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Pathological conditions of the brain such as ischemia cause major sensorimotor and
cognitive impairments. In novel therapeutic approaches to brain injury, stem cells have
been applied to ameliorate the pathological outcome. In several experimental models,
including hypoxia-ischemia and trauma, transplantation of stem cells correlated with an
improved functional and structural outcome. At the cellular level, brain insults also change
gap junction physiology and expression, leading to altered intercellular communication.
Differences in expression in response to brain injury have been detected in particular
in Cx43, the major astrocytic gap junction protein, and its overexpression or deletion
was associated with the pathophysiological outcome. We here focus on Cx43 changes
in host tissue mediated by stem cells. Stem cell-induced changes in connexin expression,
and consecutively in gap junction channel or hemichannel function, might play a part in
altered cell interaction, intercellular communication, and neural cell survival, and thereby
contribute to the beneficial effects of transplanted stem cells.
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BRAIN INJURY: THERAPEUTIC APPROACHES USING
STEM CELLS
The consequences of brain damage caused by hypoxia or trauma
are often detrimental. As causative therapies are still limited,
regenerative therapies using stem cells have been proposed.
Different animal models have been used to investigate the effects
of stem cell transplantation on the outcome after nervous system
injury, including those of perinatal hypoxia-ischemia, transient,
and permanent ischemia as well as traumatic brain injury. Many
studies report beneficial effects of stem cell transplantation on
the structural, behavioral and cognitive outcome (Xiong et al.,
2009; Mankikar, 2010; Rosenkranz and Meier, 2011; English et al.,
2013; Lemmens and Steinberg, 2013). It has been demonstrated
that lesion-induced sensorimotor deficits were ameliorated upon
transplantation of stem cells from various sources including
umbilical cord blood mononuclear cells (reviewed by Rosenkranz
and Meier, 2011), neural stem cells (English et al., 2013), and
mesenchymal stem cells (van Velthoven et al., 2010; Donega
et al., 2013). The mechanisms underlying the amelioration of
symptoms might depend on the type of stem cell transplanted.
In the case of multipotent stem cells, the hypothesis concern-
ing the principle mechanism has recently shifted from neural
replacement via differentiation of stem cells toward the idea that
transplanted cells enhance the endogenous regenerative capacity
of the brain. Several pathways com into consideration for these
indirect effects, including immunomodulation (Rosenkranz et al.,
2013; Zhang et al., 2013), the secretion of neuronal survival fac-
tors (Neuhoff et al., 2007; Drago et al., 2013), enhancement of
angiogenesis (Taguchi et al., 2004; Rosenkranz et al., 2012) as well
as a reduction of astrocyte activation and neuro-inflammation
(Wasielewski et al., 2012). As many of these pathways might be

related to the transfer of second messenger molecules or other
intercellular signals, gap junction communication may provide
the means for their propagation.

One appealing hypothesis, which is in line with the indirect
effects of stem cells outlined above, is that transplanted cells influ-
ence gap junction expression in the host via paracrine factors. We
therefore focus here on connexin 43 (Cx43) gap junction protein
expression in the host tissue receiving the stem cell transplant,
and view these findings in the context of a therapeutic application
after brain injury.

GAP JUNCTION CHANGES IN HOST TISSUE MEDIATED BY
STEM CELL TRANSPLANTATION
As outlined above, it is becoming recognized that transplanted
stem cells interact with endogenous cells of the host and that this
action protects cells from secondary damage. To understand the
complex effects of transplanted stem cells on gap junctions in
a pathophysiological context, we would first like to outline the
changes in connexin expression following brain damage using the
example of Cx43.

Cx43 is the major astrocytic connexin and, as such, an impor-
tant mediator of CNS injury (reviewed by Contreras et al.,
2004; Nakase and Naus, 2004; Davidson et al., 2013). Significant
changes in both spatial and temporal expression of Cx43 were
observed following CNS injury: In a rodent model of transient
global ischemia, Cx43 immunoreactivity increased in the CA1/2
pyramidal subfields of the hippocampus (Rami et al., 2001). A
similar increase of Cx43 immunoreactivity in hippocampal and
striatal areas was observed in rats with moderate striatal dam-
age induced by bilateral carotid occlusion (Hossain et al., 1994).
Interestingly, animals with severe ischemic damage displayed
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FIGURE 1 | Schematic illustration of how transplanted stem cells

might modulate Cx43 changes after brain injury.

zones of reduced staining within areas of strong Cx43 immunos-
taining (Hossain et al., 1994). The effect of reduced Cx43 stain-
ing within the lesion center in combination with higher Cx43
staining in the surrounding tissue was also observed after neona-
tal hypoxic-ischemic brain injury (Wasielewski et al., 2012). In
this model, quantification of Cx43 expression revealed a signif-
icant overall increase of mRNA and protein levels upon injury
(Wasielewski et al., 2012). This effect was most prominent 2 days
after lesion.

If the beneficial effect of stem cell transplantation after brain
injury was indeed related to changes in connexin expression and
function, the aforementioned changes should, at least in part, be
reversed in response to cell transplantation.

In the rat model of neonatal hypoxic-ischemic brain injury, a
reduction of lesion-induced Cx43 expression was indeed observed
as early as 1 day after transplantation of human umbilical cord
blood cells. Reduced Cx43 mRNA and protein expression corre-
lated with less astroglial activation at the structural level and with
sensorimotor improvements at the functional level (Wasielewski
et al., 2012). Thus, in this model the decrease of gap junction
expression to almost normal levels did indeed seem beneficial for
the onset of repair.

However, there are also reports on a primary reduction of
Cx43 expression in response to brain injury. This observation
was made in certain brain areas, for instance in blood vessels
after hypoxia (Moriyama et al., 2013). In brain capillaries iso-
lated from severely hypoxic rats, a significant reduction of Cx43
was detected. The transplantation of neural progenitor cells also
caused changes in Cx43 expression in this experimental context,
and the hypoxia-induced reduction was reversed in transplanted
animals. Transplanted cells were shown to migrate to the affected
blood vessels around the peri-infarct area (Moriyama et al.,
2013).

In a model of traumatic brain injury, transplantation of neural
stem cells resulted in significantly improved neurological func-
tions in comparison with non-transplanted injured animals and
these therapeutic effects were accompanied by an increase in Cx43
mRNA and protein levels (Yu et al., 2013).

In summary, beneficial effects of stem cell transplantation
were accompanied by the reversal of lesion-induced changes in

Cx43 expression, interestingly, irrespective of their direction. This
data might point toward putative downstream regulation of gap
junction expression in response to stem cell transplantation.
However, speculation on mechanisms underlying the effects of
transplanted cells on Cx43 expression changes is problematic for
several reasons. As expression does not necessarily reflect func-
tion, the implications of the observed reduction or increase in
Cx43 mRNA and protein expression require further investigation
at the functional level. At this point, one has to bear in mind that,
particularly for Cx43, there might be two distinct players involved
in the pathophysiology, i.e., channels and hemichannels (Bennett
et al., 2012). In addition, a re-distribution of Cx43 protein has
been postulated to occur in response to cell damage (Hossain
et al., 1994). As, in this scenario, a Cx43 pool would be utilized to
re-locate the protein to different cellular compartments, changes
in the total protein level, as detected by immunoblot analysis, are
not to be expected. Similarly, modifications of the Cx43 protein in
response to cerebral ischemia have been described: In a transient
MCAO model, astrocytic Cx43 epitope masking, dephosphory-
lation and gap junction internalization were described (Li et al.,
1998). And, even under ischemic conditions, Cx43 gap junction
channels have been shown to remain functionally open in vitro
(Cotrina et al., 1998; Li and Nagy, 2000; Contreras et al., 2002).
As changes in Cx43 expression do not necessarily reflect the
presence of functional channels and do not allow further discrim-
ination of channels and hemichannels, expression data requires
complementation by functional investigation.

So how might transplantation-mediated changes in Cx43
expression affect brain function and recovery of the host? On
this point, several scenarios resulting in the rescue of the peri-
lesion area are conceivable: An increase in cell communication
between neural cells might be beneficial by leading to a faster
disposal of detrimental factors or to the provision of neuropro-
tective substances. Alternatively, gap junctional communication
might also impair healthy neighboring cells through the distri-
bution of harmful substances. In the pathophysiological context
only, i.e., without the presence of stem cells, evidence for either
pathway was demonstrated in vivo and in vitro (Blanc et al., 1998;
Rami et al., 2001; Frantseva et al., 2002a,b; Ozog et al., 2002;
Nakase et al., 2003; Nakase and Naus, 2004). Upon application
of stem cells, those studies investigating the mechanisms of their
therapeutic action demonstrate (a) effects on the immune sys-
tem (Rosenkranz et al., 2013; Zhang et al., 2013), (b) increased
angiogenesis (Taguchi et al., 2004; Rosenkranz et al., 2012), and
(c) decreased apoptosis and increased neuronal survival (Chen
et al., 2003; Rosenkranz et al., 2012). However, paracrine factors
might be held responsible for all of these effects. This takes us back
to the capability of stem cells themselves to secrete growth fac-
tors, interleukins and chemotactic factors, which has, for instance,
been demonstrated by secretome analyses of umbilical cord blood
and mesenchymal stem cells (Neuhoff et al., 2007; Carvalho et al.,
2011; Hsieh et al., 2013; Lavoie and Rosu-Myles, 2013; Ando
et al., 2014). Examples of detected proteins include angiogenic
factors, growth factors, anti-inflammatory cytokines and various
chemokines (reviewed by Kupcova Skalnikova, 2013) and some
of these were also detected in vivo (Modo et al., 2002; Vendrame
et al., 2005; Yasuhara et al., 2010; Rosenkranz et al., 2012). It is
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feasible that these proteins of the stem cell secretome bind to
neural cells in the peri-lesion area and promote neuronal and
glial cell survival. For some of these factors, downstream effects
such as channel or hemichannel opening have been described.
This was, for instance, observed in the case of FGF-1, which was
shown to open hemichannels of spinal cord astrocytes (Bennett
et al., 2012). Although hypothetical, this process might provide
one explanation for the relevance of gap junctions in the lesioned
brain in the context of stem cell-mediated neuroprotection and
repair. The causal connection between stem cell application, gap
junction involvement, and brain repair, however, remains to be
demonstrated in vivo.

In summary, these data indicate that transplantation of stem
cells—independent of their source and potency—resulted in the
modulation of Cx43 expression in different models of brain
injury and that these changes—irrespective of the direction—are
associated with the improvement of injury-induced impairments.

GAP JUNCTIONAL COMMUNICATION BETWEEN STEM
CELLS AND HOST CELLS
Taking into account the expression of connexins in pluri- and
multipotent stem cells themselves (Valiunas et al., 2004; Oyamada
et al., 2013), recent studies indicate that gap junctional communi-
cation might even occur between transplanted cells and host cells.
As investigated in a recent study analyzing Cx43 gap junctional
coupling after brain damage (Jaderstad et al., 2010b), grafted
murine neural stem cells formed functional gap junctions with
host cells. The establishment of communicating junctions was
shown to be essential for neuroprotective effects of the graft.
It was postulated that homeostasis-modulating molecules were
transmitted between cells, as the beneficial effect of the trans-
plant was prevented through the inhibition of gap junctions
(Jaderstad et al., 2010b). When neural stem cells were subjected to
hypoxic preconditioning prior to transplantation, this effect was
even enhanced (Jaderstad et al., 2010a). Another group analyzing
neural stem cell transplantation in the lesioned brain identi-
fied gap junctions between implanted neural stem cells and host
glial cells. They also postulated that these intercellular gap junc-
tions might be involved in the neuroprotective and regenerative
effects of transplanted neural stem cells (Talaveron et al., 2014).
Interestingly, several studies report similar results in the heart fol-
lowing the transplantation of pluripotent stem cells (Maizels and
Gepstein, 2012). The incorporation of transplanted cells into the
gap junctional syncytium of the host could provide a whole new
path for the transmission of neuroprotective or gliaprotective fac-
tors and prevent secondary cell death by supporting cell survival
in the host tissue.

CONCLUSION
The topic of stem cell-mediated changes in gap junctions is of
major interest in view of the putative therapeutic potential of stem
cells after brain damage. Gap junctions unquestionably modu-
late the outcome after brain injury, although there are contrary
findings as to the course of the effects. Cx43 expression was
described to be altered in different directions, and possible effects
might extend from enforcement of bystander killing to the res-
cue of injured cells. Thus, therapeutic approaches aiming at the

reduction of brain damage might include the modulation of gap
junction protein expression and therefore promote neuroprotec-
tion. The number of publications describing changes in connexin
expression upon transplantation of stem cells is still limited. In
our view, changes in gap junctional communication provides one
plausible explanation for the beneficial effects observed upon
stem cell transplantation—the distribution of neuroprotective
factors might be enhanced in the peri-lesional regions of the
brain through increased intercellular communication between
host cells, and possibly even between host and transplanted cells.
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