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1. INTRODUCTION

Many animals use a diverse repertoire of complex acoustic signals to convey different
types of information to other animals. The information in each vocalization therefore
must be coded by neurons in the auditory system. One way in which the auditory
system may discriminate among different vocalizations is by having highly selective
neurons, where only one or two different vocalizations evoke a strong response from
a single neuron. Another strategy is to have specific spike timing patterns for particular
vocalizations such that each neural response can be matched to a specific vocalization.
Both of these strategies seem to occur in the auditory midbrain of mice. The neural
mechanisms underlying rate and time coding are unclear, however, it is likely that
inhibition plays a role. Here, we examined whether inhibition is involved in shaping neural
selectivity to vocalizations via rate and/or time coding in the mouse inferior colliculus
(IC). We examined extracellular single unit responses to vocalizations before and after
iontophoretically blocking GABAA and glycine receptors in the |IC of awake mice. We then
applied a number of neurometrics to examine the rate and timing information of individual
neurons. We initially evaluated the neuronal responses using inspection of the raster plots,
spike-counting measures of response rate and stimulus preference, and a measure of
maximum available stimulus-response mutual information. Subsequently, we used two
different event sequence distance measures, one based on vector space embedding,
and one derived from the Victor/Purpura Dy metric, to direct hierarchical clustering of
responses. In general, we found that the most salient feature of pharmacologically
blocking inhibitory receptors in the IC was the lack of major effects on the functional
properties of IC neurons. Blocking inhibition did increase response rate to vocalizations,
as expected. However, it did not significantly affect spike timing, or stimulus selectivity of
the studied neurons. We observed two main effects when inhibition was locally blocked:
(1) Highly selective neurons maintained their selectivity and the information about the
stimuli did not change, but response rate increased slightly. (2) Neurons that responded
to multiple vocalizations in the control condition, also responded to the same stimuli in
the test condition, with similar timing and pattern, but with a greater number of spikes.
For some neurons the information rate generally increased, but the information per spike
decreased. In many of these neurons, vocalizations that generated no responses in the
control condition generated some response in the test condition. Overall, we found that
inhibition in the IC does not play a substantial role in creating the distinguishable and
reliable neuronal temporal spike patterns in response to different vocalizations.
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of individual neurons in the auditory system can be used to dis-

Many animals, including humans, use a wide variety of acousti-
cally complex sounds to convey different types of information to
members of their own species. For example, vocalizations used by
male Mexican free-tailed bats when courting a female are acous-
tically different than those used to defend a territory (Bohn et al.,
2009). For appropriate communication to occur, the receiving
animal must reliably recognize and discriminate among differ-
ent vocalizations. Therefore, the information in each vocalization
must be coded by neurons in the auditory system. The responses

criminate among different vocalizations often because different
firing rates are evoked by different vocalizations (Klug et al., 2002;
Suta et al., 2003; Schneider and Woolley, 2010; Huetz et al., 2011;
Mayko et al., 2012; Gaucher et al., 2013). However, in some neu-
rons, vocalizations are poorly discriminated based on firing rate
alone (Suta et al., 2003; Schneider and Woolley, 2010; Huetz et al.,
2011; Woolley and Portfors, 2013). There is growing evidence that
for some neurons, discrimination ability improves when mea-
sures of spike timing are included (Huetz et al., 2011; Woolley and
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Portfors, 2013). Thus, the auditory system may utilize two strate-
gies for discriminating among vocalizations. The first is to create
highly selective neurons such that only a small number of spe-
cific vocalizations evoke a strong response from each neuron, and
the second is to create different spike timing patterns for different
vocalizations such that each neural response can be matched to a
specific vocalization.

Neural selectivity to vocalizations based on response rate
occurs at multiple levels of the auditory system but the best evi-
dence for where this selectivity is created comes from studies in
the inferior colliculus (IC) (Klug et al., 2002; Xie et al., 2005;
Mayko et al., 2012). The IC is the major processing and inte-
grating center in the auditory midbrain (Winer and Schreiner,
2005) as it receives massive ascending projections from all audi-
tory brainstem nuclei (Adams, 1979; Brunso-Bechtold etal., 1981;
Frisina et al., 1998) as well as descending projections from the
auditory thalamus and cortex (Saldana et al., 1996; Winer et al.,
1998). Along with glutamatergic, GABAergic, and glycineric pro-
jections (Willard and Ryugo, 1983; Saint Marie and Baker, 1990;
Saint Marie, 1996; Cant, 2005; Schofield, 2005), the IC receives
a variety of modulatory inputs including those that are seroton-
ergic (Hurley and Pollak, 2005) and dopaminergic (Tong et al.,
2005). This convergence of inputs onto single neurons in the
IC plays a fundamental role in shaping response properties to
complex sounds, and creating selectivity to vocalizations. In par-
ticular, pharmacologically blocking GABAergic and glycinergic
receptors in the IC decreases selectivity to social vocalizations in
both bats (Klug et al., 2002; Xie et al., 2005) and mice (Mayko
et al., 2012). In contrast, blocking inhibition in the nuclei of
the lateral lemniscus does not alter neural selectivity to social
vocalizations (Xie et al., 2005), suggesting that inhibition reduces
the number of vocalizations that evoke responses from individ-
ual neurons in the IC. In these studies, selectivity was calculated
based only on response rate, even though the spiking patterns
of individual neurons to different vocalizations were often visi-
bly distinct and sometimes altered when inhibition was blocked
(Mayko et al., 2012). Thus, different temporal spiking patterns in
IC neurons may be a coding strategy for discriminating among
vocalizations, and the balance between excitation and inhibition
may underlie these different temporal spiking patterns.

There is evidence in both the IC of mice and the MLd of zebra
finches that temporal spiking patterns can code different vocaliza-
tions (Woolley and Portfors, 2013). In the IC of mice, spike timing
information provides greater mutual information in responses to
vocalizations than response rate for some neurons in IC, and in
the MLd of finches discrimination among different songs is better
using spike timing than spike rate for some neurons (Schneider
and Woolley, 2010). Similarly, in the auditory cortex, temporal
spike patterns provide a coding strategy for discriminating among
vocalizations (Narayan et al., 2006; Schnupp et al., 2006; Wang
et al., 2007; Recanzone, 2008; Huetz et al., 2009).

Only one study has assessed how the balance of excitation
and inhibition may create highly reliable and different temporal
spike patterns to different vocalizations (Gaucher et al., 2013). In
this study, blocking inhibition in the auditory cortex increased
the response rate, the reliability of temporal spiking patterns,
and the amount of mutual information conveyed by individual

recording sites but did not alter the amount of information con-
veyed by the population of cortical neurons. These results suggest
that intracortical inhibition plays a role in reducing redundancy
between cortical sites and thus leads to more efficient encoding of
vocalizations.

How inhibition affects the timing code for vocalizations in the
IC is not known. To address this question, we applied a vari-
ety of neurometrics to vocalization-evoked neuronal responses
that were obtained before and after pharmacologically blocking
GABAergic and glycinergic receptors. We found that in most neu-
rons, blocking inhibition increased response rate and increased
total mutual information. However, the information per spike
was reduced. In addition, spike timing was generally unaffected
by altering the balance between excitation and inhibition in the
IC. This suggests that inhibition can increase selectivity to vocal-
izations by altering the excitability of neurons (iceberg effect)
(Creutzfeldt et al., 1974), but in general it does not play a sub-
stantial role in creating the distinguishable and reliable temporal
spike patterns in response to different vocalizations.

2. METHODS

2.1. EXPERIMENTAL PROCEDURES

We recorded auditory responses from single neurons in the IC of
awake, restrained CBA/CaJ mice. All mice were female less than
1 year old. Animals were housed with same-sex litter mates on a
reversed 12 h light/dark schedule. All mice had ad libitum access
to food and water. All animal care and experimental procedures
were in accordance with the guidelines of the National Institutes
of Health, and were approved by the Washington State University
Institutional Animal Care and Use Committee.

2.1.1. Surgical procedures

Surgical procedures were the same as in Mayko et al. (2012).
Briefly, animals were anesthetized with isoflurane so that we could
mount a headpost onto the skull with ultraviolet-cured dental
cement (Muniak et al., 2012). We made a craniotomy (usually
I mm x 1 mm) over top of the left inferior colliculus (IC), cov-
ered the hole with petroleum jelly or bone wax to prevent the
brain from dehydrating, applied a local anesthetic (lidocaine) and
an antibiotic (Neosporin) to the exposed muscle, and returned
the mouse to its home cage to recover from surgery for at least 1
day before electrophysiological recordings.

2.1.2. Acoustic stimulation

Acoustic stimulation was computer-controlled and included tone
bursts (100 ms duration, 1 ms rise/fall time, 4 per second) and a
suite of mouse vocalizations used in previous studies of mouse
IC (Portfors et al., 2009; Mayko et al., 2012). All stimuli were
stored in the computer and were output through a high speed, 16-
bit digital-to-analog converter (Microstar Laboratories, Bellevue,
WA, USA; 400,000 samples/s), fed to a programmable atten-
uator (Tucker Davis Technologies, Alachua, FL, USA; PA5), a
power amplifier (Parasound), and to a leaf tweeter speaker (Emit)
located 10 cm away from the mouse. We tested the acoustic prop-
erties of the system using a 1/4 inch calibrated microphone (Bruel
and Kjaer, Denmark; model 4135) placed in the position nor-
mally occupied by the animal’s ear. There was a smooth, gradual
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decrease in sound pressure from 6 to 100 kHz of about 3 dB per
10kHz. Distortion components in tonal stimuli were buried in
the noise floor, at least 50 dB below the signal level, as measured
by custom-designed software performing a fast Fourier transform
of the digitized microphone signal.

2.1.3. Electrophysiological recording and drug application

We conducted electrophysiological experiments in a single-walled
sound-attenuating chamber. On experimental days, we placed the
animal securely into a foam body mold and attached the head-
post to a custom-made stereotax apparatus (Muniak et al., 2012).
If at any time during the experiment the animal showed signs of
distress, the experiment was terminated. Experimental sessions
lasted 4-5h and we used each animal in 1-3 sessions.

The experimental procedures were the same as in Mayko
et al. (2012). We obtained responses of single units to pure
tones and mouse vocalizations before and after the applica-
tion of the GABAAR and GlyR antagonists Dbicuculline and
strychnine, respectively. The GABAAR antagonist bicuculline
has also been shown to affect calcium-dependent potassium
channels (Kurt et al., 2006), which are also present in the IC
(Kelly and Caspary, 2005). We used a single micropipette elec-
trode mounted on a five-barreled pipette for microiontophoretic
application of drugs (Havey and Caspary, 1980). The tip of
the single electrode extended 10-25um beyond the multibar-
rel pipette and contained 1M NaCl. We broke the tip of the
multibarrel pipette to a diameter of approximately 30 um. We
filled the center barrel of the multibarrel pipette with 1 M NaCl
and connected it to a sum channel to balance all currents
used to apply or retain drugs. The rest of the barrels con-
tained the GABAAR antagonists bicuculline (10 mM, pH 3.0,
vehicle 0.9% physiological saline; Sigma) and the GlyR antag-
onist strychnine (10mM, pH 3.0, vehicle 0.9% physiological
saline; Fluka, Milwaukee, WI). We used similar iontophoresis
currents for drug retention and ejection to those used in previ-
ous studies (Wenstrup and Leroy, 2001; Ingham and McAlpine,
2005; Sanchez et al., 2008; Mayko et al.,, 2012). Bicuculline
and strychnine were retained with negative current (—15nA
each) and ejected with positive current (range, +10 to +40 nA
each).

We prepared all drugs and recording solutions the day of
the experiment. We inserted separate silver wires into each
barrel of the micropipette electrode and connected them to a
microiontophoresis current generator (model 650, David Kopf
Instruments, Tujunga, CA) to separately control the retention
and ejection currents for each drug. We advanced the elec-
trodes into the IC using a hydraulic micropositioner (David
Kopf Instruments, Tujunga, CA) located outside the acous-
tic chamber. Extracellular action potentials were amplified
(Dagan Corporation, Mineapolis, MN, USA), filtered (band-
pass, 500-6000 Hz; Krohn-Hite, Brockton, MA, USA) and sent
through a spike enhancer (Fredrick Haer, Bowdoin, ME, USA)
before being digitized (Microstar Laboratories, Bellevue, WA,
USA; 10,000 samples/s). Neural waveforms were displayed and
archived using custom-written C++ software. Waveforms, raster
plots, peri-stimulus time histograms (PSTHs), and statistics were
viewed on-line and stored for off-line analysis.

We used tone bursts as search stimuli (varying duration, 1 ms
rise/fall time) to obtain well isolated single units. We obtained
characteristic frequency (CF) and minimum threshold (MT) of
each single unit audiovisually. We defined CF as the frequency
that evoked a response to 50% of the stimulus presentations
at the lowest intensity, and MT as the lowest intensity that
evoked a response 50% of the time to the CE. We obtained
responses to vocalizations by presenting the suite of 14 vocaliza-
tions (variable duration, 1 ms rise/fall time, 4/s, 200-ms recording
window) 10-40 times at multiple intensities. We then applied
the GABAAR and GlyR antagonists and repeated presentation
of the vocalization stimuli. We ejected bicuculline and strych-
nine together because we were interested in the general effects of
inhibition on temporal responses to vocalizations rather than the
separate effects of GABAergic and glycinergic inhibition. We ini-
tially applied low ejection currents (+10nA) and then gradually
increased the current if there was no effect. Once the response
reached a steady-state, we kept the ejection currents at this level.

2.2. ANALYTICAL METHODS

2.2.1. Data processing

Spike counts and raw waveforms were stored in the computer
during data collection. We examined raw waveforms off-line to
ensure only spikes from well isolated single units were used in the
data analysis. Single units had signal-to-noise ratios of at least 4:1
and an inter-spike interval of at least 2ms. The data collection
software automatically detects the peak times of spikes to within
the sampling precision of 2 ys. For analyses here, we used only the
identified spike times.

Stimuli were typically presented at several different amplitude
levels. Responses to different amplitudes of the same vocalization
can appear quite different, so we treated each amplitude as a sep-
arate stimulus case. Analysis in this paper only includes a single
amplitude for each stimulus, which is the one that produced the
most response spikes in the control condition’.

The 14 vocalization stimuli had different durations, ranging
from 10 to 143 ms. Analysis routines considered a time window
within the responses, anchored to the stimulus presentation time.
The recorded data consist of the time window [—20, 200], that
is, starting 20 ms before the stimulus begins, and lasting 200 ms
afterwards (which is 57 ms after the end of the longest stimu-
lus). Presentation of raw data shows the time window [0, 200].
Analysis typically used a more restricted window. Unless other-
wise stated, this window was [0, 158], that is, the start time of
stimulus presentation until 15ms after the end of the longest
stimulus.

2.2.2. Mutual Information

Because the stimulus in each trial is 1 of 14 distinct waveforms,
we describe the stimulus as an integer label between 0 and 13.
The responses consist of event sequences in a window of time
around the stimulus. In order to estimate a mutual information,
we first mapped the responses onto a set of distinct response
classes (Dimitrov and Miller, 2001), which are also represented

IThis is not always the highest amplitude. Some of the recorded cells
responded more strongly to intermediate amplitudes.
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with integer labels. We considered a range of methods for map-
ping responses to classes, and for subsequent estimates of mutual
information between the sets of stimulus and response labels.
What is presented here is the protocol that provided the best
performance on artificial data sets, where we knew the true
stimulus/response relationships, and could thus test the estimates.

The inverse spike time representation of a response is a vector
of length L, where L is the maximum number of spikes that occurs
in any of the responses being considered. This vector has compo-
nents riy = {%, % i ti}. The values #; for a response containing
I < L spikes, for i < lare the times of occurrence of the ith spike in
the response, measured relative to the start of the response win-
dow. For i > I, the ith spike is assumed to occur at a very large
time delay. There are several reasonable choices for this value, but
for simplicity we use t; = coVi > [. This results in vector elements
tl,- = 0Vi > [ (in particular, this means that the null response is
represented as a length L vector of zeros).

The protocol required two steps. The first step produced an
estimate of the most appropriate number of response classes to
use for a given data set. The second step estimated the effect of
disturbances to spike timing on the mutual information. We used

the following procedure for the first step:

1. Select a region of the responses to consider (the response
window).

2. Represent each response with a vector, using the inverse spike
time representation.

3. Construct a distance matrix D containing elements Dj; equal
to the Euclidean distance between the vector representations
of responses i and j.

4. Use mean-distance hierarchical clustering of D to construct a
binary clustering tree T over the set of responses.

5. Determine the maximum number of clusters M, for which
we can effectively calculate an unbiased information measure.
The calculation of our measure mgp,, and the limits on M, are
detailed in the section on debiasing.

6. For all values of N5 from 2 to M., classify the responses using
the partition of T that provides N, classes, and compute
the corrected information measure m,;, between the stimulus
labels and this set of response classes.

The first step yielded a particular value of N,,; that maximizes
mgp, and an associated maximum measurable mutual informa-
tion estimate mgp. We used the value of N5 in the second step,
which followed the procedure:

1. Select a range of time-scale parameters js; to test. For every
value of j;:

2. Create a set of responses by adding noise values to each
spike time in the true response set. These noise values are
drawn from a Gaussian distribution with mean 0 and stan-
dard deviation j4. Optionally, we may increase the size of the
response set during this step, by creating n;;; different copies of
each recorded response, modified with different, independent,
noise values.

3. Window the responses, using the same window as in the first
step. Since this occurs after adding some timing noise, we

will not always include the same set of spikes in the analysis
window.

4. Calculate the matrix D and information measure m4, as in the
first step, using the value of N, determined in the first step.

The result of this procedure is a vector of samples mg(jsq), show-
ing the change in the information measure #1,;, as the exact timing
of the response spikes is lost. To compare the control case and
the case of blocking inhibition, these values were calculated for
each case, independently, except that the value of Ny, used in
step 2 is the average of the values determined for the two cases in
step 1 (these values are typically similar but not identical). In this
method, we follow the temporal coding protocol established in
Montemurro et al. (2007), but instead of decreasing the precision
of timing responses, we use full resolution spike trains, modifying
the precision by injecting continuous spike time jitter noise, as in
Hatsopoulos et al. (2003) and Amarasingham et al. (2012).

2.2.3. Debiasing

Bias in estimates of mutual information is a well known and heav-
ily studied problem (Panzeri et al., 2007). Estimates of mutual
information for small numbers of measurements in a large space
are typically biased upwards. Typically, comparisons between two
measures of mutual information suffer less from biases than
absolute measures, because the bias in the two samples is often
correlated. In our analysis, however, we wanted to compare mea-
sures of mutual information calculated for different values of the
number of response classes, N5, and the amount of tempo-
ral precision in the responses (represented inversely by the noise
value ji7). These parameters change the size of the response space.
Because the number of measurements remains the same, this
changes the bias. Consequently the estimated value of mutual
information increases with N5, and decreases with j4, not only
for real data, but also for the random artificial responses, which
are known to have a true mutual information of 0 (since they
are generated independent of the stimuli). Any true effects of
timing precision on the neural code are thus confounded by the
effect of increasing the ratio of response space size to number of
measurements.

A variety of debiasing strategies exist for mutual information
measures. We tested several of these, included the Panzeri-Treves,
Quadratic extrapolation, and Nemenmann-Shafee-Bialek estima-
tors, as well as the shuffle corrections to these estimators, as
implemented by pyentropy (Ince et al., 2009). Although these
methods resulted in a downward shift of the estimates of mutual
information for any given value of N, or jy, they did not
remove the trends observed for changes in these parameters, even
in the random test data.

In order for a difference of mutual information estimates to
reduce bias, we needed to consider estimates which use the same
estimator, space sizes, sample sizes, and approximate distribution
of samples. We tested for estimate bias by comparing estimates
from physiological datasets, to estimates from responses gener-
ated by a homogeneous Poisson process with an equivalent spike
rate. For our final estimator, we improved slightly on this com-
parison using a correction of the following form, which takes a
parameter fyps:
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e Estimate the mutual information m(S, R) between the set of
stimulus identities S and response classes R, using the direct
estimator.

® 1leps times:

e Calculate a random permutation of the response list, P;.

e Calculate the mutual information m(S, P;) using the direct
estimator.

e Calculate the difference mfih = m(S, R) — m(S, P;).

e Return the mean and standard deviation of the set of {mfih}.
The mean (mgy) is used as the mutual information estimate,
and the standard deviation as a confidence interval for this
estimate.

The logic for this estimator is that the random permutation of the
response should remove any true mutual information between
the stimulus and response lists, but should have no effect on
biases, which depend on the number of samples and the dis-
tribution of responses. Consequently, if m(S, R) is greater than
the m(S, P;), then the difference (mfih) should reflect only true
correspondence between the stimulus and response lists. This
method is an improvement on subtracting an estimate of mutual
information for Poisson data in that the distribution of shuffled
response classes has the same entropy as the true distribution
of response classes, where the distribution of classification of
random responses might have a different entropy.

It is worth noting that the result of debiasing in this way has
some properties that are not expected for mutual information.
In particular, the mutual information between the stimulus set
and any clustering of the response set should be monotonically
increasing with the number of clusters retained. This property
does not necessarily apply to m4,, however. Particularly, as men-
tioned, for the values that we are considering for size of response
space, distribution of responses, and sample size, it is common
that the mutual information estimates for random responses
reach the stimulus entropy (4 bits, in this case). This is a global
upper bound for mutual information between this stimulus set
and any response set. This value can be attained by randomly gen-
erated responses, but also by the random permutations P;. This
effect can be viewed as a compression of the measurable range
of mutual information. For a stimulus with entropy e;, the dif-
ference e; — (m(S, P;)) is a measure of the mutual information
which is meaningfully detectable by estimator 1, given the lim-
its of sample size. Although grouping responses can’t increase the
mutual information, for small data sets it will typically increase
this accessible mutual information, by way of increasing the ratio
of the number of measurements to the size of the response space.
Consequently, the measure mg,(1.1,5:) typically has a maximum
value that occurs at intermediate values between the limits of
small n.y,s, where the true mutual information is lost through
grouping, and large, where the accessible n.,s is lost through
non-correctable biases.

Figure 1 shows the application of the mutual information
protocol to four different neurons. This analysis returned two
important measurements. The first is the peak value of accessi-
ble information for the neuron, and the second is the number of
clusters used to calculate this value. We used the peak value to

classify neurons as non-responders (those neurons where the peak
accessible mutual information was not significantly greater than
zero), which we eliminated from subsequent analysis. We used the
optimal number of clusters when calculating information in the
subsequent analysis of the neurons.

For small enough values of the number of response clusters
Neust> the debiased statistic mg), seems to accurately reflect true
correspondence between stimulus and classified response, and is
thus an appropriate measure for investigating the coding prop-
erties of the responses. Particularly, randomly generated artificial
data and shuffled real data result in an mg, = 0, while artificial
data that reflects actual coding of the stimulus, as well as real data
from most of the observed cells, results in an mg, > 0.

2.24. Rate corrections

In most cases, application of bicuculline and strychnine increased
overall spike rates. This increase often resulted in an increase
of total mutual information, and a decrease of information per
spike. To determine how elements of the neural code such as tem-
poral precision, response reliability, and stimulus selectivity were
affected by blocking inhibition, we needed to separate the effects
of changes in spike rates from these other effects, when compar-
ing between the control and drug cases. This can be difficult when
looking only at clusters or mutual information measurements,
which, in the control case, are severely limited by the low spike
rates.

One approach is to consider mutual information per spike,
rather than total mutual information. In the majority of cases
we found that removing inhibition increased the total mutual
information, but decreased the information per spike (mean-
ing that the increase in information is less than the increase in
rate). This result is quite reliable, but often not very satisfying.
Particularly, in a cell with a reasonably high mutual informa-
tion in the control case, the relatively low (4 bit) entropy of our
stimulus space will often provide an upper bound on the mutual
information that ensures that increases in rate cannot provide
proportional increases in mutual information, regardless of how
well the additional spikes correspond to structures in the stimulus
waveforms.

An additional approach we used in addressing the spike rate
issue is founded on the hypothesis that the sparsely firing cells
may operate as elements of a population of similar cells. In this
case, during presentations when the cell that we are recording
is silent, other similar cells may be active, which may provide
input to the same downstream structures, and implement the
same code. Within the limits of our data, we can approximate
such a population code by using multiple responses from the
same cell to different presentations of a stimulus. We construct
a virtual response which is the superposition of several actual
recorded responses. This requires data sets with larger numbers
of presentations, but the result is that we can synthesize “pop-
ulation” responses for the control case and the drug case which
contain about the same number of total spikes (by virtue of
using more repetitions per response in the sparser control case).
Nevertheless, in cases for which the response may consist of only
one or two spikes, even the careful corrections we perform here
may not be sufficient to offset the sparsity of the response, and the
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FIGURE 1 | Application of the clustering mutual information protocol to measurements. The first is the peak value of accessible information for each
exemplars from the four neuron classes (see section 3). Number of clusters neurons, marked by a vertical line for each experimental condition (control;
are shown on the horizontal axis (with high numbers, implying more blue and inhibition blocked; red). The second is the number of clusters used to
information, shown on the left). Accessible mutual information is plotted on the calculate the accessible information. The measurements reported here were
vertical axis. Typical neurons were selected from classes (1) selective; (2) calculated on responses using a time window beginning 10 ms after stimulus
modified; (3) patterned; and (4) inhibited. This analysis returns two important onsetand lasting 153 ms (ending 20 ms after the offset of the longest stimulus).

information timing methods may not detect precise timing even
when it is present in those cases. All subsequent results should be
interpreted with this limitation in mind.

Implementation of this method of correction is a pre-
processing step. Before data are analyzed, we run a response
combination function which assembles composite response. This
function ensures that the expectation firing rates in the con-
trol and drug condition are approximately similar. Subsequent
analyses and visualizations look the same as without the
correction.

2.2.5. Clustering

Mutual information measures are expected to reflect on how well
the stimuli are coded by the responses, but do not provide any
explicit statements about how they are coded. It is possible that
blocking of inhibition might result in a significantly different
coding of stimuli, but one that, by chance, contained a similar
amount of information and depended on a similar level of timing
precision. To address this possibility, we performed hierarchical
clustering of the stimuli based on the response space. We then
compared the resulting clustering trees.

This analysis used some similar techniques to the mutual
information measurements, including construction of a distance
matrix and mean-distance-based hierarchical clustering of that
matrix. The fundamental difference is that in this case we explic-
itly used the stimulus-conditioned responses R(s) associated with
a particular stimulus s. We thus constructed a distance matrix,
Cjj, such that element (i, j) is the mean value of the set of

pairwise dis-similarities between elements of R(s;) (responses to
stimulus i) and R(s;).

For this purpose, we found that there is a serious difficulty
with using any true distance measure as the dis-similarity mea-
sure. The issue is that the expected magnitude of most distances
between spike trains depends on the number of spikes. In par-
ticular, in sparsely firing cells such as those recorded in IC, two
almost identical complex bursts should intuitively provide more
information about the similarity of the stimuli evoking them
than two empty responses because the latter are likely to occur
in response to almost any possible stimulus. True distance func-
tions, however, report the empty responses to be identical, and the
long responses with mild differences in spike timings (or num-
ber) to be significantly distant. Indeed, under a distance function
that includes high precision in the measurement of spike tim-
ing, empty responses are typically the only pairs of responses that
have 0 distance. Due to the nature of hierarchical clustering, these
groups of null responses end up being treated as highly infor-
mative and result in significant changes to the overall clustering.
Blocking inhibition tended to increase spike rate and reduce the
number of null responses and this can have a significant, but
rather trivial, effect on clustering under these distances.

Our solution was to use a normalized dis-similarity mea-

sure. We used a measure based on the distance Dsqplke, described
by Victor and Purpura (1997) (which we refer to as the Victor
distance). Our variant, the Victor distance per spike (vdps), was cal-

Dspike(slsz)

4 )
T T where ||s;|| denotes the

culated as follows: vdps,(sis2) =
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number of spikes in response s;. Additionally, for # indicating a
response containing no spikes, vdps, (¥, 9) = 1vq.

In Victor’s formulation of the D, family of metrics, the param-
eter g represents the cost of transformations which move a spike
in time, and is in units of, e.g., seconds—1 or sample_l. The tra-
ditional choice for g in our case would therefore be s, We
chose to represent g in terms of a characteristic time-scale of the
responses. This value is the longest time of separation, in samples,
under which the Dy algorithm will still choose to represent two
events as the same spike. This value (q) is related to the traditional
qp,s‘l byq = q 271 .

Hs .

Note that (unlike D;P Zke) our measure vdps is, by design, not
a true metric, since (a) vdpsy(9, @) # 0, even though ¢ = §, and
(b) vdps, does not always obey the triangle inequality. Despite the
failure of vdps, to operate as a true metric, in practice it is supe-

rior to Dilp ke as a grounds for clustering responses, particularly
in sparsely firing systems where empty responses are common.
Additionally, since vdps; explicitly depends on the time-scale
parameter g, it is straightforward to determine the effect of
timing precision on clustering by computing the results over a
range of q.

Using these dis-similarity matrices, we constructed clustering
trees showing the similarity of stimuli. We constructed clus-
ter trees using the linkage command in Matlab. To establish
consistency in trees given the uncertainty of electrophysiolog-
ical responses, we constructed repeated clusters after adding
small amounts of noise to the dis-similarity matrices. We then
took the majority rule consensus tree (Felsenstein, 1985) over
these re-sampled trees as the representation of the sensory cod-
ing function for each neuron. Once tree representations were
prepared for the different experimental conditions, we assessed
whether there were any differences in coding properties by
using the graph edit distance between trees (Zhang and Shasha,
1989). A small edit distance (a few nodes) indicates essen-
tially equivalent representations. A large edit distance means a
significant change in coding properties between pairs of exper-
imental conditions. If such a change was detected, we exam-
ined the trees and isolated the nodes leading to the change
in order to characterize the majors sources of representation
difference.

2.2.6. Artificial test systems

To assess the performance of the various methods, we consid-
ered test data generated by several artificial models. Each of these
models was implemented as a function that could be called with
a desired response length, spike rate, a characteristic time scale
(precision), and a stimulus identity (integer), and would return a
pseudo-random response spike train. The models used were:

hPois A homogeneous Poisson process, which generated
responses not correlated to stimulus identity (this model
ignores the precision and stimulus inputs).
rate A rate coder, which generated responses that were indi-
vidually homogeneous Poisson, but in which the rate was
determined by stimulus identity (this model ignores the
precision input).

tgc A model that produces spikes in two groups, with the spac-
ing between the groups dependent on stimulus identity
and the precision parameter. The groups may contain ran-
dom numbers of spikes with noisy positions, determined
by internal parameters of the model. The total number of
spikes is, on average, not dependent on the stimulus.

We expected that a successful analysis method would show no
stimulus/response mutual information in the case of responses
from hpois, would show mutual information, but no dependence
of the information on spike timing for rate, and would show
information for responses from tgc, and would show this infor-
mation falling off to zero as spike timing information was lost.

Figure 2 shows the result of this measurement for the artificial
data. The result is largely as expected. The hPois system has no
mutual information at any noise value. The fgc system has infor-
mation for small jitter values, but zero information for large noise
values. This was expected because its code depends on spike tim-
ing. The true characteristic time scale of the tgc model is 6 ms,
and this is accurately reflected by the fact that information about
this model is retained for noise values smaller than this. The rate
system shows information which is maintained up to large noise
values, which is expected since its code does not depend on spike
timing.

3. RESULTS

We examined the effects of blocking inhibition on responses to
vocalizations in 26 IC neurons. In nearly all neurons, block-
ing inhibition increased the spike rate evoked by the vocaliza-
tions. Across all neurons and stimuli, the average number of
spikes per stimulus (200 ms window following stimulus onset)
was 1.8 in the control condition (min 0.1, max 8.5, std 2.1),

0.4 .
= hPois
H rate

0.3 L

0.2

i
]
/

Mutual information (bits)

o \\—\.H—-/\r‘\ #ZH
4 16

0 2 7] 6 8 10 12
Standard deviation of spike jitter noise (ms)

FIGURE 2 | Temporal precision of test systems. Decreases in mutual
information with increases in spike jitter indicate that information is lost
when spike times are perturbed. Thus, a relatively constant function
indicates little sensitivity to spike times such as with the rate code,
whereas the rapidly decreasing function for the tgc system indicates high
sensitivity to spike times, and hence a timing code.
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and increased to 4.8 after the application of bicuculline and
strychnine (min 0.2, max 12.6, std 3.8). With one exception,
all neurons had negligible spontaneous firing rate under both
conditions. As we have documented previously (Mayko et al.,
2012), blocking inhibition decreased the selectivity of neurons
in the IC, with an increase in the number of stimuli that evoked
responses.

Four of the neurons (15%), although they fired spikes, did not
appear to respond to the vocalization stimuli we presented (the
maximum value of the debiased information estimate mg, was
near 0). These neurons were not analyzed any further. The aver-
age number of stimuli that evoked at least one spike from the 22
responsive neurons increased from 7.5 under control conditions
(min 1, max 12, std 3.5) to 9.1 with inhibition blocked (min 1
max 13, std 3.1).

We observed a variety of response patterns across the respon-
sive 22 IC neurons. We classified these responses into four general

classes, based on their response to stimuli in both conditions.
Nine neurons (35%) responded strongly to one vocalization, with
little to no response to any other (selective). Three neurons (12%)
responded with highly consistent and distinguishable patterns to
the majority of vocalizations, under both experimental conditions
(patterned). Both of these classes had only minute changes when
inhibition was blocked. Six cells (23%) gave selective response
patterns to various stimuli. When inhibition was blocked, they
responded more vigorously, and to a larger number of vocal-
izations (modified). Four neurons (15%) only responded when
inhibition was blocked (inhibited). These responded with simi-
lar patterns to the modified group when inhibition was blocked,
and are probably of the same class, for which our relatively lim-
ited stimulus set did not contain any of their preferred stimuli.
However, due to the lack of any data in the control condition,
they were omitted from most analyses comparing the conditions.
Figure 3 shows response rasters from typical examples of the
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FIGURE 3 | Neural responses from different classes. Panel pairs
contain responses in control condition and inhibition blocked condition,
respectively. Responses are shown for vocalization stimuli, at the
preferred attenuation. Responses are represented as a spike raster, with
each detected action potential indicated by a dot. The horizontal axis
represents time of occurrence with 0 being the start of stimulus
presentation. Responses to the 14 different vocalizations are
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Time (ms)

200 0 50 100 150
Time (ms)

represented along the vertical axis and vocalization names are indicated.
These vocalizations are types of commonly emitted syllables (Mahrt

et al., 2013). The background images show the spectrograms of each
vocalization. Each panel contains the average response spike rate,
computed as total number of spikes/number of trials eliciting
response/response window (158 ms here). (A) selective neuron; (B)
modified neuron; (C) patterned neuron; (D) inhibited neuron.
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responsive cell classes. This classification is approximate and used
mostly for convenience, in order to provide convenient labels for
communicating general statements about groups of neurons with
somewhat similar properties. For that reason, we list and summa-
rize the classes here, rather than after presenting all the evidence
for their properties.

3.1. MUTUAL INFORMATION CLUSTERING

We evaluated the degree to which the response structure reflected
stimulus identity using mutual information. Our objective was
to determine whether neurons in IC represent vocalizations with
distinguishable spiking patterns and whether inhibition in the
IC plays a role in generating these patterns. In particular, we
examined whether the representation of particular vocalizations
depended on the precision of spike timing. In applying mutual
information metrics to this investigation we faced a particularly
difficult debaising problem (section 2.2). To address this issue, we
calibrated several mutual information calculations and debiaising
strategies against artificial data, where we knew the true structure
of the stimulus representation (see Figure 2).

After categorizing the neurons into the four response types,
we calculated the peak mutual information for each group under
both the control and blocking inhibition conditions (Table 1). In
addition to the raw mutual information, we calculated the infor-
mation per spike. In some cases, blocking of inhibition did not
change the mutual information, and in others it increased infor-
mation, but in nearly all cases, blocking inhibition decreased
information per spike. As information per spike is proportional to
information per unit expended energy (assuming fixed metabolic
cost of spikes), this seems to indicate one major function of inhi-
bition; to decrease the overall cost of information transmitted out
of the IC. The principle exception from this trend seems to be the
patterned neurons, for which the information measures did not
change significantly.

3.2. TEMPORAL PRECISION

We assessed the dependence of the stimulus representation on
exact spike timing by tracking the changes in mutual informa-
tion as we perturbed the spike timing with noise. We repeatedly
estimated mutual information after altering the spike timing
by adding noise values to each spike. Noise values were drawn

Table 1 | Information capacity of the various neuron classes in control
and inhibition-blocked conditions.

Control Inhibition blockers
Cell class Max M Max MI/spike Max MI Max Ml/spike
Selective 0.57 3.32 0.50 1.38
Modified 0.85 1.68 1.77 0.39
Patterned 1.98 0.55 2.21 0.58
Inhibited 1.17 5.61 1.61 0.14

max Ml is the peak mutual information for each class (in bits). max Ml/spike is
the maximal class mutual information per spike (in bits/spike). Blocking inhibi-
tion increased the mutual information (except in the selective cells) however, it
significantly decreased the information per spike.

independently from a Gaussian distribution with mean 0 and
standard deviation which we varied systematically. We tracked the
mutual information as a function of the standard deviation of the
noise distribution, j;;. Noise values were added before windowing
the responses, so it was possible for noise to move spikes into, or
out of, the analysis window. Repeated measurements at the same
noise level reflect randomness both in the noise samples, and in
the shuffling order chosen during debiasing. Measurements are
reported with mean values and standard deviations over at least
25 repeats (five debiasing choices each, for five noise choices).

When applied to electrophysiological data, the timing analysis
revealed a broad spectrum of temporal precision, even for neu-
rons within the same response class. Selective neurons (Figure 4)
could perform their function with either a rate code (flat func-
tions in the first two panels) or a range of temporal codes with
different precision. In these neurons, removal of inhibition (red
lines) did not seem to affect either the information processing
aspects, or the timing aspects of the neurons. Inhibited neurons
showed similar response patterns.

Modified neurons (Figure5) exhibited a similar variety in
temporal sensitivity, but these neurons displayed differences in
their informativeness under the control and inhibition-blocked
conditions. For all but one neuron (third panel in Figure5),
blocking inhibition increased the amount of information rep-
resented [control (blue) traces are above the inhibition-blocked
(red) traces]. However, this increased informativeness comes at
a high cost. If we consider the information per spike (Figure 6),
we see that it is much higher in the control condition (blue
trace) compared to with inhibition blocked (red trace). Because
information per spike is proportional to information per unit
expended energy, we interpret this result to reflect an energy opti-
mization role of inhibition: single neuron capacity is somewhat
decreased, leading to a comparatively large savings in energy of
information representation.

Patterned neurons, shown in Figure 7 were different from the
previous two groups in both aspects. First, these neurons univer-
sally demonstrated high temporal precision, often less than 2 ms.
Furthermore, their information capacity was almost completely
unaffected by removal of inhibition, both in the raw information
measure, and in information per spike.

In the majority of neurons, information content and change of
information with added noise were not dramatically influenced
by inhibition. In some cases, where the absolute information was
different between conditions, the relationship between informa-
tion and timing noise was still very similar. We measured this
similarity using the Pearson’s R correlation measure between the
two trajectories, which is reported on each panel. In cases where
there was a significant dependence of information on timing pre-
cision, only one neuron shows a correlation with R < 0.8 (bottom
right panel on Figures 5, 6). That specific case may have been
affected by the relatively large uncertainty in estimating the infor-
mation measure (notice the large error bars on the blue trace on
that panel). Of all neurons, only one (4.5% of the cases) showed
any change in temporal precision, specifically, increased tempo-
ral precision under the treatment condition (upper right panel
on Figure 4, red trace on that panel showing a marked decrease
with jitter, compared to the relatively constant blue trace, and
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a correlation coefficient between the two R = 0.376, indicating this possibility, we analyzed the specific coding aspect of our IC

distinct properties). neurons.
For selective neurons, the only comparative observation we
3.3. STIMULUS REPRESENTATION can make is that they retain their selectivity. For neurons with

Mutual information measures are expected to reflect on how responses to a range of vocalizations, the patterned and modified
well the stimuli are coded by the responses, but do not provide neurons, we can also ask about the relationship between repre-
explicit statements about how they are coded. It is possible (albeit  sentations of different vocalizations. For example, in those classes,
unlikely) that blocking of inhibition might result in a signifi- two stimuli might generate responses that are distinguishable, but
cantly different representation of stimuli, but one that, by chance, highly similar, and this could be relevant to downstream neu-
contained a similar amount of information, and depended on rons. Here, we ask whether inhibition might shape these response
a similar level of timing precision. As a first step in addressing similarities.
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For that purpose we constructed a response dis-similarity
matrix that included information about stimulus identities. In
this case, the matrix D of size (14,14) was determined by
the number of stimuli, with D;; containing the average of
pairwise dis-similarities between responses to stimulus i and
responses to stimulus j. This produced a symmetric matrix of
non-negative values. These matrices provide a visualization, and
quantitative measure, of groups of stimuli that are related in
the structure of their generated responses, as shown in Figure 8.
The diagonal elements in these matrices are in general not
zero. In fact, these elements are meaningful. They reflect the
reproducibility of responses to the same stimulus. Off-diagonal
elements of similar intensity indicate stimuli that are in gen-
eral indistinguishable—the response-based dissimilarity between
each other is low, comparable to the self-dissimilartiry of diagonal
elements. Distinguishable groups have large dissimilarity between
their corresponding elements (for example, the orange bands
between the group (2Jump3, 2Jump5) and the large blue region
to the left of UFM3). In that figure, a patterned neuron again
demonstrates little effect when inhibition is removed: the pre- and
post-treatment dissimilarity matrices are essentially identical.

A different situation was observed for the modified neu-
rons. The example neuron we show in Figure9 was relatively
selective in that it only responded to a few vocalizations (left
panel). In particular, it had a very specific response to stimulus

DFM (blue diagonal element, with orange and red off-diagonal
terms). It also had somewhat broader responses to the classes
(2Jump4,UFM2,3) and (2Jump3,5) (bluish-green block-diagonal
groups, with red complementary terms). Blocking inhibition
broadened these responses significantly, and made the responses
to all other stimuli more similar, and hence less discriminable
(right panel), as indicated by the general move toward yellow of
the off-diagonal term. However, additional finer coding analysis
for neurons like that, like the case shown later in Figure 11, indi-
cated only minor representational changes when only consistent
response classes were considered (defined below).

Using these dis-similarity matrices, we constructed hierarchi-
cal clustering trees showing the grouping of stimuli as decoded
through the similarity of neural responses. In the case of the pat-
terned neurons, the results of this clustering are easy to interpret,
in that it changes only minimally when inhibition is blocked.
To establish that this effect is robust, we constructed repeated
clusters after adding small amounts of noise to the matrices. We
then took the majority rule consensus tree over these repeats. In
patterned neurons, repeatability was high, consensus trees resem-
ble individual trees nearly exactly, and the resulting consensus
trees for the two experimental conditions were nearly identical
(Figure 10). Specifically, in this case the only difference is that
near the top, node cI12 groups 2 responses under the control
condition (left panel), while under the treatment condition, one

Control

Jump1
2Jump2
Jump3
UFM1
UFM4
UFM2
UFM3
2Jump4
Jump4
Jump2
2Jump3
2Jump5
2Jump1

Vocalization Stimuli

DFM

N QL Q Q
& y&%o@:’y@ < Q“Q @Q @ \§< O&Q 8

Vocalization Stimuli

FIGURE 8 | Dissimilarity matrices for a broadly responsive neuron under
control (left panel) and inhibition-blocked (right panel) conditions. An
element in this matrix, D; ;, contains the average dissimilarity between neural
responses to pattern / and the corresponding responses to patter j, as
measured by the vdps measure. This broadly responsive pattern neuron
could discriminate rough classes of vocalization stimuli (blue regions, small
dissimilarities), with high dissimilarity between them (red regions,
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off-diagonal regions). Stimuli with small cross-stimulus dissimilarity (large
blue region in the top right quarter of the matrix, blue square for stimuli
2Jumpb and 2Jump3) are not distinguishable based on the spiking patterns
of this neuron, but are highly distinguishable from other stimuli. There are a
few specific stimuli that are discriminable [e.g., (DFM,DFM), a blue square
with mostly red along across other stimulil. In this neuron, blocking inhibition
did not modify the neurons ability to discriminate among vocalizations.
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FIGURE 9 | Dissimilarity matrices for a modified neuron under control
(left panel) and inhibition-blocked (right panel) conditions. The response
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general less precise (color in off-diagonal elements moved to yellow and
green, indicating smaller distances). Inhibition decreases this neuron’s
selectivity and its ability to discriminate among vocalizations.

of those responses was attached to the tree root cI3 instead of
node c12. Consensus trees for other cells exhibited similar minor
differences (data not shown).

For the modified neurons, like the exemplar in Figure 11, inter-
preting the clusters was more difficult. Typically, in the control
condition, a large number of stimuli resulted in no, or very few,
responses. Grouping of these stimuli was therefore quite arbitrary
and not robust to noise. The result was a consensus tree that
only specified groupings among a small number of vocalization
stimuli. When inhibition was blocked, a larger number of stim-
uli were typically grouped reliably. This resulted in clusterings
that initially appear quite different, consistent with the apparently
different dissimilarity matrices in Figure 9. However, if we con-
sider only the subset of stimuli that were reliably grouped in both
conditions (Figure 11), the clusterings were typically very similar.
We call these stimuli (different ones for different neurons) consis-
tent stimuli. In this case, the only change was the interchange of
two stimuli, DFM and 2Jump]l, between the neighboring nodes
c2 and c3.

Across all neurons of this type, the graph edit distances
between clusterings generated by the same stimulus in different
conditions were typically smaller than between random group-
ings, or groupings generated by a different neuron, but were
typically larger than groupings generated by repeated measures
within the same neuron and condition.

4. DISCUSSION

In this study we examined whether inhibition in the IC plays a
role in generating a timing code that may be used to discriminate

among different vocalizations. We found that, in general, the bal-
ance between excitation and inhibition in the IC regulates the
excitability and selectivity of individual neurons to vocalizations,
but that inhibition does not play a major role in generating the
temporal firing patterns to vocalizations. We also found that neu-
rons in the IC use a variety of coding strategies to represent
complex acoustic signals. On the selectivity spectrum, neurons
ranged from very selective to broadly responsive (yet highly
informative). Along the timing spectrum, neurons ranged from
essentially rate coders, through mild use of spike timing informa-
tion, to very precise neurons that were sensitive to spike timing
on a millisecond time scale. Thus, the IC contains a highly diverse
and complex representation of vocalizations that results in a vari-
ety of mechanisms for discriminating and possibly categorizing
vocalizations.

4.1. INHIBITION IN IC AFFECTS RESPONSE RATES AND SELECTIVITY
TO VOCALIZATIONS BUT NOT TEMPORAL SPIKE PATTERNS

The most common (and expected), effect of blocking GABAsR
and GIyR in the IC of awake mice was an increase in response
rate. There are a number of potential microcircuits that could
explain this effect. For example, the excitatory and inhibitory
inputs could be co-tuned in frequency such that the inhibitory
inputs decrease the response rate within the same frequency range
of the excitatory inputs (Kelly and Caspary, 2005; Mayko et al.,
2012) or the frequency tuning of the inhibitory inputs could be
more broadly tuned than the excitatory inputs creating lateral
inhibition (Yang et al., 1992; LeBeau et al., 2001; Mayko et al,,
2012). Both of these microcircuits are thought to affect responses
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FIGURE 10 | Consistent consensus trees under control (left panel) and
inhibition-blocked (right panel) conditions, for the neuron shown in
Figure 8. The two clustering trees are essentially identical. The only

difference in this case is a switch of stimulus 30kHz2Harm from node ¢72 to
the root ¢13. This indicates that inhibition does not alter the neuron’s
representation of vocalizations.

in the IC of mice to both simple stimuli and vocalizations (Mayko
etal., 2012).

Inhibition has also been shown to play a role in creating selec-
tivity to social vocalizations in the IC of mice and bats (Klug
et al., 2002; Xie et al., 2005; Mayko et al., 2012). We have previ-
ously shown, using the same vocalization stimuli as in the current
study, that altering the balance between excitation and inhibition
by pharmacologically blocking GABAergic and glycinergic recep-
tors in the IC decreases selectivity to social vocalizations in awake
mice (Mayko et al., 2012), and we found the same results in the
current study. Some of the observed selectivity loss may be due
to the complementary action of bicuculine on calcium-dependent
potassium channels. Inhibition may shape selectivity to vocaliza-
tions by keeping a neuron’s membrane potential at subthreshold
levels for some vocalizations and not others or by sharpening the
excitatory frequency tuning curve so that fewer vocalizations con-
tain energy that falls within the excitatory region (Portfors, 2004;
Mayko et al., 2012).

Previous studies examining selectivity to vocalizations in the
IC only used response rate as a metric for examining the influ-
ence of inhibition on encoding of vocalizations. Yet it is clear
that at least some neurons in IC can use temporal coding

for discriminating vocalizations (Schneider and Woolley, 2010;
Woolley and Portfors, 2013). As far as we know, ours is the first
study to examine the role of inhibition in shaping the fine tempo-
ral structure of neuronal responses to vocalizations in the IC. Our
results clearly indicate that inhibition does not have any major
effect on the temporal coding properties of IC neurons. When
we compared the temporal precision of all IC neurons, blocking
inhibition did not significantly modify the temporal dynamics of
any of them (R > 0.8 between the two conditions for neurons
that exhibited temporal coding), except for a single neuron (4.5%
of our population). This finding was somewhat unexpected as
inhibitory inputs to IC neurons can influence latency (Park and
Pollak, 1993; Le Beau et al., 1996) as well as shaping onset firing
patterns (Le Beau et al., 1996; Jen and Zhang, 1999; Wu et al,,
2006), and in light of the effects of bicuculline on fast potassium
channels (Kurt et al., 2006). See Isaacson and Scanziani (2011)
for a comprehensive review of the role of inhibition in shaping
cortical responses.

The main effect of inhibition that we could detect was a
marked decrease of information per spike in most cells in the
modified class. Since this measure is typically a proxy for the
energy efficiency of a neural code (Levy and Baxter, 1996), we
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FIGURE 11 | Truncated response tree of modified neuron from Figure 9. \While the whole clustering tree (not shown) was relatively inconsistent, the
truncated tree containing only the most robust classes showed consistent responses to specific classes of stimuli.

interpret this result to reflect an energy optimization role of
inhibition: inhibition decreases single neuronal capacity, while
leading to a comparatively large savings in energy of informa-
tion representation. The situation is compatible with the analysis
performed in multiple other systems (Levy and Baxter, 1996;
Laughlin et al., 1998; Laughlin, 2001; Lennie, 2003), indicating
that high spike rates decrease the energy efficiency of a neu-
ral code, and a distributed neural representation is more energy
efficient.

The neurons in the patterned class showed very small effects of
blocking inhibition. Apart from a small rise in spike rate, inhibi-
tion does not seem to influence these neurons at all. Specifically,
their coding properties seem completely invariant to the strength
of inhibitory input. The robustness of coding observed in the
unaffected neurons lead us to believe that they represent etho-
logically relevant information, which needs to be transmit-
ted quickly (high timing sensitivity), regardless of metabolic
cost.

We propose an iceberg model (Creutzfeldt et al., 1974; Rose
and Blakemore, 1974; Isaacson and Scanziani, 2011) to explain
our finding that inhibition in the IC does not affect the temporal
spiking patterns of neurons to vocalizations. Under this model,
the fine temporal structure of the response of a given neuron to
a given stimulus is primarily driven by excitation, and inhibition
is applied in a largely constant manner, which can be modeled
as a change in the threshold at which the underlying excitatory
structure is expressed in spikes. If this model is accurate, we
expect that blocking inhibition would cause a previously hidden
response structure to become more visible, as more of it exceeded

threshold. This is in contrast to models where the excitation and
inhibition interact on a fine time scale to shape the responses,
such that blocking inhibition might be expected to, for example,
change the occurrence times of the strongest components of the
response.

4.2. HETEROGENEITY OF TIMING CODES IN THE IC

Considering that vocalizations vary in frequency content and
amplitude over time, it is not surprising that neural responses
to different vocalizations have different magnitudes and tempo-
ral firing patterns. Thus, response rate and/or temporal firing
patterns may be used by individual neurons to different extents
to represent vocalizations. Indeed, in our sample of IC neurons,
some were essentially rate coders while others were sensitive to
spike timing on a millisecond time scale. The most obvious tem-
poral coders were the neurons in the patterned class with all of
these using a timing code. However, in all other classes, a sizable
subset of neurons exhibited high timing precision as well. Thus,
we establish spike timing as an important feature for discriminat-
ing vocalizations in the mammalian IC. Similarly, in the MLd of
zebra finches, individual neurons respond to different songs with
different temporal spike patterns and many neurons discriminate
songs using a timing code rather than a rate code (Schneider and
Woolley, 2010). Very similar timing codes occur in the forebrain
of birds (Wang et al., 2007) and the auditory cortex of guinea pigs
(Huetz et al., 2011; Gaucher et al., 2013). Moreover, timing in the
population activity of neurons in the human auditory cortex can
be used to accurately identify segments of speech (Mesgarani and
Chang, 2012; Pasley et al., 2012).
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Given the much higher information capacity and energy effi-
ciency of spike timing codes, one may wonder why a sensory
system may be using a rate code. We considered several alternative
explanations. A rate code is much easier to decode by down-
stream neurons than a more complex temporal code, so it may
be needed for low-capacity stimuli of high significance. Or, it may
be complementing the information of a temporal code by com-
municating different aspects of the stimulus (typically at slower
temporal dynamics) (Huxter et al., 2003). We do not believe the
latter is the case, as our measures did not register any tempo-
ral structure in the putative rate code. However, this may be a
consequence of the restrictions of the experimental manipula-
tion; presenting just 14 of the multitude of ethologically relevant
stimuli may have triggered the rate response of neurons without
their corresponding temporal representation. Further studies are
needed to discriminate between these two cases.

4.3. ENCODING OF VOCALIZATIONS IN THE INFERIOR COLLICULUS
AND AUDITORY CORTEX

An interesting parallel of this work was performed on the audi-
tory cortex of guinea pig (Gaucher et al., 2013). The two studies
are only partially comparable because of differences in experi-
mental manipulations. While both studies are concerned with the
effects of inhibition on the corresponding auditory structures, in
Gaucher et al. (2013) cortical inhibition was suppressed broadly
through a topical application of GABA, antagonists, while here
we applied the antagonists more locally and directly onto the neu-
rons we recorded from by using piggy-back electrodes (Havey
and Caspary, 1980). Thus, we can address more specific questions
about the effects of inhibition on individual neurons. However,
for that we forgo the capacity of assessing the effects of inhibi-
tion on populations of neurons, which is one of the strengths of
Gaucher et al. (2013).

In the cases where we can make a comparison, we also
observed similar increases in firing rates in general and infor-
mation rates for most of our neuron classes. In contrast, we
did not observe the increase of spike timing reliability reported
in Gaucher et al. (2013). This may indicate different processing
strategies between the IC and auditory cortex, but it may also be
a consequence of the different pharmacological protocols. Future
experiments should more directly compare coding strategies for
vocalizations along multiple sites in the auditory pathway.

5. CONCLUSIONS

There are multiple strategies by which an auditory system may
represent information about stimuli. One way may be having
highly selective neurons, where only one or two different vocal-
izations evoke a strong response from a single neuron. Another
strategy is to have specific spike timing patterns for particular
vocalizations such that each neural response can be matched to a
specific vocalization. We found that both of these strategies were
present in the IC. Furthermore, they were implemented with a
varied degree of temporal precision, from rate codes on a time
scale of 20 ms or larger (a long time scale for an ultrasonic sys-
tem), to temporal codes on a sub-millisecond time scale. Thus,
the IC employs diverse coding strategies for complex stimuli such
as vocalizations.

Local inhibition played surprisingly little role in shaping the
responses to vocalizations in the IC. When we disrupted the
inhibitory inputs of individual neurons and thus altered the bal-
ance of excitation and inhibition, we found the expected rate
increase in most neurons, but also found that the information
content, stimulus representation and timing precision of the
neural signals were essentially unchanged (and in some cases—
completely unchanged). Thus, the major effect of inhibition in
the IC seems to be a reduction of the overall spiking rate of
the system, presumably to drive it to a more energy efficient
regime.
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