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Near-infrared spectroscopy (NIRS) is used to monitor regional cerebral oxygenation
(rScO2) during cardiac surgery but is less established during non-cardiac surgery. This
systematic review aimed (i) to determine the non-cardiac surgical procedures that
provoke a reduction in rScO2 and (ii) to evaluate whether an intraoperative reduction
in rScO2 influences postoperative outcome. The PubMed and Embase database were
searched from inception until April 30, 2013 and inclusion criteria were intraoperative
NIRS determined rScO2 in adult patients undergoing non-cardiac surgery. The type of
surgery and number of patients included were recorded. There was included 113 articles
and evidence suggests that rScO2 is reduced during thoracic surgery involving single
lung ventilation, major abdominal surgery, hip surgery, and laparoscopic surgery with the
patient placed in anti-Tredelenburg’s position. Shoulder arthroscopy in the beach chair and
carotid endarterectomy with clamped internal carotid artery (ICA) also cause pronounced
cerebral desaturation. A >20% reduction in rScO2 coincides with indices of regional and
global cerebral ischemia during carotid endarterectomy. Following thoracic surgery, major
orthopedic, and abdominal surgery the occurrence of postoperative cognitive dysfunction
(POCD) might be related to intraoperative cerebral desaturation. In conclusion, certain
non-cardiac surgical procedures is associated with an increased risk for the occurrence
of rScO2. Evidence for an association between cerebral desaturation and postoperative
outcome parameters other than cognitive dysfunction needs to be established.
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With the introduction of near infrared spectroscopy (NIRS)
for intraoperative evaluation of regional cerebral oxygenation
(rScO2), focus on maintaining cerebral blood flow (CBF) has lead
to intervention algorithms to support cardiac stroke volume and
central venous oxygen saturation in addition to mean arterial
pressure (MAP), arterial hemoglobin O2 saturation, and arte-
rial carbon dioxide pressure (Bundgaard-Nielsen et al., 2007a).
Several commercial NIRS-devices provide for a cerebral oxime-
try evaluation of rScO2 reflecting changes in CBF (Madsen and
Secher, 1999). During cardiac surgery NIRS is used for anes-
thetic management of the circulation (Murkin and Arango, 2009)
while, as indicated by the number of review papers there is no
standard recommendation for the use of NIRS in non-cardiac sur-
gical procedures other than in carotid endarterectomy (CEA; ref.
Pennekamp et al., 2009, 2011). In non-cardiac surgery hypoten-
sion and in turn a decrease in rScO2 may arise when the blood loss
challenges the central blood volume or when it is compromised
during head-up tilt (Madsen et al., 1995) as used for both abdom-
inal and orthopedic surgery. Thus rScO2 may decrease when
pressure is reduced below the lower limit of cerebral autoregula-
tion as during cardiac surgery requiring cardiopulmonary by-pass
(Ono et al., 2013). Maintained regional tissue blood flow is, how-
ever, important for limiting postoperative complications such
as acute kidney failure (Chenitz and Lane-Fall, 2012), wound

infection (Sørensen, 2012), and cognitive dysfunction (Murkin
et al., 2007; Slater et al., 2009) both in cardiac and non-cardiac
surgery.

A systematic review was undertaken (i) to determine the non-
cardiac surgical procedures that provoke a reduction in rScO2

and (ii) to evaluate whether an intraoperative reduction in rScO2

influences postoperative outcome such as cognitive dysfunction.
Publications included for the review are presented in a table
with inclusion of the surgical speciality, the number of patients
included in each article, the NIRS device used, and whether
cerebral oxygenation was changed intraoperatively.

METHODS
Relevant publications were found by searching the PubMed and
Embase database from inception through April 30, 2013. The
search strategy combined the following MeSH (medical subject
headings) terms and keywords: (NIRS or NIS or near infrared
spectroscopy or oximetry), (oximetry or saturation or oxygena-
tion or desaturation or oxygen), (brain or cerebral or muscle),
and (surgery or surgical or perioperative).

Publications were included in the review if they addressed
monitoring of tissue oxygenation by NIRS for intraoperative
monitoring during non-cardiac and non-head-trauma surgery in
adult patients (Figure 1). Each title and/or abstract identified was
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FIGURE 1 | Flow chart for study selection.

screened for eligibility. Publications were excluded if they did not
include original data (e.g., review, commentary), or if they were
not published as a full-length article in a peer-reviewed journal.
Non-English articles were also excluded and articles evaluating
non-brain tissue only were excluded as well. If articles included
animals, pediatric patients or cardiac surgical patients they did
not fulfill inclusion criteria and they were therefore not consid-
ered eligible for inclusion in the study. Articles reporting changes
in rScO2 before or after surgery were also excluded. Data regard-
ing the number of patients, type of surgery, and type of NIRS for
determination of cerebral oxygenation were noted. The articles
were grouped according to the predominant surgical procedure.

RESULTS
Figure 1 is a summary of the search with the initial strategy
resulting in 1251 citations. According to title review, 1055 papers
did not met the inclusion criteria: 321 papers were on car-
diacthoracic and/or pediatric/fetal issues, 54 articles addressed
studies in animals, and 99 papers were reviews and/or comments
predominantly addressing cardiac surgical patients, 67 articles
included head-trauma or neurological patients, 149 articles were
in non-English language and 145 papers did not address intra-
operative issues. In total 196 articles were included for abstract
review. Additional 69 abstracts were excluded for not meeting the
main inclusion criteria of this review. After full review additional
papers were excluded. NIRS results from 113 papers are presented
(Table 1).

NEUROSURGERY AND SURGERY ON THE SPINE
During neurovascular procedures (aneurysm clipping, bypass
procedures, or balloon occlusion testing), rScO2, and the NIRS-
determined concentration of oxygenated hemoglobin (HbO2)
decrease (Calderon-Arnulphi et al., 2007) and rScO2 reflects the
success of surgical resection of a cerebral arterio-venous malfor-
mation (Asgari et al., 2003). While induction of anesthesia does

not change brain oxygenation tracheal intubation increases HbO2

(Paisansathan et al., 2007). In contrast the head up tilted position
provokes a decrease in rScO2 (69 vs. 71%) (Fuchs et al., 2000)
and also the NIRS-determined total Hb becomes reduced (Lovell
et al., 2000).

MAXILLO-FACIAL-EYE SURGERY AND BREAST SURGERY
Minor reduction in rScO2 is observed immediately after peribul-
bar block for eye surgery (Fodale et al., 2006) and with
MAP reduced to 60 mmHg during orthognathic surgery rScO2

decreases 5% (Choi et al., 2008). Such changes do not provoke
postoperative cognitive dysfunction (POCD) as determined by
a decrease in the minimal mental state examination (MMSE)
score =2 points from baseline (Choi et al., 2008).

In patients scheduled for mastectomy induction of anesthesia
with subsequent hypotension, rScO2 increases (from 67 to 72%)
to remain stable during surgery (Nissen et al., 2009a, 2010). While
ephedrine preserves rScO2, phenylephrine is reported to decrease
rScO2 14% (Nissen et al., 2010).

THORACIC SURGERY
During open thoracotomy or thorascopy, about half of the
patients present at least one rScO2 value that is lower than 80%
of the baseline value (Tobias et al., 2008) and during surgery with
single lung ventilation up to 75% of the patients suffer from a
more than a 20% decrease in rScO2 (Hemmerling et al., 2008;
Kazan et al., 2009; Tang et al., 2012). Risk factors for a reduction in
rScO2 are age, weight, and ASA class III (Tobias et al., 2008) and
the minimum rScO2 value predicts postoperative complications
as evaluated by the Clavien and SOFA scoring systems (Kazan
et al., 2009). The exposure time to rScO2 values below <65% cor-
relates with occurrence of POCD (Tang et al., 2012). This study
used MMSE for evaluation of cognitive function before surgery
and several days after surgery. A decrease >2 points from baseline
was defined as POCD.

SHOULDER SURGERY
During arthroscopic shoulder surgery in the lateral decubitus
position, rScO2 is maintained (Murphy et al., 2010) but when the
patient is placed in the beach chair position rScO2 may decrease
(Fischer et al., 2009; Dippmann et al., 2010; Tange et al., 2010;
Lee et al., 2011; Yadeau et al., 2011; Jeong et al., 2012; Ko et al.,
2012; Moerman et al., 2012; Salazar et al., 2013a,b) with differ-
ent incidence of intraoperative cerebral desaturation (0 vs. 27%)
(Tange et al., 2010; Jeong et al., 2012). The duration of cerebral
desaturation episodes range from 1 min to 1 h or longer (Jeong
et al., 2012). In the recent study by Salazar et al. (2013a), it is
stated that mean maximal desaturation is 32% with each desat-
uration event lasting an average of 3 min 3 s. Lowered rScO2

coincides with low MAP (<70 mmHg; 30, 33, 36) and raised MAP
restores rScO2 (Lee et al., 2011). In a case report including one
patient it is noted that the α1-agonist phenylephrine increases
both MAP and rScO2 (Fischer et al., 2009). Large body mass index
is reported to be associated with a reduction in rScO2 (Salazar
et al., 2013a).

The influence of intravenous (propofol) anesthesia vs. inhala-
tional (sevoflurane) anesthesia on rScO2 has also been evaluated
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Table 1 | Studies included in the systematic review grouped in accordance to surgical procedures.

Paper Patients Apparatus Intended Change in

tissue oxygenation

NEUROSURGERY AND SPINE SURGERY

Asgari et al., 2003 N = 20
Cerebral arteriovenous malformations

Multiscan OS 30 Cortical surface ∧

Calderon-Arnulphi et al., 2007 N = 25
Neurovascular procedures

Oxiplex Brain ∨

Fuchs et al., 2000 N = 74
Lumbar discectomy
Healthy volunteers
CEA

INVOS 4100 Frontal lobe ∨

Lovell et al., 2000 N = 20
Micro discectomy
Healthy volunteers

NIRO 500 Frontal lobe ∨

Paisansathan et al., 2007 N = 13
Spinal or peripheral nerve surgery

Oxiplex Frontal lobe ∧

MAXILLO-FACIAL-EYE SURGERY

Choi et al., 2008 N = 60
Orthognathic surgery

INVOS 5100 Frontal lobe ∨

Fodale N = 66
Ophthalmic procedures

INVOS 5100B Frontal lobe ∨

BREAST SURGERY

Nissen et al., 2009a N = 71
mastectomy, thyroidectomy or parathyroidectomy

INVOS Frontal lobe*
Skeletal muscle

∧

Nissen et al., 2010 N = 78
Mastectomy, thyroidectomy or parathyroidectomy

INVOS Frontal lobe* ∨

THORACIC SURGERY

Tobias et al., 2008 N = 40
Open thoracotomy and thorascopy

INVOS 3100A Frontal lobe ∨

Hemmerling et al., 2008 N = 20
Open thoracotomy

FORE-SIGHT Frontal lobe ∨

Kazan et al., 2009 N = 50
Thoracic surgery

FORE-SIGHT Frontal lobe ∨

Tang et al., 2012 N = 76
Thoracic surgery

FORE-SIGHT Frontal lobe ∨

ORTHOPEDIC SURGERY

Dippmann et al., 2010 N = 2
Arthroscopic shoulder surgery

INVOS 5100 Frontal lobe ∨

Fischer et al., 2009 N = 1
Arthroscopic shoulder surgery

FORESIGHT Frontal lobe ∨

Jeong et al., 2012 N = 56
Arthroscopic shoulder surgery

INVOS 5100B Frontal lobe ∨

Han et al., 2006 N = 56
Major orthopedic surgery

INVOS 4100 Frontal lobe ∨

Lee et al., 2011 N = 28
Arthroscopic shoulder surgery

INVOS 5100 Frontal lobe ∨

Lin et al., 2013 N = 46
Total hip arthroplasty

INVOS 5100B Frontal lobe ∨

Ko et al., 2012 N = 50
Arthroscopic shoulder surgery

INVOS 5100 Frontal lobe ∨

Moerman et al., 2012 N = 20
Arthroscopic shoulder surgery

INVOS 5100 Frontal lobe ∨

Murphy et al., 2010 N = 124
Arthroscopic shoulder surgery in beach chair and LDP

FORE-SIGHT Frontal lobe ∨

Papadopoulos et al., 2012 N = 69
Hip fracture repair

INVOS 5100C Frontal lobe ∨

(Continued)
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Table 1 | Continued

Paper Patients Apparatus Intended Change in

tissue oxygenation

Salazar et al., 2013a N = 51
Arthroscopic shoulder surgery

INVOS 5100 Frontal lobe ∨

Salazar et al., 2013b N = 50
Arthroscopic shoulder surgery

INVOS 5100 Frontal lobe ∨

Song et al., 2012 N = 28
Total knee replacement

INVOS 5100 Frontal lobe –

Tange et al., 2010 N = 30
Arthroscopic shoulder surgery

NIRO-200 Frontal lobe –

Tzimas et al., 2010 N = 1
Hip fracture repair

INVOS 5100 Frontal lobe ∧

Yadeau et al., 2011 N = 99
Arthroscopic shoulder surgery

INVOS 5100C Frontal lobe ∨

Yoshitani et al., 2005 N = 42
Total hip arthroplasty

INVOS 4100 Frontal lobe ∨

UROLOGY

Bundgaard-Nielsen et al., 2007b N = 12
Open prostatectomy

INVOS Frontal lobe
Biceps muscle

–

Burkhart et al., 2011 N = 104
Non-epidural major surgery

NIRO-200 Frontal lobe ∨

Kalmar et al., 2012 N = 31
Robot prostatectomy

FORE-SIGHT Frontal lobe –

Meng et al., 2012 N = 29
Predominant patients for robot prostatectomy

Oxiplex Frontal lobe ∨

Meng et al., 2011 N = 14
Predominant patients for robot prostatectomy

Oxiplex Frontal lobe ∨

Park et al., 2009 N = 32
Robot prostatectomy

INVOS 5100 Frontal lobe –

GYNECOLOGY

Berlac and Rasmussen, 2005 N = 38
Caesarean section

INVOS 3100 Frontal lobe ∨

Fassoulaki et al., 2006 N = 44
Hysterectomy

INVOS 3100 Frontal lobe ∨

Kondo et al., 2013 N = 42
Caesarean section

NIRO pulse Brain ∨

Lee et al., 2006 N = 24
Laparoscopic gynecology

INVOS 4100 Frontal lobe ∨

Morimoto et al., 2000 N = 45
Gynecologic surgery

NIRO-500 Frontal lobe ∧

GASTRO-INTESTINAL SURGERY

Casati et al., 2005 N = 122
Major abdominal surgery

INVOS 4100 Frontal lobe ∨

Casati et al., 2007 N = 60
Major abdominal surgery

INVOS 4100 Frontal lobe ∨

Gipson et al., 2006 N = 70
Laparoscopic herniorrhaphy, cholecystectomy, gastric
bypass

INVOS 3100A Frontal lobe ∨

Green, 2007 N = 46
Major abdominal surgery: whipple, hepatectomy,
prostatectomy, cystectomy, aortic aneurysm repair

INVOS Frontal lobe ∨

Harrison, 2001 N = 13
Surgery for gastrointestinal or gynecological
malignancy

INVOS 3100 Frontal lobe ∨

Kitajima et al., 1998 N = 12
Laparoscopic cholecystectomy

NIRO-500 Brain ∨

(Continued)
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Table 1 | Continued

Paper Patients Apparatus Intended Change in

tissue oxygenation

Kurukahvecioglu et al., 2008 N = 60
Laparoscopic cholecystectomy

INVOS 5100 Frontal lobe ∨

Madsen et al., 2000 N = 48
Liver transplantation

INVOS 3100 Frontal lobe ∨

Madsen and Secher, 2000 N = 1
Liver transplantation

INVOS 3100 Frontal lobe ∨

Morimoto et al., 2009 N = 20
Laparotomy or laparoscopic surgery

INVOS 3100 Frontal lobe ∨

Nissen et al., 2009b N = 33
Liver transplantation

INVOS Frontal lobe ∨

Plachky et al., 2004 N = 16
Liver transplantation

INVOS 3100A Frontal lobe ∨

Zheng et al., 2012 N = 9
Liver transplantation

INVOS
(Somanetics)

Frontal lobe ∨

VASCULAR SURGERY

Liu et al., 1999†† N = 12
AAA patients

INVOS-3100 Frontal lobe ∨

Kuroda et al., 1996a N = 5
Balloon occlusion test of ICA

OM-100
(Shimadzu Co.)

Frontal lobe ∨

Torella et al., 2002** N = 30
Aortic surgery

INVOS-4100 Frontal lobe
Calf muscle

∨

Torella et al., 2003*** N = 29
Aortic surgery (n = 21)

INVOS-4100 Frontal lobe
Calf muscle

∧

Torella and McCollum, 2004**** Spinal surgery (n = 8) INVOS-4100 Frontal lobe
Calf muscle

CAROTID SURGERY

Ali et al., 2011 N = 10
Aortic surgery

INVOS Frontal lobe ∨

Beese et al., 1998 N = 49
CEA, LA

INVOS-3100 Frontal lobe ∨

Carlin et al., 1998 N = 137
CEA, GA

INVOS-3100 Frontal lobe ∨

Cho et al., 1998 N = 16
CEA, LA

INVOS-3100A
NIRO500 (n = 20)

Frontal lobe ∨

Cuadra et al., 2003 N = 29
CEA, GA

INVOS-4100 Frontal lobe ∨

Duncan et al., 1995 N = 40
CEA, GA

– Frontal lobe ∨

Duffy et al., 1997 N = 22 INVOS-3100 Frontal lobe ∨
Espenell et al., 2010 N = 72

CEA, GA
FORE-SIGHT Frontal lobe ∨

Fassiadis et al., 2006 N = 35
CEA, GA

INVOS Frontal lobe ∨

Fearn et al., 2000 N = 40
CEA, LA

INVOS-3100A Frontal lobe ∨

Friedell et al., 2008 N = 100
CEA

INVOS Frontal lobe ∨

Giustiniano et al., 2010 N = 323
CEA, GA

INVOS-5100B Frontal lobe ∨

Grubhofer et al., 1997 N = 104
CEA, GA

INVOS-3100A Frontal lobe ∨

Grubhofer et al., 2000 N = 12
CEA, GA

INVOS-3100 Frontal lobe ∨

(Continued)
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Table 1 | Continued

Paper Patients Apparatus Intended Change in

tissue oxygenation

Ishigaki et al., 2008 N = 59
CEA, GA

TOS96 Frontal lobe ∨

Kacprzak et al., 2012 N = 41
CEA, GA

Selfconstruct Frontal lobe ∨

Kawada et al., 2002 N = 16
CEA

TOS Frontal lobe ∨

Kobayashi et al., 2009 N = 3
Extracranial ICA
Aneurysm

TOS96 Frontal lobe ∨

Komoribayashi et al., 2006 N = 171
CEA, GA

TOS96 Frontal lobe ∨

Kragsterman et al., 2004 N = 89
CEA, GA

INVOS4100 Frontal lobe ∨

Kuroda et al., 1996b N = 62
CEA, GA

OM100/110 Frontal lobe ∨

Laffey et al., 2000 N = 22
CEA, GA

INVOS3100 Frontal lobe ∨

Lee et al., 2008 N = 1
CEA, GA

INVOS4100 Frontal lobe ∨

de Letter et al., 1998 N = 37
CEA, GA

– Frontal lobe ∨

McCleary et al., 1996 N = 102
CEA, GA

Critikon Frontal lobe ∨

Manwaring et al., 2010 N = 65
CEA, LA/GA

INVOS Frontal lobe ∨

Mason et al., 1994 N = 104
CEA, GA

NIRO500 Frontal lobe ∨

Mead et al., 1996 N = 11
CEA, GA

INVOS Frontal lobe ∨

Matsumoto et al., 2009 N = 16
CEA

INVOS5100 Frontal lobe ∨

Mille et al., 2004 N = 64
CAS, LA

INVOS
3100/4100

Frontal lobe ∨

Moritz et al., 2007 N = 594
CEA, GA

INVOS3100 Frontal lobe ∨

Moritz et al., 2010 N = 48
CEA, LA

INVOS3100 Frontal lobe ∨

Nakamura et al., 2009 N = 96
CEA, LA/GA

INVOS3110A/
OMM2000

Frontal lobe/Global
brain

∨

Ogasawara et al., 2003 N = 1
CEA

TOS96 Frontal lobe ∨

Pedrini et al., 2012 N = 50
CEA, GA

INVOS4100 Frontal lobe ∨

Pennekamp et al., 2012a N = 473
CEA, GA

INVOS Frontal lobe ∨

Pennekamp et al., 2012b N = 11
CEA, GA

INVOS Frontal lobe ∨

Pugliese et al., 2009 N = 151
CEA, GA

INVOS Frontal lobe ∨

Rigamonti et al., 2005 N = 40
CEA, LA

INVOS4100 Frontal lobe ∨

Ritter et al., 2011 N = 50
CEA, LA

INVOS4100 Frontal lobe ∨

(Continued)
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Table 1 | Continued

Paper Patients Apparatus Intended Change in

tissue oxygenation

Samra et al., 1996 N = 83
CEA, LA

INVOS3100 Frontal lobe ∨

Samra et al., 2000 N = 38
CEA, LA

INVOS3100 Frontal lobe ∨

Samra et al., 1999 N = 99
CEA, LA

INVOS3100 Frontal lobe ∨

Sehic and Thomas, 2000 N = 34
CEA, LA

INVOS3100A Frontal lobe ∨

Shang et al., 2011 N = 1
CEA, GA

DCS flow-oximeter Frontal lobe ∨

Stilo et al., 2012 N = 11
CEA, GA

INVOS4100 Frontal lobe ∨

Stoneham et al., 2008 N = 100
CEA, LA

INVOS4100 Frontal lobe ∨

Takeda et al., 2000 N = 16
CEA, LA

INVOS3100 Frontal lobe ∨

Tambakis et al., 2011 N = 24
CEA

INVOS4100 Frontal lobe ∨

Uchino et al., 2012 N = 56
CEA, GA

INVOS5100C Frontal lobe ∨

Vets et al., 2004 N = 20
CEA, GA

NIRS Frontal lobe ∨

Williams et al., 1999 N = 14
CEA

Critikon2020 Frontal lobe ∨

Yamamoto et al., 2007 N = 45
CEA, LA

OM-220 Frontal lobe ∨

Zogogiannis et al., 2011 N = 43
CEA, GA

INVOS4100 Frontal lobe ∨

For changes in oxygenation during vascular surgical procedures see text for specific results. LA, local anesthesia; GA, general anesthesia. The full papers by Williams

et al. (1994a,b,c) could not be retrieved. As these papers are among the first to report rScO2 in patients undergoing CEA the papers are cited in the text but not in

the table.
**Following 30 min acute normovolemic hemodilution decreased tissue oxygenation that reduced the hemoglobin concentration from 14.5 to 10.8 g/dl.
***Increased tissue oxygenation following blood transfusion.
****Reduced tissue oxygenation following blood loss equivalent to 650 ml or 16% of the patients’ blood volume.
††Decreased cerebral oxygenation with aortic cross-clamping and following declamping increased oxygenation.

(Jeong et al., 2012). During surgery in the beach chair patients
in sevoflurane anesthesia have higher internal jugular venous O2

saturation (SjvO2) than patients in propofol anesthesia (mini-
mum SjvO2 63 vs. 42%), rScO2 is similar in the two groups and
rScO2 and SjvO2 correlate. As MAP also is higher with sevoflu-
rane anesthesia, despite a less frequent use of vasopressors, the
authors conclude that sevoflurane anesthesia may be a better
choice in patients undergoing surgery in beach chair position
(Jeong et al., 2012).

An influence of cerebral desaturation on the occurrence of
POCD after shoulder surgery in the beach chair is evaluated
by Salazar et al. (2013b). Based on a Repeatable Battery for
the Assessment of Neuropsychological Status (RBANS) score
the authors conclude that POCD is almost identical in subjects
with intraoperative cerebral desaturation compared to those in
the cohort who did not (Salazar et al., 2013b). The findings are
supported by Moerman et al. (2012) who report that neurological

or cognitive dysfunction does not occur after surgery in the beach
chair.

OTHER TYPES OF ORTHOPEDIC SURGERY
Major orthopedic surgery (hip surgery) reduces rScO2 ≈10%
below baseline, with esmolol induced hypotension, rScO2

becomes even lower (Han et al., 2006) and also the NIRS-
determined deoxygenated hemoglobin (Hb) concentration
decreases (Yoshitani et al., 2005). During hip fracture repair
rScO2 <50 or 75% of baseline occurs in 38% of patients
(Papadopoulos et al., 2012) and rScO2 decreases independently
of the anesthesia used (propofol vs. sevoflurane; ref. Yoshitani
et al., 2005). During knee surgery rScO2 remains stable (Song
et al., 2012).

Before surgery neurocognitive dysfunction is associated to low
rScO2 (44%) (Tzimas et al., 2010) and in patients with cerebral
desaturation during major orthopedic surgery the occurrence of
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POCD is reported to increase (Papadopoulos et al., 2012; Lin
et al., 2013). Following surgery for hip fracture, patients with
POCD have lower intraoperative rScO2 (55 vs. 65%) compared
to non-POCD patients (Papadopoulos et al., 2012). In this study
cognitive function was assessed by the MMSE preoperatively and
on the 7th postoperative day and compared to baseline, a reduc-
tion of MMSE score by >2 points indicated POCD. Lin et al.
(2013) used MMSE, digit span test, digit symbol substitution
test, trail making test, verbal fluency test, and word recognition
tests and it was noted that in patients with POCD the intraop-
erative rScO2 drop (14 vs. 8%) was more marked compared to
non-POCD patients (Lin et al., 2013). The authors suggest that
an intraoperative decrease in rScO2 max >11% is to be con-
sidered a warning signal for development of POCD (Lin et al.,
2013).

UROLOGY
In patients undergoing robotic assisted prostactomy in the
Trendelenburg position rScO2 is reported to increase (Park et al.,
2009; Kalmar et al., 2012). However, the elderly patient may
demonstrate profound intraoperative desaturation (to 20% or
more below baseline) (Burkhart et al., 2011). Also hemodilution
may lower rScO2 (Bundgaard-Nielsen et al., 2007b) and a reduc-
tion in rScO2 correlates to development of hypotension (Burkhart
et al., 2011). The use of phenylephrine to preserve MAP reduces
rScO2 and this effect is intensified by hypocapnia and blunted
by hypercapnia (Meng et al., 2012). Importantly, rScO2 remains
unchanged after bolus ephedrine (Meng et al., 2011).

GYNAECOLOGICAL AND OBSTETRIC PROCEDURES
During gynecological laparoscopic procedures in the
Trendelenburg position rScO2 decreases from 66 to 57%
with MAP at 80 mmHg (Lee et al., 2006). Different gas anesthesia
(desflurane vs. sevoflurane) results in similar rScO2 values and
larger anesthetic depth increases rScO2 (66 vs. 72%) (Fassoulaki
et al., 2006). Also spinal anesthesia reduces rScO2 (>5%) related
to development of hypotension (Berlac and Rasmussen, 2005).
The use of hyperbaric rather than isobaric bupivacaine for spinal
anesthesia decreases HbO2 (6 vs. 3 mmol/L) as also hypoten-
sion is more severe (Kondo et al., 2013). In contrast, tracheal
extubation increases HbO2 (Morimoto et al., 2000). The authors
also demonstrate that compared with a control nicardipine and
diltiazem inhibited an increase in MAP and further enhanced the
increase in HbO2 (Morimoto et al., 2000).

In a patient with an intraoperative reduction in rScO2 to below
50% is reported to be the likely explanation for postoperative
headache (Lee et al., 2006).

GASTRO-ABDOMINAL SURGERY
Laparoscopic cholecystectomy in the head-up position is reported
to decrease HbO2 even when MAP is maintained above 80 mmHg
(Kitajima et al., 1998) and up to one-fifth of the patients present
at least one rScO2 value of less than 80% of baseline (Gipson et al.,
2006). Even in the supine position, rScO2 tends to be reduced
while the head-down position maintains rScO2 (Harrison, 2001).
A lowered rScO2 can be restored by intermittent sequential com-
pression of the lower extremities (Kurukahvecioglu et al., 2008).

A 15% decrease in rScO2 correlates with the blood loss
(Green, 2007) and in the elderly patient minimum rScO2 (49
vs. 55%), mean rScO2 (61 vs. 66%) and area under curve rScO2

are higher with interventions that improve rScO2 (Casati et al.,
2005). In liver patients high bilirubin (icterus) interfere with
NIRS measurements (Madsen et al., 2000), however, an intraop-
erative decrease in rScO2 by up to 13% correlates to release of
neuron-specific enolase (Plachky et al., 2004). NIRS is also used
for investigation of cerebral autoregulation during a liver trans-
plantation (Nissen et al., 2009b; Zheng et al., 2012) and rScO2

decreases markedly after clamping the caval vein (Plachky et al.,
2004).

A possible relationship between intraoperative cerebral desat-
uration and development of POCD was first described in a case
report (Madsen and Secher, 2000). In randomized clinical trial
Casati et al. (2005) included a total of 122 patients from 5 par-
ticipating hospitals randomly allocated to an intervention group
(with a NIRS visible and rScO2 maintained at =75% of preinduc-
tion values) or a control group. No differences in MMSE score
were observed. However, at the seventh postoperative day those
patients of the control group who had intraoperative desatura-
tion showed lower value of MMSE (26 vs. 28) as compared with
patients of the treatment group. Patients of the control group who
had intraoperative desaturation also showed a longer hospital stay
as compared with patients of the treatment group. These findings
were confirmed by another study by Casati et al. (2007) and
the authors further report that up to one in every four patients
demonstrate cerebral desaturation. Furthermore, in patients with
postoperative delirium intraoperative rScO2 is lower compared to
patients with no delirium (57 vs. 60%; ref. Morimoto et al., 2009).

VASCULAR SURGERY
Open aortic repair of an abdominal aortic aneurysm affects rScO2

(Liu et al., 1999) with a reduction in proportion to the blood
loss (Torella and McCollum, 2004) and hemodilution (Torella
et al., 2002) while blood transfusions increase rScO2 (Torella et al.,
2003). Several report rScO2 during carotid surgery (Williams
et al., 1994a,b,c, 1999; Duncan et al., 1995; Kuroda et al., 1996a;
Mead et al., 1996; Samra et al., 1996; Duffy et al., 1997; Beese
et al., 1998; Carlin et al., 1998; de Letter et al., 1998; Fearn et al.,
2000; Takeda et al., 2000; Kawada et al., 2002; Cuadra et al., 2003;
Ogasawara et al., 2003; Vets et al., 2004; Komoribayashi et al.,
2006; Yamamoto et al., 2007; Ishigaki et al., 2008; Lee et al., 2008;
Stoneham et al., 2008; Kobayashi et al., 2009; Giustiniano et al.,
2010; Moritz et al., 2010; Ali et al., 2011; Ritter et al., 2011; Pedrini
et al., 2012; Uchino et al., 2012).

During CEA clamping the internal carotid artery (ICA)
decreases ipsilateral rScO2 (Williams et al., 1994a,b,c, 1999;
Duncan et al., 1995; Mead et al., 1996; Samra et al., 1996; Duffy
et al., 1997; Beese et al., 1998; Carlin et al., 1998; de Letter et al.,
1998; Fearn et al., 2000; Takeda et al., 2000; Cuadra et al., 2003;
Ogasawara et al., 2003; Vets et al., 2004; Komoribayashi et al.,
2006; Yamamoto et al., 2007; Ishigaki et al., 2008; Lee et al., 2008;
Stoneham et al., 2008; Kobayashi et al., 2009; Giustiniano et al.,
2010; Moritz et al., 2010; Ali et al., 2011; Ritter et al., 2011; Pedrini
et al., 2012; Uchino et al., 2012) corresponding to a drop in HbO2

(Kuroda et al., 1996b; Cho et al., 1998; Shang et al., 2011) and
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the contralateral rScO2 remains largely unchanged (Samra et al.,
1999). Clamping the external carotid artery may decrease rScO2

1–3% (Kuroda et al., 1996b; Samra et al., 1999; Fearn et al.,
2000) and after ICA clamp a decrease in rScO2 often exceeds
20% (Pedrini et al., 2012). An influence of anatomic irregularities
in skull shape and cerebral venous drainage needs to be consid-
ered. In a case report it is described that inability to obtain a
monitorable signal may be attributed to abnormal frontal sinus
ipsilateral to the endarterectomy site (Sehic and Thomas, 2000).
Another factor of importance is that diabetic patients are more
likely to demonstrate a drop in rScO2 >20% (Stilo et al., 2012).

With clamped ICA a change in rScO2 also reflects a change in
the transcranial doppler determined cerebral perfusion (Mason
et al., 1994; Fearn et al., 2000; Grubhofer et al., 2000; Vets et al.,
2004; Fassiadis et al., 2006; Pugliese et al., 2009; Shang et al.,
2011) and also in the reperfusion phase changes in rScO2 cor-
relate to measures of CBF (Ogasawara et al., 2003; Matsumoto
et al., 2009). Similarly, rScO2 correlates to SjvO2 (Williams et al.,
1994b; Grubhofer et al., 1997; Espenell et al., 2010) and a cor-
relation to stump pressure is also reported (Kragsterman et al.,
2004; Yamamoto et al., 2007; Lee et al., 2008; Manwaring et al.,
2010; Tambakis et al., 2011) so that a low stump (<40 mmHg)
results in a large change in rScO2 (Tambakis et al., 2011) but the
relationship might be absent in a large series of patients (Pedrini
et al., 2012). rScO2 and systemic blood pressure correlate, with
higher pressures leading to better oxygenation values (Williams
et al., 1994c; Ritter et al., 2011). The use of multichannel NIRS
with 8 lightsource fibers and 8 detectors providing 24 source-
detector pairs supports that following application of ICA cross
clamp, HbO2, and Hb change in the border region between the
right middle and posterior cerebral supply areas (Nakamura et al.,
2009) with distinct changes in Hb and HbO2 of the ipsilateral
brain cortex (Kacprzak et al., 2012).

Oxygen breathing (Stoneham et al., 2008) and the use of
ephedrine (Pennekamp et al., 2012a) increase rScO2 while it
declines following administration of phenylephrine (Pennekamp
et al., 2012a). The most effective approach to increase rScO2 dur-
ing CEA, however, is to use a shunt (Cuadra et al., 2003; Ali et al.,
2011; Ritter et al., 2011; Pedrini et al., 2012). Especially patients
with rScO2 drop >20% require shunting (Ritter et al., 2011;
Stilo et al., 2012) and NIRS has a sensitivity of ≈75% and speci-
ficity ≈98% of the need for shunting (Ali et al., 2011; Ritter et al.,
2011). The criterion for establishing a shunt is (i) a 20% drop in
ipsilateral rScO2 from baseline (Zogogiannis et al., 2011) or (ii)
a change in rScO2greater than 25% or a delta rScO2 greater than
20% that is not improved within 3 min by increasing blood pres-
sure (Pedrini et al., 2012), or (iii) a cut-off of 21 or 10% reduction
from the baseline (Tambakis et al., 2011). In patients operated
under cover of local anesthesia (LA), it is the awake testing proce-
dure that determines when a shunt is needed (Stilo et al., 2012).

Neurological deterioration relates to a decrease in rScO2

(Williams et al., 1999; Samra et al., 2000; Moritz et al., 2007)
and the anesthetic approach might be important (McCleary
et al., 1996; Moritz et al., 2010). In symptomatic patients rScO2

decreases from 63 to 51% compared to a rScO2 drop from 66 to
61% in non-symptomatic patients (Williams et al., 1999; Samra
et al., 2000). About 10% of patients have neurologic changes

after carotid clamping (Moritz et al., 2007). Indices of cerebral
ischemia (amplitude transcranial motor evoked potentials, elec-
troencephalographic evaluation, cortical somatosensory evoked
potentials) correlate to rScO2 (Beese et al., 1998; Rigamonti et al.,
2005; Uchino et al., 2012) and rScO2 needs to decrease >10% for
cerebral ischemia to be detected by somatosensory evoked poten-
tials (Duffy et al., 1997) or electroencephalography (Friedell et al.,
2008).

Importantly, in patients with focal cerebral ischemia with an
embolic event in the territory of the middle cerebral artery ipsi-
lateral frontal lobe rScO2 is unchanged (Laffey et al., 2000).
However, a reduction in an ischemic ratio (the lowest rScO2

value during clamping of the ICA divided by the mean rScO2

value in the last 2 min before ICA clamping) predicts new neu-
rological deficit following CEA (Kobayashi et al., 2009) and a
large decrease in intraoperative rScO2 reflects a change in cerebral
metabolism (Espenell et al., 2010). The cerebral release of matrix
metalloproteinase correlates to development of cerebral ischemia
as determined by NIRS (Ishigaki et al., 2008). rScO2 criteria for
cerebral ischemia is (i) a rScO2 drop of 10 index points from a sta-
ble baseline (ii) a rScO2 decrease below an absolute value of 50%,
(iii) a relative rScO2 decrease by 20–25%, and (iv) an interhemi-
spheric rScO2 difference of >25% (Friedell et al., 2008). Using
NIRS during CEA neurologica deficit is predicted 5–10 s before
the clinical observation of neurological complications (Pugliese
et al., 2009).

Postoperative neurological complications may rise following
an early drop in rScO2 by more than 20% (Mille et al., 2004)
and rScO2 reduction of at least 15% relates to neurologic, car-
diac or renal postoperative complications (Rigamonti et al., 2005;
Giustiniano et al., 2010). Thus a fall of larger than 10% from
baseline rScO2 is dangerous but less than 5% is safe (Takeda
et al., 2000). The postoperative cerebral hyperperfusion syn-
drome (CHS) can also be predicted by the intraoperative change
in rScO2 during clamping and unclamping ICA (Cho et al.,
1998; Komoribayashi et al., 2006). After declamping a change
in rScO2 >20% predicts CHS (Pennekamp et al., 2012b) and
patients with CHS exhibit a larger increase in rScO2 (Matsumoto
et al., 2009).

DISCUSSION
The present study aimed (i) to determine the non-cardiac sur-
gical procedures that provoke a reduction in rScO2 and (ii) to
evaluate whether an intraoperative reduction in rScO2 influences
postoperative outcome. A literature search was conducted and
several articles were reviewed. The Results section provides an
overview of different non-cardiac surgical procedures affecting
rScO2 and the included articles representing case reports, obser-
vational studies, interventional studies, and randomized clinical
trials with inclusion of single patients up to a population of
594 patients. The studies also differ in terms of patient cate-
gories, interventions applied and the NIRS device used for the
evaluation of rScO2. Taken the heterogeneous material into con-
sideration the included articles provide answer to the primary
aim of the present study. Based on the Results section it is con-
cluded that some but not all non-cardiac surgical procedures
may decrease rScO2. While rScO2 appears to be maintained in

www.frontiersin.org March 2014 | Volume 5 | Article 93 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Integrative_Physiology/archive


Nielsen NIRS for brain oxygenation

patients undergoing minor non-cardiac surgery such as mastec-
tomy, rScO2 is reported to decrease during surgery involving
procedures such as the anti-Trendelenburg body position often
used for shoulder surgery and laparoscopic surgery. Hip surgery,
single lung ventilation in thoracic surgery, and clamped ICA also
appear to be associated with a reduction of rScO2.

Concerning the second aim of the present review, only a
limited number of studies report that the occurrence of cere-
bral desaturation is linked to bad postoperative outcome: (i)
a randomized clinical trial including elderly patients for major
abdominal surgery suggests that in patients with intraoperative
optimization of rScO2 the occurrence of POCD and length of
stay in hospital become reduced, (ii) a study on patients under-
going thoracic surgery reports an association between low rScO2

and scores of postoperative complications, and (iii) low rScO2

may predict POCD in patients undergoing thoracic surgery,
major orthopedic surgery, and major abdominal surgery. Also in
patients undergoing carotid endarterectomy low rScO2coincides
with measures of bad outcome: indices of cerebral ischemia dur-
ing surgery and the occurrence of the CHS after surgery. However,
pronounced intraoperative cerebral desaturation does not lead to
POCD after shoulder surgery in the beach chair. Furthermore, an
association between cerebral desaturation and outcome parame-
ters such as acute kidney failure, postoperative wound infection,
myocardial infarction remains to be established. So the overall
conclusion is that the available evidence points toward an increase
in the occurrence of POCD in patients with severe cerebral desat-
uration under certain types of non-cardiac surgery but more
studies are needed to demonstrate a clear association between low
rScO2 and bad postoperative outcome.

In the studies supporting a potential association between
rScO2 and bad postoperative outcome, a 20–25% decline in rScO2

appears to predict POCD and in accordance to the reviewed arti-
cles the recommendation is that in order to prevent reaching
this potentially injurious level, a less extreme threshold of per-
haps 10% should be an indicator for therapeutic intervention to
raise cerebral O2 saturation. Thus, with a NIRS probe attached to
the forehead enables the anesthetist to follow changes in regional
CBF changes both in local and global cerebral oxygenation can
be monitored. The obtained value for tissue oxygenation reflects
a balance between O2 delivery and extraction measurements.
Therefore factors influencing regional blood flow (Madsen and
Secher, 1999; Boushel et al., 2001) such as hemoglobin con-
centration, blood volume, cardiac output, arterial hemoglobin
O2 saturation, and for the brain arterial carbon dioxide pres-
sure (PaCO2) need to be considered when NIRS is incorporated
for clinical evaluations. For most of the studies included in the
present review it is not obvious how such factors were controlled.

Importantly, an influence from the skin to the NIRS signal is
not trivial. The NIRS devices used for clinical purposes provide
light absorption into a depth of 3–4 cm. Extra-cranial tissue as
indicated by dermal tissue flow, however, appears to contribute
as much as 20% to rScO2, at least with the use of two com-
monly applied NIRS systems (Sørensen, pers. commun.). For
estimation of muscle oxygenation light only needs to traverse skin
and subcutaneous tissue that may be 2–3 mm thick (Kjeld et al.,
2014) but subcutaneous tissue may, obviously be vast in obese

patients. The penetration depth for light is proportional to the
emitter-detector distance (Germon et al., 1999) of importance
for light to reach brain tissue. Forehead skin is relatively thin in
both adipose and lean patients, but the frontal sinuses in addition
to the superior sagittal veins need to be considered (Sehic and
Thomas, 2000). Also forehead skin blood flow is supplied with
blood from both the internal and external carotid arteries (Hove
et al., 2006) and with a headband preventing blood to enter the
scalp, the rScO2 decreases (Davie and Grocott, 2012). This study
clearly showed that three different NIRS devices weighed changes
in skin flow differently of importance when NIRS is used to guide
clinical interventions.

Vasopressor medication and its influence on NIRS deserve
attention. Depending on the NIRS device used up to 1/3
of changes in rScO2 e.g., in response to administration of
noradrenaline can be accounted for by change in skin blood
flow (Sørensen et al., 2012). Thus, the INVOS cerebral oximeter
appears more sensitive to changes in skin blood flow compared to
the Foresight cerebral oximeter (Davie and Grocott, 2012). This
could explain why ephedrine does not change rScO2 while strict
α-adrenergic receptor stimulation such as treatment with nore-
pinephrine (Brassard et al., 2009) or phenylephrine may decrease
rScO2. In the case with hypotension causing cerebral deoxy-
genation, however, raised pressure with vasopressor medication
may result in increased rScO2. When a low rScO2 is the com-
bined effect of hypotension and lowered central blood volume,
the use of α1-agonists such as phenylephrine may result in fur-
ther cerebral desaturation due to a possible increase in cardiac
afterload. Thus, a low cardiac output appears to influence CBF
(van Lieshout et al., 2003) and phenylephrine might exert a dif-
ferent impact on cardiac output depending on preload to the
heart (Cannesson et al., 2012). Furthermore, individual α- and
β-adrenergic receptor sensitivity might be of importance and
related to a genetic polymorphism (Snyder et al., 2006; Rokamp
et al., 2013). When a vasopressor is administered the effect on
rScO2 depends on individual factors and the NIRS technology
used.

It remains that rScO2 responds to CO2 (Madsen and Secher,
1999) implying a contribution from the cerebrum since skin (and
muscle) blood flow does not demonstrate “CO2 reactivity.” For
clinical interventions directed to protect rScO2 it may, however,
be less relevant whether the intervention is directed to address
flow to the skin or the brain or both as long as the intervention
improves postoperative outcome (Casati et al., 2005, 2007; Kazan
et al., 2009; Slater et al., 2009; Papadopoulos et al., 2012; Stilo
et al., 2012; Tang et al., 2012; Lin et al., 2013) including renal com-
plications (Murkin et al., 2007) and wound infections (Ives et al.,
2007). In addition, intraoperative severe cerebral desaturation
may provoke postoperative vision loss (Pohl and Cullen, 2005;
Roth, 2009). Thus, intraoperative rScO2 is an index for the sys-
temic circulation reflecting changes in blood flow to other organs
than the brain as the skin and kidney (Murkin and Arango, 2009).

Obviously, MAP should not be allowed to decrease to a level
below the lower limit of cerebral autoregulation (60 mmHg).
However, vasodilatation and reduction in intravascular volume
challenge rScO2. While the spinal anesthesia induced vasodi-
latation causes only minor cerebral desaturation (Berlac and
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FIGURE 2 | A proposal for incorporation of near-infrared spectroscopy

(NIRS) determined tissue in algorithms to maintain both central and

peripheral blood flow in anesthesized patients. Cardiac stroke volume is
optimized by fluid administration and according to individual adjusted levels
for mean arterial pressure (MAP), hematocrit, arterial carbon dioxide
pressure (PaCO2), and arterial oxygen pressure (PaO2) it is secured that
rScO2 does not change >11% considered the warning signal for
postoperative complications (Kondo et al., 2013).

Rasmussen, 2005), the decrease in rScO2 is aggravated when
hypotension is pronounced by the use of, e.g., hyperbaric bupiva-
caine (Kondo et al., 2013). On the other hand, the vasodilatation
provoked by GA to minor surgery does not seem to affect rScO2

(Nissen et al., 2009a) may be because an effect on CBF is out-
weighed by a reduction in cerebral metabolism. In contrast, when
GA is combined with procedures reducing cardiac output such
as the anti-Trendelenburg body positions or the use of β-receptor
antagonists, rScO2 decreases even at MAP at 80 mmHg (Lee et al.,
2006).

The majority of papers included in this review did not include
a measurement of cardiac output but one study did find that
rScO2 decreased 10% as cardiac output was reduced from 5
to 4 L/min (Lee et al., 2006). In addition, the use of phenyle-
phrine reduces rScO2 secondary to a drop in cardiac output
while ephedrine raises MAP without an effect on cardiac out-
put (Meng et al., 2011). Thus, as mentioned vasopressors appear
to affect rScO2 differently and before a vasopressor is used, it
seems an advantage that the central blood volume is secured
by optimization of, e.g., stroke volume or cardiac output by
administration of fluid (Bundgaard-Nielsen et al., 2007b). Such
so-called individualized goal directed fluid therapy reduces post-
operative complications (Bundgaard-Nielsen et al., 2007a) as is
the case for algorithms directed to maintain rScO2 (Casati et al.,
2005; Murkin et al., 2007; Slater et al., 2009). Which of the
two recommendations to manage circulation during anesthesia is
most profitable remains to be evaluated, but the algorithms used
to support the circulation could be combined as illustrated in
Figure 2. Here it is recommended that management of a patients
under GA includes not only NIRS monitoring of the brain but

also a determination of cardiac output that can be derived easily,
both non-invasively and invasively from the use of, e.g., model
flow technology (van Lieshout et al., 2003).

In conclusion, this review on the use of NIRS to monitor
changes in cerebral oxygenation of patients scheduled for non-
cardiac surgery indicates that while rScO2 appears to be main-
tained in patients undergoing minor non-cardiac surgery such as
mastectomy, rScO2 may decrease during surgery involving pro-
cedures such as the anti-Trendelenburg body position often used
for shoulder surgery and laparoscopic surgery. Hip surgery, sin-
gle lung ventilation in thoracic surgery, and clamped ICA also
appear to be associated with a reduction of rScO2. An association
of cerebral desaturation to postoperative outcome parameters
such as acute kidney failure, postoperative wound infection, and
myocardial infarction remains to be evaluated. After certain types
of non-cardiac surgery severe cerebral desaturation might be
associated with an increase in the occurrence of POCD.
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