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Sensory maps are often distorted representations of the environment, where
ethologically-important ranges are magnified. The implication of a biased representation
extends beyond increased acuity for having more neurons dedicated to a certain range.
Because neurons are functionally interconnected, non-uniform representations influence
the processing of high-order features that rely on comparison across areas of the map.
Among these features are time-dependent changes of the auditory scene generated
by moving objects. How sensory representation affects high order processing can be
approached in the map of auditory space of the owl’s midbrain, where locations in the front
are over-represented. In this map, neurons are selective not only to location but also to
location over time. The tuning to space over time leads to direction selectivity, which is also
topographically organized. Across the population, neurons tuned to peripheral space are
more selective to sounds moving into the front. The distribution of direction selectivity can
be explained by spatial and temporal integration on the non-uniform map of space. Thus,
the representation of space can induce biased computation of a second-order stimulus
feature. This phenomenon is likely observed in other sensory maps and may be relevant
for behavior.
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Here we consider the emergence of tuning to temporally-dynamic
stimulus features underlying motion selectivity in the owl’s exter-
nal nucleus of the inferior colliculus (ICx). Tuning in ICx displays
a topography that corresponds with spatial coordinates (Knudsen
and Konishi, 1978a). This map allows approaching ICx as a
“retina” for auditory space. Thus, reverse-correlation methods
such as the white-noise stimulation used by studies in vision
(Chichilnisky, 2001; Recio-Spinoso et al., 2005) can be adapted
to assess the selectivity of neurons to spatially-dynamic features
of the auditory scene.

Motion detection requires integration over space and time.
Below, we first examine integration over space, in the center-
surround interactions of spatial receptive fields, and over time,
in the history-dependent response properties of single cells.
Subsequently, we address how the map topography influences
tuning across the population. We conclude by discussing func-
tional implications for coding acoustic motion direction.

SURROUND SUPPRESSION IN AUDITORY SPATIAL
RECEPTIVE FIELDS
Experimental evidence is consistent with surround suppression
in ICx (Knudsen and Konishi, 1978b; Fujita and Konishi, 1991).
Topography within ICx allows the formation of lateral connec-
tions that correspond to neighboring relationships in auditory
space. Recently, Wang et al. (2012) showed that simultaneous
stimulation of the receptive-field center and surround of ICx neu-
rons could result in up to 50% attenuation of response at the cen-
ter compared to when the center was stimulated alone. This study

used white-noise stimulation from concurrent random locations
to measure the equivalent of the classical and extra-classical recep-
tive fields in vision (Marmarelis and McCann, 1973; Chichilnisky,
2001; Recio-Spinoso et al., 2005) in space-specific neurons of ICx
(Figures 1A,B). Surround suppression had a sharpening effect
on spatial tuning at the center (Figure 1C), consistent with the
narrowing of receptive fields observed using multiple concurrent
sound sources (Bremen and Middlebrooks, 2013).

There is strong evidence that local GABAergic inhibition
mediates surround suppression in sensory systems (Cook and
McReynolds, 1998; Bloomfield and Xin, 2000; Völgyi et al., 2002;
Sohn and Hallett, 2004; Foeller et al., 2005). Surround sup-
pression is consistent with the sharpened spatial tuning in ICx
during white noise stimulation (Wang et al., 2012), and with
the broadening of tuning after the application of GABA antago-
nists (Fujita and Konishi, 1991; Mori, 1997; Zheng and Knudsen,
1999, 2001). It is also possible that GABA-mediated lateral inhi-
bition in space originates upstream to ICx. In the avian auditory
pathway, ICx is not the first stage in the pathway where localiza-
tion cues are represented topographically. ITD, the primary cue
for azimuth direction in barn owls, is mapped in the nucleus
laminaris (Carr and Konishi, 1988, 1990; Carr and Boudreau,
1993; Carr et al., 2013), which projects topographically to the
inferior colliculus (IC; Knudsen, 1983; Takahashi et al., 1984,
1989; Takahashi and Konishi, 1988; Carr and Boudreau, 1991).
GABAergic transmission is conspicuously present at locations
where spatial cues are encoded (Carr et al., 1989; Burger et al.,
2005; Lu et al., 2005). Further, feedback connections may mediate
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FIGURE 1 | Surround suppression in ICx. (A) Example spatial receptive field
of an ICx neuron. Firing rates were interpolated across 144 speakers covering
frontal space. The dotted line indicates the area shown in (B). (B) A subset of
speakers was used to analyze the center-surround receptive field with white
noise stimulation. Each colored box represents the cell’s response to a

speaker location. The receptive field showed excitation at the center flanked
by suppression. (C) Surround activation sharpens the spatial tuning. For most
cells (n = 81), the width of spatial-tuning curves was narrower when both
center and surround were stimulated (points above the unity line) compared
to when only the center was stimulated. Modified from Wang et al. (2012).

surround suppression (Burger and Pollak, 2001). There are point-
to-point projections from the optic tectum (OT) to the ICx
involved in visual calibration of the auditory map (Luksch et al.,
2000; Hyde and Knudsen, 2001, 2002). Lateral inhibition in OT
could be carried back to ICx through these connections. Finally,
recent evidence suggests that glycinergic inhibition may also play
an important role in sound localization, and potentially could
contribute to surround suppression (Kuo et al., 2009; Coleman
et al., 2011; Fischl et al., 2013).

Mechanisms other than inhibitory projections may induce
surround suppression in the auditory pathway. Because sound
localization using ITD is based on cross-correlation (Blauert,
1997; Fischer et al., 2008), decreasing interaural correlation
reduces the response (Albeck and Konishi, 1995; Saberi et al.,
1998; Coffey et al., 2006). Interaural correlation is affected
by the number of simultaneous sound sources from differ-
ent locations and by the properties of the acoustic space
(Blauert, 1997). A complex auditory scene can thus induce bin-
aural decorrelation and decrease response when the surround
is stimulated. However, decorrelation could not explain the
asymmetry in surround suppression observed in Wang et al.
(2012).

HISTORY-DEPENDENT RESPONSE: ADAPTATION IN ICx
Motion detection requires that the neural computation captures
changes in location over time. Previously established motion
detection models based on lateral excitation and inhibition meet
this requirement (Hassenstein and Reichardt, 1958; Torre and
Poggio, 1978). On the other hand, adaptation could also con-
stitute a means for spatial integration over time, where the
recovery time constitutes the duration of the “memory” in
the system (Ulanovsky et al., 2004; Gutfreund and Knudsen,
2006). Similar to nuclei upstream to ICx, in the lateral shell
and core of the inferior colliculus (Gutfreund and Knudsen,
2006; Singheiser et al., 2012), ICx neurons show adaptation
that recovers in hundreds of milliseconds (Figure 2; Gutfreund
and Knudsen, 2006; Wang and Pena, 2013). Recovery time
from adaptation generally increases along the auditory path-
way from tens of milliseconds in the auditory nerve (Harris

FIGURE 2 | Adaptation time course in ICx. (A) Pairs of 1 ms clicks (C1 and
C2) presented at various inter-click intervals. When the onset of the two
clicks was close in time, response to the second click decreased relative to
the first one. (B) Ratio between responses to C1 and C2 as a function of
inter-stimulus interval (n = 44). Response to C2 was significantly attenuated
when the interval was less than 300 ms. From Wang and Pena (2013).

and Dallos, 1979; Relkin and Turner, 1988) to hundreds of mil-
liseconds in IC (Gutfreund and Knudsen, 2006; Netser et al.,
2011; Singheiser et al., 2012), thalamus (Wehr and Zador,
2005) and the auditory cortex (Brosch and Schreiner, 1997;
Ulanovsky et al., 2004; Wehr and Zador, 2005; Nelson et al.,
2009). It has been suggested that the long time scale of adap-
tation plays a role in multisensory integration (Gutfreund and
Knudsen, 2006), by permitting convergence of sensory modal-
ities processed at different latencies (Bergan and Knudsen,
2009).

Several studies have alluded to synaptic depression as the
underlying mechanism for the slow component in the recov-
ery time from adaptation (Ulanovsky et al., 2004; Wehr and
Zador, 2005; Gutfreund and Knudsen, 2006). Synaptic depres-
sion due to slowly re-activating T-type calcium channels has been
demonstrated to play a role in forward suppression lasting several
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100 ms (Bayazitov et al., 2013). Intracellular studies in the avian
brainstem showed that short-term depression is prevalent in the
auditory pathway (Kuba et al., 2002; Cook et al., 2003; MacLeod
and Carr, 2007; MacLeod et al., 2007; MacLeod, 2011). In the con-
text of spike-frequency adaptation, particular attention has been
paid to intrinsic mechanisms that could result in long-lasting sup-
pression (Benda and Herz, 2003; Gollisch and Herz, 2004; Ingham
and McAlpine, 2004). In models of the IC, after hyperpolar-
ization currents mediated by calcium-gated potassium channels
have successfully predicted response to time-dynamic binaural
stimuli. The rodent IC shows six distinct cell types, each exhibit-
ing unique potassium currents, including delayed-rectifier and
calcium-dependent K+ channels (Bond et al., 1999; Stocker and
Pedarzani, 2000; Sivaramakrishnan and Oliver, 2001; Womack
and Khodakhah, 2003). Additional mechanisms resulting in slow
recovery of fast sodium channels have been suggested in models of
adaptation, such as voltage dependent, high threshold potassium
currents and voltage-dependent potassium channels (M-type)
(Cai et al., 1998a,b; Benda and Herz, 2003).

Stimulus-specific adaptation (SSA), an adaptation to the stim-
ulus history and not the history of activation (Ulanovsky et al.,
2004; Briley and Krumbholz, 2013) has been observed in the ICx
for sounds of different frequencies (Reches and Gutfreund, 2008);
however, SSA was not observed in the ICx when spatial cues were
tested (Gutfreund and Knudsen, 2006; Reches and Gutfreund,
2008; Netser et al., 2011). The mechanism of SSA has not been
conclusively elucidated, although synaptic mechanisms have been
implicated (Ulanovsky et al., 2004).

If the response varies at different locations around the
receptive-field center, i.e., spatial receptive fields are asymmetric,
neurons can more strongly adapt stimuli in one direction than
another, leading to selectivity for motion-direction. Unlike sur-
round suppression, adaptation could induce direction selectivity
in space-specific neurons that are not topographically arranged,
as only receptive field asymmetry is required (Ingham et al.,
2001). In support of this idea, ICx cells with asymmetrical spa-
tial receptive fields were direction selective (Figure 3A) and their
responses during sound motion could be predicted by the shape
of the receptive field and their adaptation properties (Wang and
Pena, 2013). At the population level, there was a direct relation-
ship between receptive field asymmetry and the degree of direc-
tion selectivity (Figure 3B; Wang and Pena, 2013). The response
to moving sounds at different velocities represents further evi-
dence in support of adaptation. Directionality is stronger for fast
moving sounds where short intervals between sounds at differ-
ent locations induced robust adaptation (Wagner and Takahashi,
1992; Wang and Pena, 2013). Hence, neurons displaying response
adaptation and asymmetric receptive fields automatically became
direction selective without invoking network mechanisms for
motion detection (Hassenstein and Reichardt, 1958; Barlow and
Levick, 1965).

EFFECT OF MAP DISTORTIONS ON COMPUTATIONS
Ramon y Cajal first proposed topographic organization was more
metabolically efficient for wiring neural representations that mir-
rored the environment (Cajal, 1999). Maps are convenient for
integrating over space and time since stimulus-driven activity

FIGURE 3 | Response history predicts direction selectivity in ICx.

(A) Spatial tuning in the horizontal plane measured with sound bursts
presented in no particular order (stationary condition). The response is
asymmetric around the center, displaying a larger response to the left.
Bottom, during moving sounds, the response varied with direction. Motion
in the left-to-right direction (LR, blue arrow) induced a less robust response
at the center than the right-to-left direction (RL, red arrow). (B) Asymmetry
of receptive fields was correlated with the preferred direction and strength
of direction selectivity. Directionality and asymmetry are represented using
normalized indices. Modified from Wang and Pena (2013).

varies systematically across the map in both dimensions. In the rat
barrel cortex, local lateral connections are required for temporal
coordination of whisking kinematics (Gao et al., 2003). In vision,
computation of contrast and direction is also based on local con-
nections (Barlow and Levick, 1965; Bloomfield and Xin, 2000;
Völgyi et al., 2002; Zhou and Lee, 2008). Recent work showed that
manipulating the spatial pattern of excitation within V1 can dis-
tort processing of visual shapes (Michel et al., 2013), indicating
topography is exploited in processing high-level features.

In the auditory sensory modality, maps of space are found in
close proximity to areas where motor output of orienting behav-
iors originate, such as in the brachium of the IC and the superior
colliculus in mammals (Schnupp and King, 1997; Slee and Young,
2013) and in the ICx and OT in birds (Knudsen and Konishi,
1978a; Knudsen, 1982). A map of auditory space may be useful
for multisensory integration, such as in the avian OT (Knudsen,
1982; Hyde and Knudsen, 2001) and mammalian SC (King et al.,
1988; Doubell et al., 2000), where visual and auditory spaces are
aligned. Coherence between auditory and visual maps may also
be important during development, when visual experience can
strongly modulate the topography of the auditory map in SC
(King, 1999) and OT (Knudsen, 2002).

A common feature of neural maps is the distortion of the
representation relative to the real world. Well-known examples
include the over-represented visual fovea and the dispropor-
tionate homunculus in the somatosensory system, where etho-
logically important stimulus ranges are magnified in the brain
(Penfield and Rasmussen, 1950; Azzopardi and Cowey, 1993).
While these distortions may reflect the distribution of sensory
afferents from the periphery, they often obey a hierarchy of sen-
sitivity and discriminability requirements. In the ICx and OT
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FIGURE 4 | Topography predicts population bias in surround

suppression. (A) Map of auditory space in OT modified from
Knudsen (1982). Frontal space (±20◦) is over-represented. Bottom,
dashed line shows the estimated distribution of cells across the
nucleus at zero elevation. (B) Surround suppression for a neuron

tuned to 20◦ in the contralateral hemifield. The center of the
receptive field is aligned to 0◦ on the x-axis. Suppression from
frontal space (percent suppression from average response at the
center) is stronger than from the periphery. Modified from Wang
et al. (2012).

maps of barn owls, locations in the front and below eye levels
are over-represented (Figure 4A; Knudsen and Konishi, 1978a;
Knudsen, 1982). This mapping may reflect orienting behavior,
as owls face the target during pursuit (Payne, 1971; Hausmann
et al., 2008) and descend from a height to capture prey (Volman,
1994). Distortions on the sensory surface are also consistent with
the notion that space maps may represent a “place-coded prob-
ability distribution” (Knudsen et al., 1987; Fischer and Peña,
2011).

If there are more neurons representing the front, lateral con-
nections coming from these cells could influence the response of
neurons tuned to the periphery. Thus, the distortion in the ICx
map could translate into a biased tuning at the population level.
This was in fact the case; center-surround receptive fields showed
a population bias where suppression from the front was stronger
(Wang et al., 2012). The suppressive effect of peripherally-tuned
cells was relatively weak on neurons tuned to the front. This bias
in surround suppression resulted in a preference of ICx neurons
for sounds approaching the front, since suppression is relatively
weak in this direction (Figure 4B). Thus, receptive field shape and
directional preference depended on tuning eccentricity in ICx, in
a manner consistent with the distortions in the spatial map.

Space-specific neurons are commonly observed in the visual
(Barlow and Levick, 1965; Hubel and Wiesel, 1974; Knudsen,
1982; Krapp and Hengstenberg, 1996), auditory (Knudsen and
Konishi, 1978a; Brugge et al., 1994; Zhou and Wang, 2012)
and somatosensory (Mountcastle, 1957; Simons, 1978) systems.
Several of these regions are topographically-organized, non-
uniform and exhibit center-surround receptive fields (Barlow
et al., 1964; Livingstone, 1998; Drew and Feldman, 2007), as in
the owl’s ICx. Thus, biases in emergent responses that rely on
center-surround integration may be a general property of sensory
systems.

FIGURE 5 | Population-wide directional preference in ICx. ICx neurons
prefer sounds moving toward frontal space. This bias in directional
preference is stronger for cells tuned to peripheral space and could be
mediated both by biased surround suppression and adaptation. From Wang
and Pena (2013).

ENCODING SOUND MOTION
Direction selective neurons have been reported in the mammalian
(Sovijarvi and Hyvarinen, 1974; Rauschecker and Harris, 1989;
Ahissar et al., 1992; Stumpf et al., 1992; Toronchuk et al., 1992;
Wilson and O’Neill, 1998; Ingham et al., 2001) and avian audi-
tory systems (Wagner and Takahashi, 1990, 1992; Wang et al.,
2012). However, whether acoustic motion is encoded separately
from other features has not been elucidated. We described above
two mechanisms, surround suppression and adaptation, which
explained a preference for sounds approaching the front. In both
cases, the preference became stronger for cells tuned to periph-
eral space (Figure 5). These mechanisms take effect at different
spatial scales relative to the neurons’ receptive fields. The effect
of surround suppression was strongest in the receptive field
troughs flanking the center, where cells do not normally respond.
On the other hand, the suppressive effects induced by response
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history were elicited by stimulation further away from the cen-
ter (40–80◦). Although the underlying mechanisms are different,
they both induce preference for the same direction (Wang et al.,
2012; Wang and Pena, 2013). Thus, these mechanisms could
work synergistically to convey directional preference for sounds
entering frontal space.

A topography of direction selectivity overlapping the map
of auditory space indicates that neural activity in ICx carries
information about both the location and the direction of the
motion of sounds. This leads us to suggest that both location
and motion direction appear represented in the owl’s midbrain.
However, whether direction and location are decoded indepen-
dently remains to be demonstrated. Evidence from human EEG
suggest that they are processed separately (Ducommun et al.,
2002).

The emergence of motion-direction topography in ICx was
supported by two principles. First, surround suppression was
biased, such that neurons selective for frontal locations more
strongly suppressed neurons at peripheral locations. This could
be achieved by the non-uniform representation of space (Wang
et al., 2012). Second, spatial receptive fields displayed systematic
asymmetry in order for adaptation to induce topographically-
organized direction selectivity. A likely mechanism for this
asymmetry is that gain at frontal locations is higher due
to the filtering properties of the head (Keller et al., 1998).
Direction-dependent gain could induce a stronger response at
the front, making receptive field asymmetry that is correlated
with spatial tuning (Wang and Pena, 2013). Further, corti-
cal auditory spatial receptive fields are often broad and com-
plex (Brugge et al., 1996; Jenison et al., 2001; Mrsic-Flogel
et al., 2005; Zhou and Wang, 2012), which could provide
the asymmetry necessary to induce direction selectivity via
adaptation.

CONCLUSIONS
We showed that topography can result in computational biases
within neural maps. Neurons at different locations in ICx
responded depending on contextual excitation in space and their
response history. These mechanisms elicited selectivity for higher-
order stimulus properties such as time-dependent stimulus loca-
tion. Because lateral interactions, adaptation and non-uniform
maps are general properties of sensory maps, these processes are
likely present in other sensory modalities.

Biased direction-selectivity may be important for detecting
auditory looming objects (Maier and Ghazanfar, 2007) or esti-
mating time to collision (Peron and Gabbiani, 2009). Our find-
ings address the salience of sounds moving toward the front.
From the viewpoint of coding strategy, the front is where spa-
tial acuity (Knudsen et al., 1979) and signal intensity gain (Keller
et al., 1998) are highest. Behaviorally, the owl places its target
in the front during pursuit (Payne, 1971; Edut and Eilam, 2004;
Hausmann et al., 2008; Ohayon et al., 2008). The preference for
sounds moving inward could enhance the orienting response to
stimuli entering the most sensitive region for sound localiza-
tion. In general, directional biases in tuning to stimulus temporal
dynamics may be adaptive for more efficient implementation of
ethologically-relevant behaviors.
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