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The sodium/bicarbonate cotransporter (NBC) is one of the major alkalinizing mechanisms
in the cardiomyocytes. It has been demonstrated the existence of at least two functional
isoforms, one that promotes the co-influx of 1 molecule of Na+ per 1 molecule of
HCO−

3 (electroneutral isoform; NBCn1) and the other one that generates the co-influx
of 1 molecule of Na+ per 2 molecules of HCO−

3 (electrogenic isoform; NBCe1). Both
isoforms are important to maintain intracellular pH (pHi ) and sodium concentration ([Na+]i ).
In addition, NBCe1 generates an anionic repolarizing current that modulates the action
potential duration (APD). The renin-angiotensin-aldosterone system (RAAS) is implicated
in the modulation of almost all physiological cardiac functions and is also involved in
the development and progression of cardiac diseases. It was reported that angiotensin
II (Ang II) exhibits an opposite effect on NBC isoforms: it activates NBCn1 and inhibits
NBCe1. The activation of NBCn1 leads to an increase in pHi and [Na+]i , which indirectly,
due to the stimulation of reverse mode of the Na+/Ca2+ exchanger (NCX), conduces to
an increase in the intracellular Ca2+ concentration. On the other hand, the inhibition of
NBCe1 generates an APD prolongation, potentially representing a risk of arrhythmias. In
the last years, the potentially altered NBC function in pathological scenarios, as cardiac
hypertrophy and ischemia-reperfusion, has raised increasing interest among investigators.
This review attempts to draw the attention on the relevant regulation of NBC activity
by RAAS, since it modulates pHi and [Na+]i , which are involved in the development of
cardiac hypertrophy, the damage produced by ischemia-reperfusion and the generation of
arrhythmic events, suggesting a potential role of NBC in cardiac diseases.
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INTRODUCTION
The adequate regulation of intracellular pH (pHi) is essential
for the heart. Fall of pHi usually occurs in cardiac myocytes, as
during changes in heart rate (Bountra et al., 1988; Elliott et al.,
1994), but also a major reduction occurs during pathological con-
ditions, such as myocardial ischemia (Steenbergen et al., 1977;
Garlick et al., 1979). Two sarcolemmal alkalinizing ion trans-
porters mediate the acid-extrusion in order to maintain pHi

near to 7.2, either exporting H+ (Na+/H+ antiporter; NHE-1),
or introducing HCO−

3 into the cell, (Na+/HCO−
3 cotransporter;

NBC).
It has been described at least two functional isoforms of NBC

in the heart: the electroneutral NBC, NBCn1, which promotes the
co-influx of 1 molecule of Na+ per 1 molecule of HCO−

3 , and the
electrogenic NBC, NBCe1, which introduces 1 molecule of Na+
per 2 molecules of HCO−

3 .
It has been demonstrated that the increase in the intracellular

sodium concentration ([Na+]i) generated by these alkalinizing
transporters promotes the Na+/Ca2+ exchanger to work in its
reverse mode (NCXr), leading to an increase in the intracellular
calcium concentration ([Ca2+]i), which is involved in the patho-
genesis of several cardiac diseases as hypertrophy, the damage

produced by ischemia-reperfusion and the generation of arrhyth-
mia.

The renin-angiotensin-aldosterone system (RAAS) represents
one of the main endocrine systems that regulate cardiac patho-
physiology. Moreover, it is well-recognized that both angiotensin
II (Ang II) and aldosterone are expressed locally in the heart,
exerting their effects in a paracrine and/or autocrine manner. In
this regard, it has been described that Ang II and aldosterone
directly stimulate the cardiac NHE-1, which is involved in the
positive inotropic response (Perez et al., 2003; Caldiz et al., 2011)
and cardiac hypertrophy (Cingolani et al., 2008, 2013) produced
by these hormones. In addition, in the last years it has been
demonstrated that NBC activity is regulated by Ang II (Baetz
et al., 2002; De Giusti et al., 2009, 2010).

In the present review the evidence about the regulation of NBC
by RAAS and the potential importance of NBC in the develop-
ment and maintenance of cardiac diseases mediated by RAAS will
be discussed.

ROLE OF THE CARDIAC NBC IN pHi AND [Na+]i REGULATION
At present it is known that NBC is responsible for 40–50%
of total acid extrusion in cardiac myocytes under physiological

www.frontiersin.org January 2014 | Volume 4 | Article 411 | 1

http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/about
http://www.frontiersin.org/Physiology
http://www.frontiersin.org/journal/10.3389/fphys.2013.00411/abstract
http://community.frontiersin.org/people/MariaCarolina/130109
http://www.frontiersin.org/people/u/68176
mailto:aaiello@med.unlp.edu.ar
http://www.frontiersin.org
http://www.frontiersin.org/Membrane_Physiology_and_Membrane_Biophysics/archive


De Giusti et al. Angiotensin II modulates cardiac NBC function

conditions at pHi near resting values, when total acid extrusion is
low (Lagadic-Gossmann et al., 1992; Camilion De Hurtado et al.,
1995). However, it is important to recognize that, although both
transporters are equally operative at pHi close to basal (Le Prigent
et al., 1997; Vaughan-Jones et al., 2006, 2009; De Giusti et al.,
2009), at acidic pHi (near to 6.8) the relative importance of NBC
is only of 30% against the 70% of NHE-1 (Baetz et al., 2002;
Vaughan-Jones et al., 2006; De Giusti et al., 2009).

As it has been established for the NHE-1, it has been demon-
strated that NBC increases [Na+]i (Yamamoto et al., 2005;
Vaughan-Jones et al., 2006). The increase in [Na+]i is crucial for
cardiac pathophysiology because, as it is well-known, it stimu-
lates NCXr, leading to an increase in [Ca2+]i (Rothstein et al.,
2002; Bril, 2003; Perez et al., 2003; Aiello et al., 2005), process
which is involved in Ang II-induced positive inotropic effects
(Aiello et al., 2005) and cardiac hypertrophy (Dulce et al., 2006;
Cingolani et al., 2008). In this regard, it was proposed that this
phenomenon might be involved in NBC-induced cardiac diseases
(Khandoudi et al., 2001; Bril, 2003; Baartscheer and Van Borren,
2008; De Giusti et al., 2010) (Figure 1).

In addition, since it was suggested that the mineralocorticoid
receptors (MR) appears to be located downstream of Ang II in the
chain of intracellular signals leading to the slow force response
(SFR) (Caldiz et al., 2011), the activation of this receptors by
aldosterone could also be implicated in the regulation of car-
diac contractility. Consistently, an aldosterone-induced positive
inotropic effect has been previously reported in rat myocardium
(Barbato et al., 2002, 2004).

Recently, it was demonstrated that NBCe1 is homogeneously
physically and functionally localized in lateral sarcolemma,

FIGURE 1 | Differential NBC isoforms regulation by angiotensin II.

Scheme of parallel Ang II-pathways in a ventricular myocyte, showing
NBCn1 stimulation and NBCe1 inhibition and the possible implications of
these regulations in the development of cardiac pathologies, as
hypertrophy and arrhythmias. p38, p38 kinase; ERK ½, ERK kinase; EADs,
early after depolarizations; DADs, delay after depolarizations; SR,
sarcoplasmatic reticulum; CAP, cardiac action potential; NCXr, reverse mode
of sodium/calcium exchanger; NCXf, forward mode of sodium/calcium
exchanger.

intercalated disc and especially in the transverse tubules, co-
localized with the NCX (Garciarena et al., 2013a). In contrast,
NHE-1 is expressed and functionally active only at intercalated
discs and lateral surface membrane (Garciarena et al., 2013a).
Taking into account the stoichiometry of NBCe1, claimed as a
“Na+- sparing” bicarbonate transporter, it is feasible to antici-
pate that this selective distribution of the alkalinizing transporters
and their relationship with the NCX may help to reduce the
possibility of local Ca2+ overload near the sarcoplasmatic retic-
ulum (SR), as recently suggested by Dr. Vaughan-Jones’s group
(Garciarena et al., 2013a). Interestingly, as it will be further dis-
cussed in this review, our group recently showed that NBCe1
activity is impaired whereas NBCn1 is overexpressed in the
hypertrophied myocytes of spontaneous hypertensive rats (SHR)
(Orlowski et al., 2013). It is also known that NHE-1 activity is
increased in SHR rats (Perez et al., 1995). More importantly, in
a model of cardiac hypertrophy due to NHE-1 overexpression,
the NHE-1 is distributed all around the sarcolemma (Nakamura
et al., 2008), further suggesting that the pathological remodeling
of these transporters could be, at least in part, responsible for
the [Na+]i and [Ca2+]i overload-mediated cardiac hypertrophy
(Garciarena et al., 2013b) (Figure 2).

DIFFERENT PARTICIPATION OF NBCn1 AND NBCe1 IN pH
REGULATION
Cardiac NBC was initially described by Lagadic-Gossmann et al.
as an electroneutral transporter (at present known as NBCn1)
(Lagadic-Gossmann et al., 1992). Some years later Dr. Cingolani’s
group demonstrated that cardiac NBC also exhibits an electro-
genic behavior (at present called NBCe1) (Camilion De Hurtado
et al., 1995). Finally, it was demonstrated that both isoforms coex-
ist in the heart and the fact that the NBC can mediate either the
electroneutral or electrogenic bicarbonate transport enlarged the
spectrum of research around it.

It has been described and characterized the rat and cat cardiac
NBCe1 current as an anionic bicarbonate and sodium-dependent
current which reversed at around −85 mV (INBC) (Aiello et al.,
1998; Villa-Abrille et al., 2007). Reversal potential for electro-
genic NBC was also measured and estimated for rabbit, mouse
and guinea pig, with values ranging from −98 to −106 mV
(Yamamoto et al., 2005; Vaughan-Jones et al., 2006). It has also
been described the influence of NBCe1 in the configuration of
the cardiac action potential (CAP) (Aiello et al., 1998; Villa-
Abrille et al., 2007). Using the patch-clamp technique, it was
demonstrated that the change of the extracellular solution from a
HEPES- (HCO−

3 -free solution) to a HCO−
3 -containing solution,

hyperpolarized resting membrane potential (RMP) by 3–5 mV
and evoked a 25% CAP shortening, both in rat (Aiello et al.,
1998) and cat (Villa-Abrille et al., 2007) ventricular myocytes.
Furthermore, Ang II inhibits NBCe1 current and prolongs CAP
(De Giusti et al., 2010). In this regard, it is well-known that CAP
prolongation is associated either as the initiator (Lebeche et al.,
2006) or the consequence of the cardiac hypertrophy and arrhyth-
mogenesis (Fischer et al., 2007; Weisser-Thomas et al., 2007). The
outward current mediated by NBCe1, which under normal con-
ditions shortens the CAP, might represent a protective aspect for
the myocyte.
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FIGURE 2 | Potential redistribution of membrane transporters during

cardiac hypertrophy. Left, schematic distribution in the normotrophic cardiac
myocyte: both NBC isoforms are mainly expressed in t-tubules in relationship
with NCX maintaining a “normal calcium” space near the SR whereas NHE-1
is expressed in intercalated disks. Right, hypertrophic myocyte where the
NHE-1 and NBCn1 are overexpressed and homogeneously distributed along

sarcolemmal membrane, and the trafficking of NBCe1 to the membrane is
disturbed leading to its reduced activity. In this scenario there is cytosolic and
SR calcium overload which leads to hypertrophy and cardiac arrhythmias.
EADs, early after depolarizations; DADs, delay after depolarizations; SR,
sarcoplasmatic reticulum; CAP, cardiac action potential; NCXr, reverse mode
of sodium/calcium antiporter.

Important for the improvement of the knowledge about NBC,
it was first described a selective blocker of the transporter (Ch’en
et al., 2008), and some years later, specific antibodies against
the NBCe1 that allowed the discrimination of the participation
of each isoform in pHi regulation were generated in our lab-
oratory (De Giusti et al., 2011b). Two different and selective
functional antibodies against NBCe1 were produced and charac-
terized that were called a-L3 and a-L4 because they recognized the
extracellular loop 3 and loop 4, respectively. Interestingly, these
antibodies exhibited opposite effects on NBCe1 function, a-L3
totally inhibits NBCe1 activity, while a-L4 has an excitatory effect
on it. In such research it was confirmed that NBCe1 is the only
functional electrogenic alkalinizing mechanism in normal cardiac
ventricular myocytes. Moreover, since a-L3 reduced proton efflux
(JH) during the recovery from intracellular acidosis in an extra-
cellular medium in the presence of bicarbonate and cariporide
(NHE-1 blocker) by approximately 50%, it could be speculated
that, at least in rat and cat cardiomyoytes, both isoforms of the
NBC, NBCe1, and NBCn1, exhibit an equivalent contribution to
the regulation of pHi under physiological conditions (De Giusti
et al., 2011b; Orlowski et al., 2013).

RENIN ANGIOTENSIN ALDOSTERONE SYSTEM: ENDOCRINE
vs. PARACRINE SYSTEM
Ang II is an octapeptide that classically was known to be synthe-
sized from Ang I by the angiotensin-converting enzyme (ACE)
present in the endothelial vessels in response to high levels
of aldosterone, forming the endocrine system known as renin-
angiotensin-aldosterone-system (RAAS). However, at present it is
well-recognized that Ang II is produced and secreted locally in
the heart (Husain et al., 1994; Shyu et al., 2001). Furthermore, it
was shown that >75% of cardiac Ang II was synthesized locally,
and that its source was also in situ-synthesized Ang I (De Mello
and Danser, 2000). Although still controversial (Silvestre et al.,

1998, 1999; Takeda et al., 2000; Gomez-Sanchez et al., 2004; Chai
and Danser, 2006), it has been also demonstrated that aldosterone
synthase exists in the myocytes (Silvestre et al., 1998), support-
ing the existence of a local RAAS (Varagic and Frohlich, 2002).
Dr. Sadoshima’s group has shown that Ang II generates car-
diac hypertrophy in response to myocardial stretch and secretion
from intracellular vesicles (Sadoshima et al., 1993; Sadoshima
and Izumo, 1996). Furthermore, Dr. Cingolani’s group has deeply
investigated the presence of this autocrine pathway as respon-
sible for the SFR to myocardial stretch, proposing the NHE-1
as the final effector. (Cingolani et al., 2001, 2003). Moreover,
aldosterone has been shown to activate NHE-1, (De Giusti et al.,
2011a) and to increase NHE-1 expression, inducing left ventricu-
lar hypertrophy (Karmazyn et al., 2003), independently from its
classical effects on regulation of renal Na+ excretion and blood
pressure (Qin et al., 2003; Yoshida et al., 2005; Diez, 2008).
In addition, the investigation of the role of aldosterone in car-
diac pathophysiology has gained increasing interest in the last
few years due to relevant results obtained from clinical studies,
particularly RALES (Randomized Aldactone Evaluation Study),
EPHESUS (Eplerenone Post–acute Myocardial Infarction Heart
Failure Efficacy and Survival Study), and EMPHASIS-HF, in
which antagonists of the MR importantly reduced mortality in
patients with left ventricular dysfunction independently of the
values of blood pressure (Pitt et al., 1999, 2001; London et al.,
2003).

Classically, aldosterone enters the cells and binds to the MR
located mainly in the cytosol. This binding translocates the MR
to the nucleus, where it acts as a ligand-induced transcription fac-
tor. However, it has been proposed that activated MR can elicit
additional non-classical effects, which do not require transcrip-
tion or translation of genes and involved the production of ROS
(Caldiz et al., 2011), leading to the activation of ions membrane
transporters (Ebata et al., 1999; Mihailidou et al., 2004; Chai et al.,
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2005; Grossmann and Gekle, 2009; Caldiz et al., 2011; De Giusti
et al., 2011a). The mechanisms conveying theses rapid and non-
genomics effects consist in several signaling cascades of kinases,
as protein kinase C (PKC) (Ebata et al., 1999; Mihailidou et al.,
2004) and ERK ½ (Caldiz et al., 2011), and also include a crosstalk
with Ang II (Lemarie et al., 2008; Rautureau et al., 2011) and
the transactivation of EGFR (Grossmann et al., 2010; De Giusti
et al., 2011a). Moreover, it has been proposed the presence of a
crosstalk between both, genomic and non-genomic pathways of
aldosterone (Grossmann and Gekle, 2009). On the other hand,
it was recently demonstrated that certain non-genomic effects of
aldosterone in vascular smooth muscle were due to simultane-
ous activation of MR and a surface membrane G protein-coupled
receptor, the GPR30 (Gros et al., 2011, 2013). In agreement, grow-
ing evidence is appearing which demonstrate that GPR30 could
be another aldosterone receptor involved in the rapid effects of the
hormone in the cardiovascular system (Gros et al., 2011; Meyer
et al., 2011).

REGULATION OF NBC BY RAAS
It was demonstrated that Ang II stimulates total NBC activ-
ity, both in rat (Baetz et al., 2002) and cat (De Giusti et al.,
2009) ventricular myocytes in a ROS- (De Giusti et al., 2009)and
ERK ½-dependent manner (Baetz et al., 2002; De Giusti et al.,
2009). Moreover, the phenomenon known as “ROS-induced-
ROS-release,” where a small amount of ROS derived from
NADPH oxidase (NOX) stimulates mitochondria to produce and
release a burst of ROS (Zorov et al., 2000, 2006; Kimura et al.,
2005), was also involved in Ang II-induced NBC stimulation (De
Giusti et al., 2009).

Our group demonstrated for the first time a differential effect
of Ang II on NBC isoforms through parallel pathways(De Giusti
et al., 2010). Ang II after binding to AT-1 receptor inhibits NBCe1
in a p38 kinase-dependent, whereas activates NBCn1 via an ERK
½ and ROS-dependent mechanism (Figure 1). Furthermore, Ang
II generated a higher increase in JH in the presence of p38 kinase
inhibitor than in its absence, leading us to the speculation that
Ang II-induced stimulation of NBCn1 overrules the inhibition of
NBCe1 (Aiello and De Giusti, 2013). Interestingly, Ang II abro-
gated the anionic current generated by the NBCe1 (De Giusti
et al., 2010). It is well-known that Ang II induces CAP prolonga-
tion which leads to arrhythmic effects (Fischer et al., 2007). Thus,
it is possible to speculate that this inhibition of NBCe1 by Ang II
might be involved, at least in part, in the CAP prolongation and
arrhythmias induced by this hormone (Figure 1).

It has been reported that aldosterone stimulates NHE-1 via
MR in a non-genomic manner and via a ROS-dependent path-
way (Caldiz et al., 2011; De Giusti et al., 2011a). As NBC activity
was shown to be ROS (De Giusti et al., 2009) and ERK ½ kinase-
dependent (Baetz et al., 2002), it might be possible to speculate
that aldosterone can regulate NBC. Interestingly, Gros et al. have
demonstrated that aldosterone mediates its rapid effects in vascu-
lar endothelial cells through GPR30 activation (Gros et al., 2013).
Moreover, it was reported that GPR30 is expressed in the heart
(Bopassa et al., 2010) and that the stimulation of this receptor
by estradiol (Patel et al., 2010) or G1, a specific GPR30 agonist,
(Deschamps and Murphy, 2009; Bopassa et al., 2010) mediates

protection during ischemia-reperfusion injury (Deschamps et al.,
2010). Whether the potential effect of aldosterone on cardiac NBC
could be mediated through MR or GPR30 activation represents
an interesting issue that deserves future investigation.

INVOLVEMENT OF NBC IN RAAS INDUCED CARDIAC
DISEASES
Aberrant H+-induced Na+ and Ca2+ influxes has been proposed
to participate in maladaptive cardiac hypertrophy (Yamamoto
et al., 2007; Baartscheer and Van Borren, 2008; Cingolani et al.,
2008) and arrhythmogenesis (Baartscheer et al., 2008). In the last
years, NBC disturbances were described during cardiac hypertro-
phy in close relationship with RAAS activation (Yamamoto et al.,
2007; Orlowski et al., 2013). Moreover, there is enough informa-
tion about the involvement of Na+ (Gonano et al., 2011) and
Ca2+ signaling disorders (Venetucci et al., 2008) and Ang II stim-
ulation (Zhao et al., 2011) in the genesis of arrhythmias. However,
until present and besides NBC activity influence on [Na+]i and
[Ca2+]i, nothing is known about the direct involvement of NBC
in arrhythmogenesis.

IS NBC INVOLVED IN CARDIAC HYPERTROPHY?
Yamamoto et al have demonstrated that NBCe1 and NBCn1 were
over-expressed in ventricular myocytes isolated from hypertro-
phied rat hearts subjected to non-ischemic pressure overload
and that these changes were prevented by the AT-1 blocker
Losartan (Yamamoto et al., 2007). However, a clear up-regulation
of NBCe1 activity could not be demonstrated (Yamamoto et al.,
2007). In addition, it has been reported that, although NBCe1
was also over-expressed in hypertrophied hearts of SHR rats,
its activity was impaired (Orlowski et al., 2013). It was pro-
posed that Ang II-induced NBCe1 internalization might explain
the discordance between protein expression and transport activ-
ity (Orlowski et al., 2013) (Figure 1). Interestingly, in the same
research it was suggested that NBCn1 activity was increased in
order to maintain pHi. However, based in the different stoichiom-
etry of both isoforms, this remodeling might lead to higher Na+
influx and in consequence greater intracellular calcium overload.
In agreement with the hypothesis that NBCe1 could be internal-
ized during cardiac hypertrophy, it has been described that Ang II
promotes NBCe1 internalization in Xenopus oocytes transfected
with this NBC isoform (Perry et al., 2007). Consistently, the dif-
ferential membrane expression and function of NBC isoforms
observed in the hearts of SHR rats were reversed by treatment of
these hypertensive rats with losartan (Orlowski et al., 2013).

It is well-known that increased [Ca2+]i activates hypertrophic
pathways, such as the one of calcineurin (Ennis et al., 2007; Guo
et al., 2011). Ca2+ regulation is closely linked to [Na+]i because
one of the routes for Ca2+ influx into the myocytes is via NCXr.
During acidosis there is an intimate link between Na+ and Ca2+,
mediated through a functional coupling among the activities of
the alkalinizing transporters and NCX (Garciarena et al., 2013a).

In animal models of hypertrophy, as well as in human heart
failure, it has been demonstrated an increase in [Na+]i and
[Ca2+]i (Gray et al., 2001; Despa et al., 2002; Verdonck et al.,
2003). Furthermore, it was shown that chronic NHE-1 inhibi-
tion, which attenuates [Na+]i overload, restrains Ca2+ activated
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pro-hypertrophic intracellular pathways and reverses myocardial
remodeling, leading to prevention or reversion of cardiac hyper-
trophy (Kusumoto et al., 2001; Camilion De Hurtado et al., 2002;
Engelhardt et al., 2002; Ennis et al., 2003). Furthermore, it was
demonstrated that the over-expression of NHE-1 alone is enough
to induce cardiac hypertrophy in a murine model (Nakamura
et al., 2008). Interestingly, these animals presented a higher NHE-
1 expression, not only at intercalated discs, where it is normally
expressed, but also all along the transverse tubules (Nakamura
et al., 2008). Inappropriate trafficking of NBC may also be exacer-
bated by the increasing loss of t-tubules from ventricular cells in
the progression to heart failure (Wei et al., 2010). In this regard,
the normal selective spatial distribution of the alkalinizing trans-
porters is crucial for the ion homeostasis, suggesting that the
impairment of this distribution might be detrimental for myocyte
function (Figure 2) (Garciarena et al., 2013a).

NBC is responsible for 30% of Na+ influx into the myocyte at
pHi 6.8 (Vaughan-Jones et al., 2006), so it may be also impor-
tant to the development of cardiac hypertrophy. In this regard
and as it was commented above, it has been shown that NBCn1
function is up-regulated in cardiac hypertrophy (Yamamoto et al.,
2007), while NBCe1 transport seems to be impaired in the hyper-
trophied heart of SHR rats (Orlowski et al., 2013). Taking into
account that NBCe1 has Na+-sparing activity, it is feasible to
anticipate that this remodeling of NBC isoforms in hypertro-
phied hearts would lead to more [Na+]i and [Ca2+]i overload.
Moreover, the distribution of NBCe1 along the transverse tubules
clustered with the NCX and the sarcoplasmic reticulum (SR), the
most important pool of Ca2+, proposes a relevant relationship
between this NBC isoform and calcium handling. Furthermore, it
was reported that luminal SR [Ca2+] is Na+

i sensitive, suggesting
that the tubular NBC activity may allow to create a local control
of pHi while minimizing the effects of local Na+-loading on Ca2+
signaling (Garciarena et al., 2013a).

Another important aspect that should be taken into account is
the possibility that the NBCe1 downregulation observed in SHR
hypertrophic hearts may lead, not only to membrane overexpres-
sion of NBCn1, but also to an enhanced NHE-1 activity. Since
a hyperactivity of NHE-1 in myocardium of SHR has been pre-
viously demonstrated (Perez et al., 1995), it might be interesting
to elucidate if both phenomena are related and furthermore, if
NBCe1 downregulation is the cause of NHE-1 hyperactivity in
this strain.

IS NBC INVOLVED IN EARLY AND DELAYED AFTER
DEPOLARIZATIONS (EADs AND DADs)?
It has been shown that either the inhibition of the Na+/K+ATPase
(Sedej et al., 2010; Gonano et al., 2011) or the NHE-1 stimulation
(Baartscheer et al., 2008) generates [Na+]i overload which leads
to cardiac arrhythmias due to the reduction of Ca2+ extrusion
and/or the increase of Ca2+ influx through the NCX. The increase
in [Ca2+]i enhances the SR calcium load, leading to spontaneous
diastolic calcium release. Then, the increase in cytosolic Ca2+
(waves) activates an inward (depolarizing) current (Iti), mediated
by the forward mode of NCX (NCXf) (Bers et al., 2002; Rizzi
et al., 2008). Iti is responsible for the generation of the delayed
after depolarizations (DADs) which, when are sufficiently large

to achieve the threshold, generate spontaneous CAP, leading to
triggered activity (Liu et al., 2011).

As NBC activity promotes the increase in [Na+]i (Vaughan-
Jones et al., 2006), it is also possible to speculate that Ang II and
ROS-induced NBCn1 stimulation (De Giusti et al., 2009, 2010)
might be implicated in DADs generation (Figure 1). According
to this, it was demonstrated that Ang II induces DADs in a ROS-
dependent manner (Wiederkehr et al., 1999).

Classically, Ang II is known to modulate the properties of ion
channels involved in the cardiac action potential (CAP) configu-
ration (Vila Petroff et al., 2000; Salas et al., 2001; Domenighetti
et al., 2007; Rivard et al., 2008). It has been reported that Ang
II prolongs CAP both, inhibiting repolarizing currents as IK1,
IKr, and Ito (Zhou et al., 2006; Domenighetti et al., 2007; Rivard
et al., 2008; Wang et al., 2008) and stimulating depolarizing cur-
rents as ICaL(Aiello and Cingolani, 2001; Ichiyanagi et al., 2002).
Moreover, it has been recently demonstrated that Ang II abro-
gated the NBCe1-induced CAP shortening, likely due to the
inhibition of the repolarizing current generated by the transporter
(De Giusti et al., 2010). In this regard, it has been shown that
CAP prolongation enhances the occurrence of early after depo-
larizations (EADs), due to the recovery from the inactivation
and the reactivation of voltage-dependent L-type Ca2+ chan-
nels (Nuss et al., 1999; Wiederkehr et al., 1999; Xie et al., 2009)
and the impairment of sodium current (Wiederkehr et al., 1999;
Xie et al., 2009). In concordance, Ang II was shown to increase
the occurrence of EADs in a ROS and CaMKII-dependent man-
ner (Zhao et al., 2011), suggesting the possibility that Ang II-
induced NBCe1 inhibition might participate in the generation
of EADs.

In summary, it might be also possible that Ang II-induced
NBCe1 inhibition and NBCn1 stimulation participate in the gen-
eration of EAD, secondary to CAP prolongation and [Na+]i

overload, respectively (Figure 1).
It is known that a close relationship exist between CAP pro-

longation and hypertrophy, but it is unclear which is cause and
which the consequence. On the one hand, the CAP prolongation
is consistently observed in several experimental models of cardiac
hypertrophy and failure (Carmeliet, 2006). It is also known that
this can lead to QT prolongation, which is the basis of arrhytmo-
genic events (Fischer et al., 2007; Baartscheer et al., 2008). On the
other hand, Lebeche et al have reported that CAP prolongation
promotes an increase in [Ca2+]i, which activates a hypertrophic
signaling pathway that might be a cause and not a consequence of
cardiac hypertrophy (Lebeche et al., 2006).

FINAL CONCLUSION
The purpose of this review is to focus the attention on the cardiac
NBC and its regulation by RAAS, especially considering the impli-
cations of this modulation in cardiac diseases. Classically, NBC is
known as an alkalinizing mechanism. However, it is important to
keep in mind that this is not its only function but it also controls
[Na+]i, and indirectly [Ca2+]i through the NCX activity and SR
behavior. Moreover, NBCe1 modulates the shape and duration
of the CAP, adding to this isoform the important role of con-
tributing to cellular electrophysiology. As RAAS exerts a central
role in cardiac pathophysiology, it can be considered of significant
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relevance the fact that both hormones, Ang II and possibly aldos-
terone, regulate NBC activity. Moreover, Ang II seems to regulate
the trafficking of NBC besides the influence in the transporter
activity (Perry et al., 2007; Orlowski et al., 2013). Moreover, Ang
II exerting an opposite effect on NBC isoforms, might be doubly
detrimental, leading to Na+ and Ca2+ overload and CAP prolon-
gation, which could be relevant, at least in part, to explain the
hypertrophic and arrthymogenic effects of the hormone. Until
present, it is not known if aldosterone can induce NBC stim-
ulation via the activation of the electrogenic, the electroneutral
or both isoforms of NBC. This issue might be kept in consid-
eration because of the different role of each isoform in myocyte
physiology.

The knowledge of the central role that sodium and calcium
concentrations play and the close relationship between them and
H+ movements with NBC expression and distribution, forces us
to keep the attention in NBC and cardiac diseases. Furthermore,
the fact that RAAS exerts direct effects on NBC activity strength-
ens the conviction that NBC might be responsible, at least in part,
for the development and maintenance of cardiac diseases.
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