30 min HRV
analysis may provide considerable risk stratification power due to
the more standardized conditions, which exist during the initial
30 min recording time. With the exception of the optimal mixed
set 1 attained for 24 h analysis, all mixed parameter sets (mixed
sets 1 and 2) lead to an enhanced risk stratification as compared
to the optimal clinical parameter set (increasing AUC from 76.9%
to a maximum of 84.3%). Independent of the analyzed time seg-
ment (24 h and 30 min), the discrimination power of the best
mixed parameter sets is similar (AUC range = 80.4–84.3%), and
thus almost comparable. The optimal non-clinical parameter set
obtained during analysis of the 24 h ECG showed nearly the same
classification power (77.7%) as the optimal non-clinical param-
eter set obtained during the first 30 min ECG segment (AUC
decrease = 0.1%), whereby the non-clinical sets determined from
the 30min day and night segments revealed a lower discrimina-
tion power (AUC decrease approx. 6%). The classification results
applying the optimal non-clinical parameter sets of 24 h and first
30 min analysis (AUCs 77.7 and 77.6%) and the clinical param-
eter set (AUC = 76.9%) are similar. The main advantage of a
non-clinical parameter set as compared to a pure clinical param-
eter set is that linear and nonlinear HRV indices estimated from a
conventional non-invasive ECG are not dependent on subjective
influences and are easy to apply. Therefore, it could be possible
to do risk stratification in IHF without complex, expensive (e.g.,
proBNP) and subjectively (NYHA) acquired clinical indices (Voss
et al., 2010b). Otherwise, the combination of clinical and non-
clinical parameters (mixed sets) leads to an improvement of risk
stratification in IHF (AUC increase 3.5–7.4% when compared to
the clinical parameter set). Hence, a careful selection of an appro-
priate mixed parameter set should be taken to achieve an optimal
or acceptable balance between the cost and benefit of perform-
ing risk stratification. It should be noted that all clinical indices
were ascertained by very experienced cardiologists, leading to
an enhanced classification power of the clinical parameter set.
An ascertainment of clinical indices by an inexperienced physi-
cian could considerably impair the classification power. Based on
the results of discrimination power, the analysis of 24 h ECGs
provides no benefit in the classification of high-risk IHF patients
when compared to the analysis of 30 min ECGs. Therefore, 30 min
ECG analysis seems to be sufficient for risk stratification in IHF.
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In a subsequent study, the presented results need to be vali-
dated by analysing a larger amount of IHF patients, particularly
of patients at high risk for cardiac death (possibly, after 5- or 10-
year follow up periods). Furthermore, it would be interesting to
investigate whether the same or similar parameter sets are suit-
able for enhanced risk stratification of sudden death or of total
mortality in IHF or in other diseases.

In conclusion, the results of this study show that indices from
frequency domain of HRV and nonlinear dynamics, particularly
from symbolic dynamic, contribute (p < 0.05) to an enhanced
risk stratification in IHF patients. Considerably changed indices
in IHFHR when compared to IHFLR, indicate a higher vagal and
a lower sympathetic modulation, a reduced HRV and a loss of
complexity and randomness in HRV in IHF patients at high risk
for a cardiac death. Indices from 24 h and 30 min time series,
which were calculated by applying nonlinear HRV analysis meth-
ods, improved risk stratification in IHF patients as compared to
a purely clinical parameter set. The classification power of opti-
mal parameter sets estimated from the analysis of 24 h ECGs,
the first 30 min of 24 h ECG recordings and of the 30 min most
stationary day and night segment of the 24 h ECGs is almost
comparable. Due to more standardized conditions during 30 min
ECG recordings (particularly during the initial 30 min of the 24 h
ECG recording) and due to the dramatically reduced time effort,
short-term risk stratification in IHF seems to be an appropriate
alternative to the Holter analysis. Hence, 30 min HRV analysis is
most likely sufficient for risk stratification in IHF patients.
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