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It is well known that breathing introduces rhythmical oscillations in the heart rate and
arterial pressure levels. Sympathetic oscillations coupled to the respiratory activity have
been suggested as an important homeostatic mechanism optimizing tissue perfusion
and blood gas uptake/delivery. This respiratory-sympathetic coupling is strengthened
in conditions of blood gas challenges (hypoxia and hypercapnia) as a result of the
synchronized activation of brainstem respiratory and sympathetic neurons, culminating
with the emergence of entrained cardiovascular and respiratory reflex responses. Studies
have proposed that the ventrolateral region of the medulla oblongata is a major site
of synaptic interaction between respiratory and sympathetic neurons. However, other
brainstem regions also play a relevant role in the patterning of respiratory and sympathetic
motor outputs. Recent findings suggest that the neurons of the nucleus of the solitary
tract (NTS), in the dorsal medulla, are essential for the processing and coordination of
respiratory and sympathetic responses to hypoxia. The NTS is the first synaptic station of
the cardiorespiratory afferent inputs, including peripheral chemoreceptors, baroreceptors
and pulmonary stretch receptors. The synaptic profile of the NTS neurons receiving the
excitatory drive from afferent inputs is complex and involves distinct neurotransmitters,
including glutamate, ATP and acetylcholine. In the present review we discuss the role of
the NTS circuitry in coordinating sympathetic and respiratory reflex responses. We also
analyze the neuroplasticity of NTS neurons and their contribution for the development of
cardiorespiratory dysfunctions, as observed in neurogenic hypertension, obstructive sleep
apnea and metabolic disorders.
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INTRODUCTION
A dualistic concept of cardiovascular and respiratory systems
still prevails. However, the fundamental organizational precept
of cardiorespiratory control may be viewed as a unitary system.
Accumulating evidence strongly supports the notion that these
systems imperatively operate in a coordinated way to match the
processes of pulmonary ventilation and tissue perfusion (Hayano
et al., 1996; Giardino et al., 2003; Ben-Tal et al., 2012). Recordings
of parasympathetic and sympathetic nerves supplying the heart
and blood vessels indicate that the autonomic activity controlling
cardiac output and vascular resistance displays robust patterns of
discharge entrained with the respiratory cycle (Adrian et al., 1932;
Malpas, 1998; Barman and Gebber, 2000; Bouairi et al., 2004;
Gilbey, 2007; Grossman and Taylor, 2007). As a consequence,
the respiratory-related modulation of cardiovascular parasympa-
thetic and sympathetic activities produces rhythmical oscillations
in baseline heart rate (respiratory sinus arrhythmia) and arterial
pressure levels (Traube-Hering waves) (Moraes et al., 2012b). The
pattern of respiratory modulation of autonomic activity mod-
ifies according to the metabolic demand (blood gas changes,
for instance) and contributes to generate appropriate respiratory
and cardiovascular reflex responses (Dick et al., 2004; Molkov
et al., 2011). Therefore, it is undeniable that the respiratory and

cardiovascular systems establish interactions to form a unique
and dynamic system. In this review, we discuss the potential
neuronal sources underpinning the coupling of cardiovascular
and respiratory activities, with special attention to the neurons
of the nucleus of the solitary tract (NTS), which, due to their
anatomical, neurochemical and electrophysiological properties,
allow the processing of characteristic, often coupled, patterns of
respiratory and autonomic responses to specific physiological and
pathological mechanisms.

RESPIRATORY-SYMPATHETIC COUPLING:
VENTROMEDULLARY NEURONS AND BEYOND
Over the last decades, efforts have been made to identify the cel-
lular sources and neurochemical mechanisms responsible for the
cardiorespiratory coupling. Several studies have focused on the
interaction between respiratory and sympathetic activities due to
its relevance in the control of arterial pressure and its contribution
to the development of arterial hypertension (Zoccal et al., 2008;
Simms et al., 2009; Toney et al., 2010). Although the pattern of
respiratory-sympathetic coupling may vary according to the ani-
mal species, experimental condition (for instance, the presence
of anesthesia) and the nerve recorded (Malpas, 1998), baseline
sympathetic nerve activity to blood vessels in mammals exhibits
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phasic bursts that emerge during inspiratory/post-inspiratory
phase (Zhou and Gilbey, 1992; Dick et al., 2004; Zoccal et al.,
2008). Part of the respiratory oscillations of sympathetic activity is
associated with cyclic stimulation of peripheral afferent receptors,
including arterial baroreceptors and pulmonary stretch recep-
tors (Bernardi et al., 2001). However, the respiratory rhythmicity
of sympathetic activity persists after vagotomy and decerebra-
tion (Barman and Gebber, 1980), indicating that the coupling
of respiratory and sympathetic activities is generated within the
brainstem due to connections between neurons of sympathetic
and respiratory systems.

The ventral surface of the medulla oblongata has been pointed
out as the main site of synaptic interactions between respi-
ratory and sympathetic neurons. The ventral medulla houses
the pre-sympathetic neurons of the rostral ventrolateral medulla
(RVLM)—the major source of excitatory inputs to the pre-
ganglionic sympathetic neurons of the spinal cord that maintain
baseline arterial pressure in adequate levels (Guertzenstein and
Silver, 1974; Ross et al., 1984). Intermingled with the RVLM neu-
rons are the respiratory neurons of the ventral respiratory column
(VRC), which are considered the kernel of respiratory rhythm and
pattern generator (Smith et al., 1991, 2007; Moraes et al., 2011).
The VRC is composed by four distinct sub-nuclei: Bötzinger com-
plex (BötC), pre-Bötzinger complex (pre-BötC), rostral ventral
respiratory group (rVRG) and caudal ventral respiratory group
(cVRG) (Bianchi et al., 1995). Due to their anatomical proximity,
it has been suggested that the respiratory neurons of the ventral
medulla establish synaptic connections with the pre-sympathetic
neurons of the RVLM and generate the respiratory oscillation in
the sympathetic activity (McAllen, 1987; Haselton and Guyenet,
1989; Zhou and Gilbey, 1992; Miyawaki et al., 1995; Zoccal et al.,
2008).

Recent studies performing intracellular recordings of the
RVLM pre-sympathetic neurons using the in situ preparation of
rats identified different populations of C1 and non-C1 neurons
that exhibit spontaneous excitatory or inhibitory post-synaptic
potentials phase-locked with the respiratory cycle (Moraes et al.,
2013), thus supporting the notion that the RVLM is an impor-
tant site of respiratory input convergence (Haselton and Guyenet,
1989; Miyawaki et al., 1995). In addition to the RVLM, the
GABAergic neurons of the caudal ventrolateral medulla (CVLM),
which establish synaptic inputs with the RVLM neurons and pro-
vide the tonic inhibitory baroreflex control of sympathetic activity
(Schreihofer and Guyenet, 2003), also display distinct firing pat-
terns coupled to the respiratory cycle (Mandel and Schreihofer,
2006). Therefore, there is convincing evidence that the pre-
sympathetic neurons of the RVLM, either directly or indirectly
through the CVLM, receive the respiratory inputs necessary for
the generation of respiratory modulation of sympathetic activ-
ity. On the other hand, there are limited data on the literature
suggesting the sources of respiratory inputs to the sympathetic
neurons of the ventral medulla. Based on the fact the RVLM
and CVLM neurons exhibit distinct respiratory-related patterns
of discharge (inspiratory peak, post-inspiratory peak and inspi-
ratory depression) (Haselton and Guyenet, 1989; Mandel and
Schreihofer, 2006; Moraes et al., 2013), it is possible to specu-
late that both inspiratory and expiratory neurons of the VRC

may establish excitatory and inhibitory synapses with the sym-
pathetic neurons. In agreement with this idea, anatomical studies
have evidenced axon varicosities from the BötC neurons closely
apposed to the RVLM neurons, strongly suggesting synaptic con-
tacts between these two neuronal populations (Sun et al., 1997).
Studies showing that ponto-medullary transection eliminated
baseline respiratory-sympathetic coupling also suggest that the
respiratory neurons of the pons, which send projections to ven-
tromedullary regions (Dobbins and Feldman, 1994; Kubo et al.,
1998), may contribute to baseline respiratory-sympathetic cou-
pling (Baekey et al., 2008).

In addition to the lack of clear anatomical and functional
data showing the neural substrates responsible for the genera-
tion of respiratory modulation of sympathetic outflow at resting
conditions (eupnea), changes in the respiratory pattern mod-
ify the pattern of respiratory-sympathetic coupling. For instance,
peripheral chemoreceptor activation by cytotoxic (with cyanide)
or hypoxic hypoxia reflexly induces marked increases in inspira-
tory and expiratory motor activities combined with a sympatho-
excitatory response (Braga et al., 2007; Moraes et al., 2012a). This
increase in sympathetic activity is characterized by the emergence
of high amplitude bursts during the post-inspiratory phase (Dick
et al., 2004; Mandel and Schreihofer, 2009; Costa-Silva et al.,
2010)—a discharge pattern different from that observed at base-
line conditions (Figure 1). Changes in the respiratory pattern
and in the respiratory-sympathetic coupling are also observed in
conditions of hypercapnia, which causes an increase in the sym-
pathetic activity during the late part of expiratory period (prior
to the phrenic burst) coupled with the generation of active expi-
ratory pattern (Boczek-Funcke et al., 1992; Molkov et al., 2011).
Therefore, multiple synaptic interactions may exist between res-
piratory and sympathetic neurons, and either the recruitment or
the strengthening of these interactions essentially depends on the
activation of neurons regulating the respiratory pattern.

FIGURE 1 | Respiratory-sympathetic coupling at basal conditions and

during peripheral chemoreflex activation. Raw and integrated (
�

)
recordings obtained in a decerebrated, arterially-perfused in situ rat
preparation (for details, please see Zoccal et al., 2008) showing the
coupling of phrenic (PN) and thoracic sympathetic nerve activity (SN) at
basal conditions (normocapnia) and during peripheral chemoreflex
activation, evoked by intra-arterial administration of potassium cyanide
(0.05%, 50 μL; arrow). The shaded gray area delimitates the inspiratory
phase (I; coincident with phrenic burst) while the phrenic burst interval
correspond to expiratory phase (E).
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Accordingly, in spite of the unquestionable role of the ventro-
medullary neurons on the control and integration of respiratory
and sympathetic activities, other brain areas must be considered
as critical pieces of the circuitry regulating the coupling of respi-
ratory and sympathetic activities. In this scenario, the neurons of
the nucleus of the solitary tract (NTS) may play a relevant role
for the coordination of the respiratory and sympathetic activ-
ities, especially in conditions of metabolic challenges, probably
by acting as an integrative center to promote the activation of
specific pathways due to the combination of neurochemical and
neuroanatomical features.

THE NTS CIRCUITRY AND ITS INTEGRATIVE ROLE
The NTS is formed by heterogeneous groups of neurons located
in the dorsolateral medulla, extending from the level of cau-
dal portion of the facial nucleus to the caudal portion of the
pyramidal decussation (Loewy, 1990; Dampney, 1994). Previous
studies have demonstrated that the NTS plays a key role in the
processing of visceral afferent information and transmission to
other nuclei in the brainstem, forebrain and spinal cord (for
review, see Andresen and Kunze, 1994; Sapru, 1996; Johnson and
Thunhorst, 1997; Grill and Hayes, 2009). With respect to the
cardiovascular and respiratory systems, the majority of the car-
diorespiratory afferents converges preferentially to two different
regions of the NTS: the intermediate NTS (iNTS), at the level
of the area postrema, and the caudal NTS (cNTS), located cau-
dal to the calamus scriptorius (Kumada et al., 1990; Loewy, 1990;
Van Giersbergen et al., 1992). There is evidence supporting the
notion that the iNTS and cNTS 2nd-order neurons are organized
in clusters according to the afferent sensory information that they
received. For instance, the neurons of the iNTS receive mainly
afferent information from the arterial baroreceptors and from the
slow-adapting pulmonary stretch receptors (SARs) whilst afferent
inputs from peripheral chemoreceptors and rapid-adapting pul-
monary stretch receptors (RARs) converge to the neurons of the
cNTS (Mifflin et al., 1988; Mifflin, 1992; Machado, 2001; Kubin
et al., 2006). Therefore, depending on the sensory information,
distinct groups of NTS 2nd-order neurons are activated in order
to recruit specific efferent pathways (Aicher et al., 1996; Bailey
et al., 2006; Alheid et al., 2011; Song et al., 2011).

In association with the afferent-oriented organization, sev-
eral bioactive molecules were identified in the NTS region,
including amino acids (L-glutamate, GABA, glycine), biogenic
amines (noradrenaline, serotonin, acetylcholine), purines (ATP
and ADP) and peptides (angiotensin II, vasopressin, oxytocin),
with relevant role in the neurotransmission and neuromodula-
tion (for review, see Andresen and Kunze, 1994). These substances
may act either post-synaptically or exert their function on pre-
synaptic terminals modulating the release of other transmitters
(Andresen and Yang, 1990; Shigetomi and Kato, 2004; Peters
et al., 2008). Moreover, distinct 2nd-order neurons of the NTS
exhibit different electrophysiological properties (De Castro et al.,
1994; Doyle et al., 2004; Accorsi-Mendonca et al., 2011) that may
contribute to differential timing control of the viscera-sensory
information.

The combination of anatomical, neurochemical and electro-
physiological features of the NTS neurons allow that this nucleus

selectively integrates the sensory information and recruits spe-
cific neural pathways to generate appropriate cardiorespiratory
responses. Given this significance, it is evident that changes in the
normal functioning of the NTS neurons have great impact on the
control of sympathetic and respiratory activities with pathological
relevance, such as observed in animal models of arterial hyperten-
sion (Sato et al., 2002; Zhang and Mifflin, 2010) and in animals
exposed to chronic intermittent hypoxia (Reeves et al., 2003; Kline
et al., 2007; Almado et al., 2012). In the following sections, we
discuss the potential role of the NTS in coordinating sympathetic
and respiratory reflex responses, focusing on the neurotransmis-
sion and on the efferent brainstem pathways. The involvement
of neural pathways from the NTS to mid- and forebrain regions
will not be discussed in this review, since their involvement in the
respiratory-sympathetic coupling is not clear.

THE NTS AND THE RESPIRATORY-SYMPATHETIC COUPLING
DURING PERIPHERAL CHEMOREFLEX ACTIVATION
It is well known that prolonged exposure to low partial pressure
of arterial oxygen (PaO2) may produce persistent changes in the
cellular activity leading to tissue dysfunction and death (Peña
and Ramirez, 2005). To prevent this, a reflex system, named the
peripheral chemoreflex, was developed in order to evoke appro-
priated and coordinated cardiovascular and respiratory responses
to counteract the fall in PaO2. During hypoxia, the reduction of
PaO2 is detected by chemosensitive cells, mainly located in the
carotid bodies (Lahiri et al., 2006), which, in turn, send excitatory
inputs to the 2nd-order neurons of the cNTS (Teppema et al.,
1997; Cruz et al., 2010). These cNTS neurons are responsible
for the integration and transmission of the peripheral chemore-
ceptor signals to other brain regions, leading to the emergence
of sympathetic, parasympathetic and respiratory reflex responses
that increase arterial pressure, reduce heart rate and enhance
ventilation, respectively (Haibara et al., 1995; Colombari et al.,
1996; Sapru, 1996). Previous studies suggested that the sympatho-
excitatory response of the peripheral chemoreflex is dependent
on the activation of NTS neurons that send excitatory inputs to
the pre-sympathetic neurons of the RVLM (Aicher et al., 1996;
Koshiya and Guyenet, 1996a). Studies performed in anesthetized
rats (Dick et al., 2004; Mandel and Schreihofer, 2006) and unanes-
thetized in situ rat preparations (Costa-Silva et al., 2010) verified
that the peripheral chemoreflex-induced sympathetic response is
characterized by the emergence of higher amplitude bursts during
post-inspiratory phase followed by inhibition during early inspi-
ration (Figure 1). This pattern of sympathetic reflex response
occurs entrained with the responses of augmented phrenic burst
frequency (increased inspiratory drive) and increased abdomi-
nal burst amplitude (active expiration) (Moraes et al., 2012a).
Therefore, it has been suggested that the sympathetic response to
peripheral chemoreflex activation exhibit two components: one
independent and another dependent on the activation of respi-
ratory neurons (Koshiya and Guyenet, 1996b; Costa-Silva et al.,
2010). Recent evidence suggests that the processing and cou-
pling of the sympathetic and respiratory responses of peripheral
chemoreflex rely on the recruitment of different neuronal popula-
tion and/or neurochemical mechanisms in the cNTS (Braga et al.,
2007; Furuya et al., 2014).
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Previous studies performed in anesthetized animals proposed
that L-glutamate is a major excitatory neurotransmitter released
by the peripheral chemoreceptor afferents in the cNTS (Zhang
and Mifflin, 1993; Sapru, 1996; Gozal et al., 1999). However,
studies performed in unanesthetized rats and in the in situ rat
preparation failed to block the sympatho-excitatory and respi-
ratory responses elicited by peripheral chemoreceptor activation
after the antagonism of both ionotropic and metabotropic gluta-
matergic receptors (Machado and Bonagamba, 2005; Braga and
Machado, 2006), indicating that neurontransmitters other than
L-glutamate mediate the processing of these responses in the
cNTS. Afterwards, it was verified that the antagonism of both
ionotropic glutamate and P2-purinergic receptors in the cNTS
reduced significantly the magnitude of sympathetic response to
peripheral chemoreflex activation without affecting the tachyp-
neic response (Braga et al., 2007; Braccialli et al., 2008). Therefore,
the processing of sympathetic chemoreflex response by the cNTS
neurons involves a complex interaction between L-glutamate and
ATP (Accorsi-Mendonca et al., 2009). On the other hand, these
neurotransmitters, at the cNTS level, apparently are not essential
for the tachypneic reflex response, suggesting the involvement of
an additional neurotransmitter system.

Since a functional cholinergic system has been described in
the NTS (Ruggiero et al., 1990; Shihara et al., 1999), our group
recently assessed the contribution of acetylcholine (ACh) in the
processing of peripheral chemoreflex inputs in the cNTS using
the arterially-perfused in situ rat preparation. We verified that
microinjections of ACh in the cNTS did not change mean lev-
els of sympathetic activity but increased phrenic burst frequency
(Furuya et al., 2014). In spite of the lack of effects on mean lev-
els of sympathetic activity, microinjections of ACh in the cNTS
altered its coupling pattern with the respiratory activity, produc-
ing a shift of respiratory-related peak from the inspiratory to the
post-inspiratory phase associated with an inhibition during the
inspiratory phase (Furuya et al., 2014)—a pattern similar to that
evoked by peripheral chemoreflex activation (Dick et al., 2004;
Costa-Silva et al., 2010). Moreover, the antagonism of nicotinic
receptors in the cNTS prevented the ACh-induced tachypnea and
significantly reduced the tachypneic response following chemore-
flex activation, without affecting the magnitude of sympatho-
excitatory response (Furuya et al., 2014). In addition, the nicotinic
antagonism in the cNTS also prevented the ACh-induced change
in sympatho-respiratory coupling (Furuya et al., 2014). These
data suggest that cholinergic mechanisms of the cNTS, at least in
part, contribute to the processing of inspiratory response of the
peripheral chemoreflex activation and its entrainment with the
sympathetic activity. Recent studies have reported efferent pro-
jections from the cNTS to respiratory nuclei of the ventrolateral
medulla and dorsolateral pons (Takakura et al., 2006; Alheid et al.,
2011; Song et al., 2011) that may be involved with the emergence
of respiratory responses of peripheral chemoreflex. However, fur-
ther studies are still required to elucidate the respiratory nuclei
targeted by the cNTS neurons activated by ACh.

Accordingly, the cNTS possesses an intrinsic neuronal circuitry
that is essential for the precise coordination of evoked sympa-
thetic and respiratory responses during hypoxia (Figure 2). Our
recent data (Furuya et al., 2014) combined with previous studies

FIGURE 2 | Schematic drawing showing the possible cellular and

neurochemical mechanisms of the cNTS mediating the processing of

peripheral chemoreceptors inputs. The stimulation of peripheral
chemoreceptors evokes the release of L-glutamate in the cNTS (Mifflin,
1992; Andresen and Kunze, 1994). Experimental evidence indicates the
L-glutamate, in association with ATP, is essential for the processing of
sympatho-excitatory response of the peripheral chemoreflex in the cNTS
(Machado and Bonagamba, 2005; Braga et al., 2007). It is suggested that
both glutamatergic and purinergic systems interact and activate cNTS
neurons that send projections to pre-sympathetic neurons of the RVLM
(Accorsi-Mendonca et al., 2009, 2013). L-glutamate is also proposed to
mediate the activation of other neural pathways that are important for the
sympatho-excitatory component of peripheral chemoreflex, including those
to the A5 region, retrotrapezoid nucleus (RTN), parabrachial
nucleus/Kölliker-Fuse complex (PBN/KF) and hypothalamus (Koshiya and
Guyenet, 1994; Olivan et al., 2001; Haibara et al., 2002; Reddy et al., 2005;
Takakura et al., 2006; Queiroz et al., 2011; Song et al., 2011; Taxini et al.,
2011; King et al., 2012). In addition to L-glutamate and ATP, our recent
studies suggest that ACh in the cNTS significantly contributes to the
tachypnea and the patterning of sympathetic response of peripheral
chemoreflex (Furuya et al., 2014). We hypothesize that ACh activates cNTS
neurons that send projections to respiratory neurons of the ventral medulla
that, in turn, promotes the stimulation of inspiratory motor activity and the
patterning of sympathetic activity. The latter may involve the modulation of
the neurons of RVLM and of the caudal ventrolateral medulla (CVLM)
(Mandel and Schreihofer, 2009; Moraes et al., 2012c). However, it remains
to be elucidated the sources of ACh in the cNTS as well as the efferent
pathways activated by ACh in response to peripheral chemoreflex
activation.

(Braga et al., 2007), suggest that the respiratory and sympa-
thetic components of peripheral chemoreflex, in unanesthetized
conditions, are processed by 2nd-order cNTS neurons activated
by different neurotransmitters, including L-glutamate, ATP and
ACh. Whether ATP and ACh are released by afferent terminals,
likewise L-glutamate, or by other cells of the cNTS (glia or neu-
rons, respectively ATP and ACh) (Accorsi-Mendonca et al., 2013)
still remain to be elucidated. Nevertheless, the selective activation
of the 2nd-order neurons may be essential for the recruitment of
specific neural pathways promoting the increase in sympathetic
activity mainly during the post-inspiratory phase entrained with
the increases in inspiratory and expiratory motor activities. The
physiological meaning of the respiratory-sympathetic coupling
observed during peripheral chemoreflex activation is not clear
and requires further studies to be fully elucidated. Nonetheless,
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the sympathetic pattern during hypoxia is different from that
observed at baseline conditions or during hypercapnia (Molkov
et al., 2011), suggesting, therefore, that it may play a relevant
role in matching oxygen uptake/delivery and tissue perfusion in
conditions of low PaO2.

THE NTS AND THE PROCESSING OF CARDIOVASCULAR AND
PULMONARY FEEDBACK INFORMATION
The iNTS neurons receive mainly the afferent information from
mechanoreceptors located in the arterial blood vessels and pul-
monary walls (Mifflin and Felder, 1990; Kubin et al., 2006).
The arterial mechanoreceptors, named as arterial barorecep-
tors, are located in the aortic arc and carotid artery bifurcation
and provide a powerful inhibitory feedback control of sympa-
thetic activity, lowering the sympathetic vascular tonus in condi-
tions of increased arterial pressure (Chan and Sawchenko, 1998;
Gordon and Sved, 2002). This sympatho-inhibitory response
is mediated by the activation of excitatory 2nd-order neurons
of the NTS that, in turn, promotes the inhibition of RVLM
pre-sympathetic neurons through the activation of GABAergic
neurons of the CVLM (Aicher et al., 1995; Schreihofer and
Guyenet, 2003). Several pharmacological and electrophysiolog-
ical studies suggest that the L-glutamate is the main neuro-
transmitter released by baroreceptor afferents (Reis et al., 1981;
Bailey et al., 2006). However, Machado et al. (2000), reported
that the antagonism of ionotropic glutamatergic receptors in the
iNTS of awake rats was unable to block totally the hypotensive
response to baroreflex activation (induced by electrical stimu-
lation of the aortic depressor nerve), suggesting that the pro-
cessing of baroreflex afferent information may either involve
other regions of the NTS or other neurotransmitter systems than
L-glutamate.

In association with the sympatho-inhibitory response, activa-
tion of baroreceptors also prolongs expiratory time, reducing the
respiratory frequency (Richter and Seller, 1975; Lindsey et al.,
1998; Baekey et al., 2010). According to Baekey et al. (2010), the
expiratory lengthening induced by arterial baroreceptor activa-
tion results from the activation of post-inspiratory neurons of
the BötC, which, in turn, inhibit the central inspiratory activ-
ity (Smith et al., 2007). Since these post-inspiratory neurons may
also establish synaptic contacts with the pre-sympathetic neurons
of the RVLM (Sun et al., 1997), the baroreflex-induced acti-
vation of inhibitory post-inspiratory neurons of the BötC may
additionally contribute to depress the RVLM neuronal activity
(Baekey et al., 2010). Besides, with the post-inspiratory acti-
vation and the increase in expiratory time, the emergence of
inspiratory-related bursts of sympathetic activity is delayed and
the sympathetic activity is maintained at low levels. Therefore,
in addition to the classical NTS-CVLM-RVLM baroreflex arc,
a parallel respiratory-dependent pathway from the NTS to the
VRC also contributes to reduce sympathetic activity in condi-
tions of high arterial pressure. It remains to be elucidated whether
this respiratory baroreflex pathway relies on the different sub-
set of 2nd-order neurons (for instance, neurons receiving SAR
afferent information, as described below) or recruits neurotrans-
mitter other than L-glutamate (Machado et al., 2000; Baekey et al.,
2010).

Mechanoreceptors located mainly in pulmonary walls, includ-
ing the SARs and RARs, are important to reflexly control the cen-
tral respiratory command according to lung volume (for further
review, see Kubin et al., 2006). Although both receptors are sen-
sitive to pulmonary wall distension, the lung inflation feedback
control is evoked mainly by SAR afferent inputs (Bonham et al.,
1993). The vagal afferents from SARs terminates predominantly
in the ventrolateral portion of the iNTS (Kalia and Mesulam,
1980). In rats, different populations of neurons are suggested to
receive the afferent information from SARs: (i) inspiratory neu-
rons that fire during central inspiratory drive and are sensitive to
vagal stimulation (either excited or inhibited); (ii) pump cells (P
cells) that present action potentials in phase with lung inflation
cycle, but not with central inspiratory rhythm, and are activated
when lungs are overinflated (Bonham and McCrimmon, 1990;
De Castro et al., 1994). SARs stimulation initiates the Hering-
Breuer reflex and promotes the suppression of inspiratory motor
activity and prolongs the expiratory phase (Breuer, 1868; Hering,
1868; Backman et al., 1984; Kubin et al., 2006). The removal of
pulmonary feedback control, through vagotomy, results in large
increases of inspiratory amplitude and duration (Kubin et al.,
2006), evidencing an important role of the SARs feedback infor-
mation for baseline control of respiratory phase transition and
duration.

P cells of the iNTS are thought to be the main cellular source
integrating and transmitting the SAR afferent information to
pontine and medullary respiratory neurons (McCrimmon et al.,
1987; Bonham et al., 1993; Ezure et al., 2002; Molkov et al.,
2013), leading to the activation of the post-inspiratory neurons
of the BötC that, in turn, inhibit the inspiratory neuronal activ-
ity (Hayashi et al., 1996). By the fact that the antagonism of
ionotropic glutamatergic receptors in the iNTS of anesthetized
animals greatly attenuates baseline activity of P cells and impairs
the Hering-Breuer respiratory reflex responses (Bonham and
McCrimmon, 1990; Bonham et al., 1993), it has been suggested
that L-glutamate is the major neurotransmitter release by SAR
vagal afferent in the iNTS. Microinjections of glutamatergic ago-
nists into the iNTS excite P cells and promote apnea and expira-
tory lengthening like Hering-Breuer reflex (Bonham et al., 1993;
Gourine et al., 2008), corroborating the idea that L-glutamate
is released by SAR afferent inputs in the iNTS. In addition to
L-glutamate, there is evidence that other neurotransmitters may
play a role in the processing of pulmonary afferent information at
the level of iNTS. Studies by Gourine et al. (2008) demonstrated
that the concentrations of ATP and L-glutamate in the iNTS
increase in phase to lung inflation and independently on central
respiratory drive, suggesting that SAR afferents may release both
neurotransmitters. Also, injections of ATP in the iNTS mimic the
respiratory responses induced by lung inflation (Antunes et al.,
2005; Gourine et al., 2008) and the antagonism of purinergic
receptors significantly reduced basal activity of P cells (Gourine
et al., 2008). These results suggest that an interaction between glu-
tamatergic and purinergic systems may mediate the processing of
pulmonary feedback information at the level of iNTS.

Lung inflation also elicits a decrease in sympathetic activity
and vasodilation in addition to the respiratory responses (Gerber
and Polosa, 1978; Sellden et al., 1987; Yu et al., 1990), suggesting
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a possible correlation between the respiratory and sympathetic
responses to SAR activation. Since L-glutamate is suggested to
be the major neurotransmitter release by SAR afferents (Bonham
et al., 1993), it is possible to speculate that glutamatergic activa-
tion of P cells also mediates the reduction of sympathetic activity
associated with expiratory prolongation. In agreement with that,
studies have demonstrated that microinjections of L-glutamate
in the iNTS produce coupled inspiratory inhibition, expira-
tory lengthening and sympatho-inhibition (Berger et al., 1995;
Marchenko and Sapru, 2000). Alternatively, it is possible that the
sympathetic and inspiratory inhibitory responses to lung inflation
rely on interactions with neurons that are part of the baroreflex
pathway, which are also located in the iNTS and are activated by
L-glutamate (Bailey et al., 2006). Both possibilities, although not
proven experimentally, indicate that the iNTS possesses a com-
plex neuronal circuitry that is important to coupled respiratory
and sympathetic responses to cardiorespiratory mechanoreceptor
activation.

We recently verified that microinjections of ACh in the iNTS
reduce phrenic burst frequency, due to an increase in expira-
tory time, associated with reductions in sympathetic activity
(Furuya et al., 2014). Interestingly, this cholinergic system of the
iNTS apparently is not involved in the processing of the barore-
flex responses because the antagonism of cholinergic receptors
in the iNTS did not prevent the sympathetic and respiratory
responses elicited by increase in pressure (Furuya et al., 2014).
These findings suggest that the cholinergic neurotransmission in
the iNTS may also contribute to the processing of respiratory and
sympathetic responses of Hering-Breuer reflex. Nonetheless, this
possibility still requires further experiments to be proven.

Therefore, the respiratory and sympathetic changes induced
by Hering-Breuer activation may involve the release/co-release of
distinct neurotransmitters, which may interact and activate either
excitatory or inhibitory P cells (Kubin et al., 2006) or different
neuronal populations (P cells and baroreflex sensitive neurons)
within the iNTS.

NTS NEUROPLASTICITY AND THE DEVELOPMENT OF
CARDIORESPIRATORY DYSFUNCTIONS
In response to intensive stimuli, the afferents and neurons of the
NTS may exhibit plastic changes (Zhou et al., 1997; Chen et al.,
1999; Kline, 2008) that, in turn, modify the control of respi-
ratory and sympathetic activities. Depending on the degree of
plasticity, the changes in the NTS neuronal activity may persist
and contribute to the development and/or maintenance of car-
diorespiratory dysfunctions. This may be the case of pathological
conditions associated with potentiation of peripheral chemoreflex
responses and sympathetic overactivity (Narkiewicz et al., 1998;
Niewinski et al., 2013). Therefore, the understanding of the mech-
anisms promoting plastic changes in the NTS circuitry associated
with pathological conditions may help to develop potential ther-
apeutic venues to treat cardiorespiratory diseases, as discussed
below.

NEUROGENIC HYPERTENSION
There is compelling evidence indicating that hyperactivity of
the sympathetic nervous system is an important mechanism

producing the chronic elevation of arterial pressure in hyper-
tensive patients (Staessen et al., 2003), especially those that are
resistant to concurrent anti-hypertensive treatment (Esler, 2012).
Recent studies indicate that the surgical removal of the carotid
body peripheral chemoreceptors of juvenile (4-week old) sponta-
neous hypertensive rats (SHR), an experimental model for neuro-
genic hypertension, attenuates the development of hypertension
(Abdala et al., 2012). In adult SHR rats (12-week old), the carotid
body denervation significantly reduces arterial pressure and renal
sympathetic nerve activity levels (McBryde et al., 2013). The
high levels of sympathetic activity in SHRs exhibit an amplified
respiratory-sympathetic coupling, with augmented sympathetic
activity mainly during the inspiratory phase (Czyzyk-Krzeska and
Trzebski, 1990; Simms et al., 2009) that is also reduced with the
removal of carotid body chemoreceptors (McBryde et al., 2013).
Based on that, it has been proposed that heightened peripheral
chemoreceptor activity contributes to elevate baseline levels of
sympathetic activity and magnify the respiratory modulation of
sympathetic activity in SHR rats. Studies by Sato et al. (2001)
have shown that lesions of the cNTS also produce a significant fall
in the arterial pressure level in adult SHR, but not in normoten-
sive rats, suggesting that the development of hypertension in this
model may involve neuroplasticity within the NTS. In agreement
with this hypothesis, there are several studies demonstrating rele-
vant changes in the mechanisms of neurotransmission and neuro-
modulation in the NTS of SHR rats, including glutamate (Aicher
et al., 2003), angiontesin II (Shan et al., 2013), GABA (Mei et al.,
2003; Spary et al., 2008), nitric oxide (Hirooka et al., 2003) and
inflammatory molecules (Waki et al., 2008). Altogether, these
findings indicate that neurogenic hypertension is causally associ-
ated with potentiation of peripheral chemoreflex, in which plastic
changes of cNTS neurons receiving the afferent inputs from the
carotid bodies importantly contribute to elevate baseline sym-
pathetic activity and strength respiratory-sympathetic coupling.
The contribution of amplified respiratory-sympathetic coupling
for the development and maintenance of arterial hypertension
in SHR rats is still under investigation and is matter of debate
(Fatouleh and Macefield, 2011; Moraes et al., 2014).

CHRONIC INTERMITTENT HYPOXIA
Sensitization of the peripheral chemoreflex is observed in patients
suffering obstructive sleep apnea (OSA). Due to recurrent col-
lapses of upper airways, OSA patients frequently experience inter-
mittent episodes of hypoxia during sleep (Dempsey et al., 2010).
Overtime, untreated OSA patients develop arterial hypertension
associated with high levels of sympathetic activity (Somers, 1995)
and tonic chemoreflex activation (Narkiewicz et al., 1998). In
rodent models, the exposure to chronic intermittent hypoxia
(CIH) causes a sustained increase in baseline arterial pressure
that is prevented by carotid body denervation (Fletcher et al.,
1992). The hypertension induced by CIH in rats is associated
with high levels of baseline sympathetic activity (Zoccal et al.,
2007, 2008, 2009), enhanced baseline frequency of discharge
of RVLM pre-sympathetic neurons (Moraes et al., 2013), aug-
mented peripheral chemoreflex responses (Peng et al., 2003; Rey
et al., 2004; Braga et al., 2006), changes in the respiratory pat-
tern and strengthened respiratory-sympathetic coupling (Zoccal
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et al., 2008). Therefore, intermittent activation of the periph-
eral chemoreceptors, as observed in OSA patients, introduces
persistent changes in the neural pathways of peripheral chemore-
flex that culminate with the development of cardiorespiratory
dysfunctions.

With respect to the NTS, studies in vitro evidenced that AMPA-
evoked currents of isolated 2nd-order neurons of the cNTS are
enhanced in rats exposed to CIH (De Paula et al., 2007). Our
previous studies demonstrated that CIH rats exhibit augmented
sympatho-excitatory and blunted phrenic apneic responses to
microinjections of L-glutamate in the cNTS in association with
increased densities of NMDA and non-NMDA receptor sub-
unities within the cNTS (Costa-Silva et al., 2012). Altogether,
these studies indicate that CIH exposure promotes functional
changes in the glutamatergic neurontrasmission in the cNTS. In
addition to the glutamatergic mechanisms, Zhang et al. (2008)
reported that the outward currents mediated by ATP-sensitive
potassium channels (KATP) of 2nd-order neurons of the periph-
eral chemoreceptors of CIH rats are reduced—a fact that may
increase the excitability of these neurons. Accordingly, CIH expo-
sure appears to alter post-synaptic mechanisms in neurons of
the cNTS, amplifying the excitatory responses to glutamatergic
receptor activation.

Kline et al. (2007) have also documented that neurons of the
cNTS of rats submitted to CIH exhibit a higher basal frequency
of discharge due to an augmented spontaneous neurotrans-
mitter release by pre-synaptic terminals. Therefore, increased
spontaneous neurotransmitter release combined with amplified
post-synaptic glutamatergic excitatory responses may represent
an important mechanism producing enhanced basal and evoked
activity of cNTS neurons after CIH. As a consequence, higher
excitatory drive is transmitted to downstream sympathetic and
respiratory chemoreflex pathways, which contribute, at least in
part, to the development of cardiorespiratory dysfunctions asso-
ciated with CIH exposure. So far, there are no studies elucidating
the involvement of other neurotransmitters or neuromodulators
of the cNTS (for instance ATP or ACh) in the context of CIH. This
represents important possibilities to better understand the contri-
bution of the cNTS mechanisms to elevate baseline sympathetic
activity or modify the respiratory pattern and the respiratory-
sympathetic coupling in CIH rats, since the overactivity of RVLM
pre-sympathetic neurons induced by CIH mainly depends on
synaptic inputs rather than changes in their intrinsic properties
(Moraes et al., 2013).

OBESITY
Additionally to the classical neurochemical mechanisms, there is
evidence that peripheral molecules interfere with the activity of
the NTS neurons and then modify sympathetic and respiratory
activities. This peripheral-central crosstalk appears to have signif-
icance in the context of the cardiovascular dysfunctions related
to obesity. Obese individuals may develop arterial hypertension
associated with high levels of sympathetic activity (Hall et al.,
2010), by mechanisms not completely understood. Adipocytes are
considered as an endocrine tissue producing several substances
including interleukin-6, tumor necrosis factors-α, adiponectin
and leptin (Kershaw and Flier, 2004; Galic et al., 2010). Attention

has been given to the effects of leptin on the central mechanisms
controlling autonomic and respiratory activities. In addition to
its central effects suppressing appetite (Grill, 2006), it was shown
that leptin exerts excitatory effects on central nuclei controlling
sympathetic (Rahmouni et al., 2005; Mark et al., 2009) and respi-
ratory activities (Inyushkina et al., 2010; Malli et al., 2010; Bassi
et al., 2012, 2014; Chang et al., 2013), increasing baseline sympa-
thetic activity and stimulating breathing. By the fact that leptin
levels are enhanced in obese subjects (Considine et al., 1996),
this hormone can be considered as a relevant candidate acting
on central nervous system and contributing to the cardiovascular
changes associated with obesity.

Systemic administration of leptin has been shown to increase
c-fos expression in neurons of the cNTS (Elmquist et al., 1998;
Elias et al., 2000) and enhance phrenic burst amplitude (Chang
et al., 2013). Morevoer, microinjections of leptin in the NTS
increase renal sympathetic activity (Mark et al., 2009) and ven-
tilation (Inyushkin et al., 2009). Therefore, the NTS is a potential
target for action of circulating leptin. Importantly, both obesity
and high leptin levels have been observed in OSA patients, who
present a high risk to develop arterial hypertension than non-
obese OSA patients (Schafer et al., 2002; Harsch et al., 2003;
Patel et al., 2004). Therefore, a positive interaction between inter-
mittent hypoxia, peripheral chemoreflex activation and leptin
effects may be considered. In this regard, it was reported that
the sympatho-excitatory responses induced by either activation of
peripheral chemoreceptors or microinjections of L-glutamate in
the cNTS are potentiated by previous microinjections of leptin in
the cNTS (Ciriello and Moreau, 2012). Thus leptin enhances the
sympatho-excitatory responses to peripheral chemoreflex acti-
vation through its actions on cNTS neurons involved with the
processing of peripheral chemoreceptor inputs. The effects of
leptin on the chemoreflex-induced respiratory response and on
respiratory-sympathetic coupling are still to be determined.

CONCLUDING REMARKS
Although the precise physiological meaning of the respiratory-
sympathetic coupling in different conditions (resting, metabolic
challenges and physical exercise) is still under debate (Hayano
et al., 1996; Ben-Tal et al., 2012), there is evidence showing that
modifications in the central mechanisms underlying the interac-
tions between respiratory and sympathetic neurons are associated
with the development of sympathetic overactivity (Zoccal et al.,
2008; Simms et al., 2009; Toney et al., 2010). In this regard, the
identification of neuronal sources and targets as well as the corre-
sponding neurochemical mechanisms underlying the respiratory-
sympathetic coupling is required for a better comprehension of
this phenomenon and its pathological implications. In addition
to ventral medullary neurons, the NTS neurons play an essen-
tial role in coordinating respiratory and sympathetic adjustments
in response to activation of peripheral cardiovascular and pul-
monary afferent inputs, such as the baroreceptors, the pulmonary
stretch receptors and especially the peripheral chemoreceptors.
Due to its afferent-based organization, neurons of specific sub-
regions of the NTS may respond to different stimuli and generate
specific patterns of responses due to the recruitment of specific
downstream sympathetic and respiratory pathways.
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