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Higher plants possess a multitude of Multiple Drug Resistance (MDR) transporter
homologs that group into three distinct and ubiquitous families—the ATP-Binding Cassette
(ABC) superfamily, the Major Facilitator Superfamily (MFS), and the Multidrug And Toxic
compound Extrusion (MATE) family. As in other organisms, such as fungi, mammals,
and bacteria, MDR transporters make a primary contribution to cellular detoxification
processes in plants, mainly through the extrusion of toxic compounds from the cell or
their sequestration in the central vacuole. This review aims at summarizing the currently
available information on the in vivo roles of MDR transporters in plant systems. Taken
together, these data clearly indicate that the biological functions of ABC, MFS, and MATE
carriers are not restricted to xenobiotic and metal detoxification. Importantly, the activity
of plant MDR transporters also mediates biotic stress resistance and is instrumental in
numerous physiological processes essential for optimal plant growth and development,
including the regulation of ion homeostasis and polar transport of the phytohormone auxin.
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INTRODUCTION
Multiple Drug Resistance (MDR), the simultaneous acquisition
of resistance to multiple structurally and functionally unre-
lated cytotoxic compounds, is a widespread biological phe-
nomenon. One way by which a living cell can achieve MDR is
by actively extruding toxic compounds. Of the five transporter
families hitherto described to include multidrug efflux pumps—
Small Multidrug Resistance (SMR), Resistance/Nodulation/
Division (RND), ATP-Binding Cassette (ABC), Major Facilitator
Superfamily (MFS), and Multidrug And Toxic compound
Extrusion (MATE) (Paulsen, 2003)—only the ubiquitous ABC,
MFS, and MATE are found in higher eukaryotes. As with many
other conserved gene families, those of the ABC, MFS, and MATE
appear significantly more expanded in plants than in bacteria,
yeast or animals, with the Arabidopsis thaliana genome encoding
around 130 ABC, 120 MFS, and 58 MATE transporters (Huala
et al., 2001; Ren et al., 2004). Strikingly, the majority of the plant
transporters belonging to these three families remain to be func-
tionally characterized. We review here the available functional
data on these plant transporters (summarized in Table 1), sub-
stantiating not only a role in cellular detoxification but also in a
wide range of physiological processes.

ABC TRANSPORTERS
ABC transporters hydrolyze ATP to transport substrate molecules
across cellular membranes. All membrane-bound ABC pro-
teins consist of a double set of two basic structural mod-
ules: a transmembrane domain (TMD), typically containing six
membrane-spanning segments, and a cytoplasmic nucleotide-
binding domain (NBD), containing the ABC. The so-called
full-size ABC transporters contain all four elements in a single

polypeptide chain, while half-size transporters combine two
TMD-NBD units as homo- or heterodimers (Higgins et al., 1986).
In plants, full-size ABC transporters have been better studied.
Of the 53 Arabidopsis full-size members, all but two can be
divided into three groups: the multidrug resistance (MDR) or
P-glycoproteins (PGP) belonging to the ABCB subfamily, the
multidrug resistance-associated protein (MRP)/ABCC subfamily,
and the pleiotropic drug resistance (PDR) of the ABCG subfamily
(Sanchez-Fernandez et al., 2001).

ABC transporters came into spotlight when the MDR1 PGP
was found to determine MDR of cancer cells (Chen et al., 1986),
and in fact early studies of plant ABCs focused on a potential
role in cell detoxification. The sole MDR-like transport mecha-
nism reported in plants so far arose from the functional char-
acterization of one of the 21 full-size members of the ABCB
family, the Arabidopsis AtABCB1 gene, whose cloning disclosed
the occurrence of ABCs in plants (Dudler and Hertig, 1992).
Indeed, ectopic expression of AtABCB1 in Arabidopsis conferred
enhanced resistance to multiple xenobiotics, namely to various
classes of herbicides including dicamba, pendimethalin, oryzalin,
or monosodium acid methanearsonate, pointing to a resistance
mechanism relying on decreased retention or increased active
xenobiotic efflux from cells (Thomas et al., 2000; Windsor et al.,
2003). Several detailed studies also demonstrated that AtABCB1
and the closely related AtABCB19 are required for polar transport
of auxin, the major growth phytohormone, by facilitating cellular
efflux of indole-3-acetic acid (IAA), its predominant endogenous
form (Noh et al., 2001, 2003; Lin and Wang, 2005; Lewis et al.,
2007). Another extensively studied ABCB transporter, AtABCB4,
was implicated in root shootward auxin transport and appears
to function in both cellular IAA efflux and influx (Santelia et al.,
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Table 1 | Representative examples of plant MDR transporter homologs and their physiological functions.

Transporter Species Biological function(s) References

MDR/PGP—FULL-SIZE MEMBERS OF THE ABCB SUBFAMILY OF ABC TRANSPORTERS

ABCB1/PGP1 Arabidopsis thaliana Resistance to multiple xenobiotics including herbicides
Polar auxin transport

Thomas et al., 2000; Noh et al., 2001, 2003;
Windsor et al., 2003; Lin and Wang, 2005;
Lewis et al., 2007

ABCB4/PGP4 Arabidopsis thaliana Polar auxin transport Santelia et al., 2005; Terasaka et al., 2005; Cho
et al., 2007; Lewis et al., 2007; Wu et al.,
2007; Yang and Murphy, 2009

ABCB14/PGP14 Arabidopsis thaliana Polar auxin transport Stomatal closure regulation Lee et al., 2008; Kaneda et al., 2011

ABCB15/PGP15 Arabidopsis thaliana Polar auxin transport Kaneda et al., 2011

ABCB19/PGP19 Arabidopsis thaliana Polar auxin transport Noh et al., 2001, 2003; Lin and Wang, 2005;
Lewis et al., 2007

ABCB21/PGP21 Arabidopsis thaliana Polar auxin transport Kamimoto et al., 2012

ABCC (MRP) SUBFAMILY OF ABC TRANSPORTERS

ABCC1/MRP1 Arabidopsis thaliana Vacuolar sequestration of xenobiotic conjugates including
herbicides, of excess folates and of a conjugate of ABA
Tolerance to arsenic, cadmium and mercury

Lu et al., 1997; Raichaudhuri et al., 2009; Song
et al., 2010; Park et al., 2012; Burla et al., 2013

ABCC2/MRP2 Arabidopsis thaliana Vacuolar sequestration of xenobiotic conjugates including
herbicides and of a conjugate of ABA Vacuolar
sequestration of chlorophyll catabolites Tolerance to
arsenic, cadmium and mercury

Lu et al., 1998; Song et al., 2010; Park et al.,
2012; Burla et al., 2013

ABCC3/MRP3 Arabidopsis thaliana Vacuolar sequestration of xenobiotic conjugates including
herbicides Vacuolar sequestration of chlorophyll catabolites

Tommasini et al., 1998

MRP4/ABCC4 Arabidopsis thaliana Vacuolar sequestration of excess folates Regulation of
stomatal movements

Klein et al., 2004

ABCC5/MRP5 Arabidopsis thaliana Regulation of seed phytate content Regulation of stomatal
movements

Gaedeke et al., 2001; Klein et al., 2003; Suh
et al., 2007; Nagy et al., 2009; Kang et al., 2011

MRP3 Zea mays Vacuolar anthocyanin accumulation Goodman et al., 2004

MRP4 Zea mays Regulation of seed phytate content Shi et al., 2007

PDR—FULL-SIZE MEMBERS OF THE ABCG SUBFAMILY OF ABC TRANSPORTERS

ABCG30/PDR2 Arabidopsis thaliana Root exudation of phytochemicals Badri et al., 2009

ABCG36/PDR8 Arabidopsis thaliana Resistance to cadmium and sodium Resistance to fungal
and bacterial pathogens Resistance to synthetic auxins IBA
transport Root exudation of phytochemicals

Kobae et al., 2006; Stein et al., 2006; Kim
et al., 2007, 2010; Strader and Bartel, 2009;
Badri et al., 2012; Underwood and Somerville,
2013; Xin et al., 2013

ABCG37/PDR9 Arabidopsis thaliana Resistance to synthetic auxins IBA transport Ito and Gray, 2006; Ruzicka et al., 2010; Badri
et al., 2012

ABCG40/PDR12 Arabidopsis thaliana Sclareol resistance ABA transport Lead detoxification Campbell et al., 2003; Lee et al., 2005; Kang
et al., 2010

PDR1 Nicotiana plumbaginifolia Terpene transport Basal defense Jasinski et al., 2001; Stukkens et al., 2005

PDR5 Nicotiana tabacum Herbivore defense Bienert et al., 2012

TUR2 Spirodella polyrhiza Terpene transport including sclareol van den Brule et al., 2002

LR34 Triticum spp. Resistance to fungal pathogens Krattinger et al., 2009; Risk et al., 2013

MAJOR FACILITATOR SUPERFAMILY (MFS)

NRT1.1/CHL1 Arabidopsis thaliana Nitrate sensing Regulation of nascent organ development,
stomatal opening, seed germination and root architecture

Guo et al., 2001, 2003; Alboresi et al., 2005;
Remans et al., 2006; Walch-Liu and Forde,
2008; Ho et al., 2009

Pht1;1 Arabidopsis thaliana Pi uptake under Pi-sufficient and Pi-deficient environmental
conditions

Shin et al., 2004

Pht1;4 Arabidopsis thaliana Pi uptake under Pi-sufficient and Pi-deficient environmental
conditions

Misson et al., 2004; Shin et al., 2004

Pht1;5 Arabidopsis thaliana Pi mobilization from phosphorous source to sink organs Nagarajan et al., 2011

Pht1;8 Arabidopsis thaliana Pi uptake under phosphate starvation Remy et al., 2012

Pht1;9 Arabidopsis thaliana Pi uptake under phosphate starvation Remy et al., 2012

Pht4;1 Arabidopsis thaliana Basal defense against pathogens Wang et al., 2011

(Continued)
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Table 1 | Continued

Transporter Species Biological function(s) References

Pht4;2 Arabidopsis thaliana Root starch accumulation Leaf size Irigoyen et al., 2011

Pht4;6 Arabidopsis thaliana Tolerance to salt stress Biotic stress resistance Cubero et al., 2009; Hassler et al., 2012

STP1 Arabidopsis thaliana Uptake of hexoses by seeds and seedlings Monosaccharide
import into guard cells

Sherson et al., 2000

ZIF1 Arabidopsis thaliana Zinc tolerance via vacuolar sequestration of nicotianamine
Iron homeostasis

Haydon and Cobbett, 2007; Haydon et al., 2012

ZIF2 Arabidopsis thaliana Zinc tolerance via vacuolar sequestration Remy et al., 2014

ZIFL1 Arabidopsis thaliana Resistance to 2,4-D Cesium sensitivity Modulation of polar
auxin transport Regulation of stomatal apertures and
drought stress tolerance

Remy et al., 2013a,b

MATE FAMILY

ADP1 Arabidopsis thaliana Regulation of local auxin biosynthesis and plant architecture Li et al., 2014

ADS1 Arabidopsis thaliana Negative regulator of plant biotic stress resistance Sun et al., 2011

ALF5 Arabidopsis thaliana Root protection from inhibitory compounds Diener et al., 2001

DTX15/FFT Arabidopsis thaliana Flavonoid transport Root growth, seed development and
germination, and pollen development

Thompson et al., 2010

EDS5 Arabidopsis thaliana SA-dependent signaling for plant disease resistance Nawrath et al., 2002; Serrano et al., 2013;
Yamasaki et al., 2013

FRD3 Arabidopsis thaliana Citrate-mediated iron shoot/root translocation Zinc
tolerance

Durrett et al., 2007; Pineau et al., 2012

MATE Arabidopsis thaliana Citrate-mediated aluminum tolerance Liu et al., 2009

TT12 Arabidopsis thaliana Vacuolar transport of proanthocyanidin precursors in
seed-coat cells

Debeaujon et al., 2001; Marinova et al., 2007

ZRZ Arabidopsis thaliana Organ initiation Burko et al., 2011

MATE1 Eucalyptus
camaldulensis

Citrate-mediated aluminum tolerance Sawaki et al., 2013

AACT1 Hordeum vulgare Citrate-mediated aluminum tolerance Furukawa et al., 2007; Zhou et al., 2013

MATE1 Lotus japonicum Citrate-mediated iron translocation to nodule tissues Takanashi et al., 2013

MATE1 Medicago truncatula Vacuolar transport of proanthocyanidin precursors Zhao and Dixon, 2009

MATE2 Medicago truncatula Vacuolar transport of anthocyanins Zhao et al., 2011

JAT1 Nicotiana tabacum Vacuolar sequestration of nicotine Morita et al., 2009

MATE1 Nicotiana tabacum Vacuolar sequestration of nicotine Shoji et al., 2009

MATE2 Nicotiana tabacum Vacuolar sequestration of nicotine Shoji et al., 2009

FRDL4 Oryza satviva Citrate-mediated aluminum tolerance Yokosho et al., 2011

FRDL1 Oryza satviva Citrate-mediated iron shoot/root translocation Yokosho et al., 2009

MATE1 Oryza satviva Negative regulator of biotic stress and arsenic resistance
Plant development

Tiwari et al., 2014

MATE2 Oryza satviva Negative regulator of biotic stress and arsenic resistance
Plant development

Tiwari et al., 2014

Alt(SB) Sorghum bicolor Citrate-mediated aluminum tolerance Magalhaes et al., 2007

MATE Vigna umbellata Citrate-mediated aluminum tolerance Yang et al., 2011

2005; Terasaka et al., 2005; Cho et al., 2007; Lewis et al., 2007; Wu
et al., 2007; Yang and Murphy, 2009). Interestingly, recent find-
ings indicate that AtABCB4 is also able to mediate cellular influx
of 2,4-dichlorophenoxyacetic acid (2,4-D), rendering the carrier
a target of the herbicidal activity of this synthetic auxin (Kubes
et al., 2012). An Arabidopsis AtABCB4 homolog, AtABCB21, has
also been described to mediate IAA import/export, depending on
the cytoplasmic concentration of the phytohormone (Kamimoto
et al., 2012), while AtABCB14 and AtABCB15 have been asso-
ciated with polar auxin transport (PAT) in inflorescence stems
(Kaneda et al., 2011). Thus, all plant full-size ABCB (MRP/PGP)

transporters characterized to date contribute to PAT in vegeta-
tive tissues, directing long-distance auxin transport in mature
plants. Nevertheless, AtABCB14 was first reported as a malate
importer regulating stomatal closure (Lee et al., 2008), suggest-
ing that full-size ABCB carriers may play important roles in other
key processes.

ABCC (MRP) transporters, which have been typically associ-
ated with detoxification processes, were first identified in human
drug-resistant cancer cells (Cole et al., 1992). Most of the 15
Arabidopsis members are localized at the vacuolar membrane
(Rea, 2007), representing the only tonoplastic full-size ABC
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transporters described to date (Kang et al., 2011). A common
cellular detoxification strategy in plants is to sequester toxic com-
pounds in the vacuole to avoid deleterious effects on cytosolic
metabolism. Early studies showed that plant vacuolar accumula-
tion of glutathionated xenobiotics is ATP-dependent (Martinoia
et al., 1993), prompting the identification of the first plant ABCC
transporters. Indeed, AtABCC1, AtABCC2, and AtABCC3 are
implicated in vacuolar sequestration of conjugated xenobiotics
such as herbicides, with the latter two transporters functioning
also in endogenous chlorophyll catabolite detoxification (Lu et al.,
1997, 1998; Tommasini et al., 1998). Importantly, AtABCC1 and
AtABCC2 were recently described as phytochelatin transporters
with overlapping functions in plant tolerance to the metalloid
arsenic and the heavy metals cadmium and mercury (Song et al.,
2010; Park et al., 2012). There is also evidence pointing to a
role of AtABCC3 and AtABCC6 in responses to cadmium stress
(Tommasini et al., 1998; Gaillard et al., 2008). Furthermore,
both AtABCC1 (Raichaudhuri et al., 2009) and AtABCC4 (Klein
et al., 2004) are involved in vacuolar sequestration of excess
folates, whereas AtABCC5 is a high-affinity inositol hexakisphos-
phate (InsP6) transporter modulating seed phytate content (Nagy
et al., 2009) as its maize homolog ZmMRP4 (Shi et al., 2007).
Interestingly, both AtABCC4 (Klein et al., 2004) and AtABCC5
(Gaedeke et al., 2001; Klein et al., 2003; Suh et al., 2007) regu-
late stomatal movements, which in the case of AtABCC5 could be
linked to its InsP6 transport activity (Kang et al., 2011). Finally,
ZmMRP3 was shown to affect vacuolar anthocyanin accumu-
lation (Goodman et al., 2004), and a recent study implicated
AtABCC1 and AtABCC2 in vacuolar sequestration of a conjugate
of the phytohormone abscisic acid (ABA) (Burla et al., 2013). It
is therefore clear that plant ABCC transporters are involved in a
range of processes beyond detoxification, such as the transport of
primary and storage compounds or hormones and the control of
stomatal apertures.

PDR proteins are specific to plants and fungi and in
Arabidopsis comprise the 15 full-size members of the ABCG
subfamily, which uniquely among ABCs feature a reverse orga-
nization of the NBD and TMD domains in each unit (Crouzet
et al., 2006). All PDRs characterized so far are plasma membrane
transporters (Kang et al., 2011), and the first to be identified
in plants, the Spirodella polyrhiza SpTUR2 and the Nicotiana
plumbaginifolia NpPDR1, mediate the transport of terpenes
(Jasinski et al., 2001; van den Brule et al., 2002). SpTUR2 expres-
sion in Arabidopsis confers resistance to the diterpenoid sclareol,
as does the Arabidopsis AtABCG40 (Campbell et al., 2003) later
shown to function in cellular uptake of the sesquiterpenoid ABA
(Kang et al., 2010). Intriguingly, AtABCG40 also mediates detox-
ification of the heavy metal lead via a glutathione-independent
process (Lee et al., 2005). Another PDR transporter, AtABCG36,
is involved in cadmium (Kim et al., 2007) and sodium toxi-
city (Kim et al., 2010) resistance. Following the findings that
NpPDR1 secretes antifungal terpenoids (Jasinski et al., 2001)
and contributes to basal plant defense (Stukkens et al., 2005),
AtABCG36 was identified as a key factor in the resistance to fun-
gal and bacterial pathogens (Kobae et al., 2006; Stein et al., 2006;
Underwood and Somerville, 2013; Xin et al., 2013). Moreover,
both AtABCG36 and AtABCG37 excrete a range of synthetic

auxins, including 2,4-D, and indole-3-butyric acid (IBA), the
natural IAA precursor (Ito and Gray, 2006; Strader and Bartel,
2009; Ruzicka et al., 2010). Interestingly, AtABCG36, AtABCG37,
and AtABCG30 are involved in root exudation of phytochemicals
(Badri et al., 2009, 2012). Recent studies implicate the tobacco
NtPDR5 in herbivore defense (Bienert et al., 2012), while the
wheat PDR carrier LR34 confers resistance to fungal pathogens
(Krattinger et al., 2009; Risk et al., 2013). Thus, plant full-size
ABCG proteins play a preponderant role in metal and xenobiotic
detoxification as well as in biotic stress resistance, but also fulfill
functions in phytohormone transport.

MFS TRANSPORTERS
After ABCs, the MFS represents the second largest group of
transporters on earth. All MFS proteins are single-polypeptide
secondary carriers capable of transporting only small molecules
across membranes via a uniport, symport, or antiport mecha-
nism using chemiosmotic gradients as energy source (Pao et al.,
1998). Their protein domain organization typically consists of
two TMDs, each composed of six membrane-spanning segments,
flanking a central hydrophilic pore (Goswitz and Brooker, 1995).

The few plant MFS members characterized to date have been
essentially implicated in sugar (Buttner, 2007), or nitrate and
oligopeptide (Tsay et al., 2007) transport. The first monosaccha-
ride transporter identified in higher plants was the Arabidopsis
STP1 (Sauer et al., 1990), which is able to transport a wide range
of hexoses via a proton symport mechanism (Boorer et al., 1994)
and has reported functions in sugar uptake by seeds and seedlings
(Sherson et al., 2000) as well as by guard cells (Stadler et al.,
2003). A few other Arabidopsis MFS sugar transporters have been
functionally characterized, such as PLT5, a broad-spectrum H+-
symporter for polyols as well as for different hexoses and pentoses
in sink tissues (Klepek et al., 2005; Reinders et al., 2005). As for
plant MFS nitrate transporters, by far the best characterized is
AtNRT1.1 (CHL1) that functions as a nitrate sensor (Ho et al.,
2009). NRT1.1 possesses dual-affinity nitrate uptake activity (Liu
et al., 1999) and has been assigned a variety of signaling functions,
including in the modulation of nascent organ development (Guo
et al., 2001), stomatal opening (Guo et al., 2003), seed germina-
tion (Alboresi et al., 2005), and root architecture (Remans et al.,
2006; Walch-Liu and Forde, 2008). Importantly, this carrier also
represses lateral root growth at low nitrate availability by promot-
ing shootward auxin transport out of these roots, thus connecting
nutrient sensing and auxin-dependent developmental adaptation
(Krouk et al., 2010).

Furthermore, plant MFS transporters belonging to the Pht1
and Pht4 families mediate high- and low-affinity inorganic phos-
phate (Pi) transport, respectively (Guo et al., 2008; Nussaume
et al., 2011). Of the nine Arabidopsis Pht1 transporters, those
characterized so far are plasma-membrane-localized, with Pht1;1,
Pht1;4, Pht1;8, and Pht1;9 ensuring environmental Pi acquisition
(Misson et al., 2004; Shin et al., 2004; Remy et al., 2012), while
Pht1;5 mobilizes Pi from phosphorous source to sink organs
(Nagarajan et al., 2011). On the other hand, the six Arabidopsis
Pht4 members are suggested to mediate Pi transfer across internal
cellular membranes (Guo et al., 2008), with the plastidic Pht4;1
and Pht4;2 influencing basal defense against pathogens (Wang
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et al., 2011) and starch accumulation and leaf size (Irigoyen
et al., 2011), respectively. Finally, the Golgi-localized Pht4;6 deter-
mines salt tolerance and biotic stress resistance, affecting also
plant growth and development (Cubero et al., 2009; Hassler et al.,
2012).

A role for the MFS in plant metal homeostasis is also begin-
ning to emerge. The Arabidopsis tonoplast-localized ZIF1, initially
described as a transporter involved in basal tolerance to the heavy
metal zinc (Haydon and Cobbett, 2007), was later additionally
implicated in iron homeostasis and its substrate identified as the
low molecular mass metal chelator, nicotianamine (Haydon et al.,
2012). Very recently, the ZIF2 carrier was reported to also sus-
tain zinc tolerance in Arabidopsis by mediating its root vacuolar
sequestration. Interestingly, high zinc favors an intron retention
event in the ZIF2 5′UTR, promoting translation of the mRNA to
enhance plant tolerance to the metal (Remy et al., 2014). By con-
trast, a close Arabidopsis ZIF1 homolog, ZIFL1, does not function
in zinc homeostasis but instead confers resistance to 2,4-D and
sensitivity to the heavy metal cesium. This transporter exhibits
H+-coupled K+ transport activity and fulfills two distinct bio-
logical functions—while the full-length ZIFL1 protein is a root
tonoplastic transporter modulating shootward auxin transport,
a truncated splice form is targeted to the plasma membrane of
guard cells and regulates drought stress tolerance (Remy et al.,
2013b). The functional characterization of the ZIF2 and ZIFL1
transporters has hence revealed striking examples of the biologi-
cal impact of alternative splicing in plants, which remains largely
unknown (Carvalho et al., 2013).

MATE TRANSPORTERS
MATE transporters comprise the most recently identified of mul-
tidrug transporter families (Brown et al., 1999). They are charac-
terized by the presence of 12 putative transmembrane segments
and like MFSs are secondary active carriers that depend on elec-
trochemical gradients for their activity. Plant MATEs are thought
to function as H+-coupled antiporters and reportedly localize at
the plasma membrane or the tonoplast, carrying a diverse range
of compounds.

Transport activity for plant MATEs was first demonstrated for
the Arabidopsis DTX1 and ALF5. When heterologously expressed
in Escherichia coli, AtDTX1 serves as an efflux carrier for the
antibiotic norfloxacin, ethidium bromide, the plant-derived alka-
loids berberine, and palmatine as well as cadmium (Li et al.,
2002). Genetic analysis of AtALF5, whose expression in yeast
confers resistance to tetramethylammonium, revealed a role
in root protection from inhibitory compounds (Diener et al.,
2001). However, the first plant MATE transporter to be iden-
tified, AtTT12, was implicated in the vacuolar accumulation of
flavonoids, a class of plant-specific secondary metabolites, in
the seed coat (Debeaujon et al., 2001), and later confirmed to
be a tonoplast-localized vacuolar flavonoid/H+-antiporter active
in proanthocyanidin-accumulating seed-coat cells (Marinova
et al., 2007). Several other studies have corroborated a role for
MATEs in the vacuolar accumulation of proanthocyanins and
anthocyanins in different plant tissues, including in Arabidopsis,
Medicago truncatula, tomato, and grapevine (Mathews et al.,
2003; Gomez et al., 2009; Zhao and Dixon, 2009; Thompson et al.,

2010; Zhao et al., 2011). MATEs have also been shown to mediate
vacuolar transport of the major alkaloid nicotine in tobacco cells
(Morita et al., 2009; Shoji et al., 2009).

Importantly, vital roles for MATE transporters in plant toler-
ance to the heavy metal aluminum (Al) have been established.
Plants cope with Al phytotoxic concentrations in the rhizosphere
by releasing organic anions such as citrate that form stable non-
toxic complexes with the metal (Magalhaes, 2010), and MATEs
have been identified as major determinants of this Al tolerance
strategy in sorghum (Magalhaes et al., 2007), barley (Furukawa
et al., 2007), and rice (Yokosho et al., 2011). Citrate transporters
of the MATE family have also been linked to Al tolerance in
Arabidopsis, maize, wheat, rye, rice bean, or Eucalyptus camald-
ulensis, with a few of these MATEs conferring Al resistance when
heterologously expressed in other plant species (Liu et al., 2009;
Ryan et al., 2009; Maron et al., 2010; Yokosho et al., 2010; Yang
et al., 2011; Sawaki et al., 2013; Zhou et al., 2013). Interestingly,
citrate transport by AtFRD3 and OsFRDL1 is required for iron
root/shoot translocation in Arabidopsis (Durrett et al., 2007) and
rice (Yokosho et al., 2009), respectively. More recently, AtFDR3
was implicated in plant zinc homeostasis (Pineau et al., 2012),
while a citrate MATE transporter from the model legume Lotus
japonica assists in iron translocation to nodule tissues (Takanashi
et al., 2013).

Plant MATEs also function in the response to pathogen infec-
tion. An early study revealed a role for AtEDS5 in salicylic
acid (SA)-dependent disease resistance signaling (Nawrath et al.,
2002). Subsequent findings that the transporter mediates SA
export from the chloroplast, where synthesis of the signaling
molecule occurs, provided mechanist insight into EDS5’s con-
trol of plant disease tolerance (Serrano et al., 2013; Yamasaki
et al., 2013). Another Arabidopsis MATE involved in SA-mediated
pathogen response is ADS1, a negative regulator of plant biotic
stress resistance (Sun et al., 2011). More recently, heterologous
expression of two rice MATE genes in Arabidopsis was reported to
affect not only pathogen susceptibility, but also arsenic sensitivity
and plant development (Tiwari et al., 2014). Functional charac-
terization of another two plant MATE transporters, AtZRZ and
AtADP1, substantiated a role in development, namely in plant
architecture and organ initiation (Burko et al., 2011; Li et al.,
2014).

CONCLUDING REMARKS
Plant MDR transporter homologs substantially contribute to
cellular detoxification of metals and xenobiotic compounds as
well as to biotic stress resistance. Besides these rather expected
functions, most of the available functional data show that these
transporters also fulfill essential roles in numerous physiological
processes, ranging from hormone transport to the regulation of
ion homeostasis and stomatal movements, thus modulating plant
growth and development. Hitherto, and to the best of our knowl-
edge, an MDR transporter sensu stricto, i.e., a membrane pump
that exclusively catalyzes the cellular efflux of a broad range of
chemically distinct xenobiotics, has not been identified in plants.

Besides global ion homeostasis regulation, in which all three
plant MDR transporter families have long been implicated, the
physiological process reported to date to require the activity of the
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largest number of MDR transporter homologs is PAT, as exempli-
fied in Figure 1 for root shootward auxin transport in Arabidopsis.
Many key aspects of plant development are regulated by PAT,
whose rate-limiting step, cellular IAA efflux, relies primarily

on the regulated polar localization of PIN transporters at the
plasma membrane (Petrasek et al., 2006; Wisniewska et al., 2006).
Furthermore, all six characterized members of the Arabidopsis
PGP/ABCB subfamily contribute to PAT. While PINs and ABCBs

FIGURE 1 | Schematic representation of polar auxin transport (PAT) in

epidermal cells of the Arabidopsis root tip. According to the chemiosmotic
hypothesis, the proton gradient generated primarily by plasma membrane
H+-ATPases between the neutral cytoplasm and the acidic extracellular space
drives the polarized auxin cell-to-cell movement. In the acidic apoplastic
environment, a fraction of the weak acid IAA exists in its undissociated form,
which can passively diffuse through the plasma membrane inside the cell. By
contrast, the non-lipophilic and therefore less permeable proton-dissociated
auxin fraction requires the amino acid permease-like AUX1, which catalyzes
proton symport activity, to enter the cell. In the neutral cytosolic
environment, IAA exists mainly in its membrane-impermeant anionic form
that requires active transport to exit the cell. Hitherto, two distinct protein
families whose members possess IAA-exporting activity have been
associated with cellular polar auxin efflux. The best characterized auxin efflux
carriers are members of the unique and plant-specific PIN protein family,

believed to be secondary transporters energized by proton gradients. By
contrast, some plant homologs of the human MDR/PGP transporters
belonging to the ABCB subfamily, such as ABCB1, ABCB4, and ABCB19,
have been implicated in ATP-energized auxin efflux. Although activity of
ABCBs and the asymmetrical localization of AUX1 facilitates directionality of
auxin transport, the bias, and rate of shootward auxin transport are mainly
attributable to the highly regulated polar localization of the PIN2 transporter.
Dynamic polar sorting of PIN2 at the plasma membrane is sustained by
repeated steps of endocytic internalization and recycling back to the plasma
membrane via exocytosis. In addition, potassium transport activity of the
ZIFL1.1 tonoplastic carrier exerts a protective effect on PIN2
plasma-membrane stability. The hormonal activity of the auxin precursor IBA
requires its conversion to IAA through β-oxydation in the peroxysome. Two
members of the G-family of ABC transporters, ABCG36 and ABCG37, localize
to the outward face of root epidermal cells and efflux IBA from root cells.
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define two distinct IAA efflux systems, roles for ABCBs in pro-
viding IAA to PINs for vectorial transport (Mravec et al., 2008)
or in stabilizating PINs at the plasma membrane to enhance
IAA specificity (Blakeslee et al., 2007; Titapiwatanakun et al.,
2009) have been demonstrated. Thus, both efflux transport sys-
tems act concertedly to generate and maintain auxin gradients.
Importantly, auxin distribution can also be influenced by direc-
tional IBA transport across the plasma membrane, a role fulfilled
by AtABCG36 and AtABCG37 that act redundantly at outermost
root plasma membranes to export IBA from cells, thereby con-
tributing to IBA and auxinic compound sensitivity and regulating
multiple aspects of primary root development (Ruzicka et al.,
2010). Apart from ABC transporters, an Arabidopsis MFS mem-
ber was recently shown to act as a general positive modulator of
PAT by stabilizing PIN plasma-membrane abundance—ZIFL1.1
activity is required for fine-tuning of root shootward auxin trans-
port rates under conditions normally triggering PIN degradation
and regulates lateral root growth and root gravitropic responses
(Remy et al., 2013a,b). Moreover, the MATE AtADP1 transporter
appears to regulate local auxin levels in meristematic tissues to
control lateral organ growth in Arabidopsis (Li et al., 2014). Future
characterization of additional plant MFS and MATE members
will likely unveil a broader role for these transporter families
in PAT.
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