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Over the past decade, second messenger communication has emerged as one of the
intriguing topics in the field of vasomotor control. Of particular interest has been the
idea of second messenger flux from smooth muscle to endothelium initiating a feedback
response that attenuates constriction. Mechanistic details of the precise signaling cascade
have until recently remained elusive. In this perspective, we introduce readers to
how myoendothelial gap junctions could enable sufficient inositol trisphosphate flux to
initiate endothelial Ca2+ events that activate Ca2+ sensitive K+ channels. The resulting
hyperpolarizing current would in turn spread back through the same myoendothelial
gap junctions to moderate smooth muscle depolarization and constriction. In discussing
this defined feedback mechanism, this brief manuscript will stress the importance of
microdomains and of discrete cellular signaling.
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INTRODUCTION
To optimize blood flow delivery to active tissue, tone in arteri-
ole networks is modified by prevailing mechanical and chemical
stimuli. These stimuli affect tone by altering smooth muscle con-
tractility through changes in the phosphorylation state of the
20-kDa regulatory light chain of myosin II (MLC20). The proxi-
mate regulators of MLC20 are myosin light chain- kinase (MLCK)
and phosphatase (MLCP), which are in turn controlled by mem-
brane potential (VM) and second messenger signaling. When
stimuli alter endothelial VM, charge moves to smooth muscle
through gap junctions (Emerson and Segal, 2000; Berman et al.,
2002; de Wit et al., 2006; Haddock et al., 2006) to elicit vaso-
motor responses (Little et al., 1995; Li and Simard, 2001; Hill
et al., 2002). While ionic movement, albeit cations, or anions,
through myoendothelial gap junctions (MEGJ) is responsible for
the endothelial-dependent hyperpolarization of smooth muscle
(Bartlett and Segal, 2000; Emerson and Segal, 2000; Coleman
et al., 2001; Budel et al., 2003; Dora et al., 2003; Diep et al.,
2005; Domeier and Segal, 2007; Tran et al., 2009), studies have
also pointed to the possibility of second messengers flux influ-
encing arterial tone (Dora et al., 1997; Uhrenholt et al., 2007).
In this regard, initial work centered on the moderation of ves-
sel constriction through the bulk movement of Ca2+ and/or IP3

from smooth muscle to endothelium (Dora et al., 1997; Yashiro
and Duling, 2000; Lamboley et al., 2005; Isakson et al., 2007).
More recently, studies have focused on discrete second messenger
movements from smooth muscle to elicit localized Ca2+ events
in the endothelium (Uhrenholt et al., 2006, 2007; Tallini et al.,

2007). This brief review will focus on the nature of second mes-
senger communication and how such movements could elicit
“myoendothelial feedback responses.”

INITIAL OBSERVATIONS OF MYOENDOTHELIAL FEEDBACK
The functional relevance of myoendothelial feedback was first
reported in the context of conducted responses. These vasomo-
tor responses are elicited by discrete agonist-induced changes in
VM that travel along the vessel wall (Bartlett and Segal, 2000;
Emerson and Segal, 2000; Coleman et al., 2001; Budel et al., 2003;
Dora et al., 2003; Diep et al., 2005; Domeier and Segal, 2007;
Tran et al., 2009). What intrigued investigators was the inability
of smooth muscle agonists, purported to constrict via depolar-
ization, to spread beyond the application site (Dora et al., 1997;
Yashiro and Duling, 2000, 2003). This lack of intercellular con-
duction was attributed to a myoendothelial feedback response
that sequentially involved: (1) bulk Ca2+ flux across MEGJs from
depolarized smooth muscle; (2) global elevation of endothe-
lial [Ca2+]; (3) activation of the dilatory effectors (nitric oxide
release Dora et al., 1997) or SK/IK channels (Yashiro and Duling,
2000, 2003); (4) redistribution of charge to counter the initial
smooth muscle response. While intriguing, recent studies have
shown that discrete smooth muscle stimuli fail to elicit conduc-
tion due to an inability to initiate depolarization (see Tran et al.,
2009; Tran and Welsh, 2009 for details). In light of this finding
and a range of biophysical limitations, the vascular field could
have dismissed the idea of myoendothelial feedback. Investigators
instead revised the concept taking into account new structural
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information and the ability to measure discrete endothelial Ca2+
events.

STRUCTURAL COMPOSITION OF MYOENDOTHELIAL
CONTACT SITES
ENDOTHELIAL PROJECTIONS
Resistance arteries are comprised of a single endothelial layer
surrounded by one or more smooth muscle layers. The internal
elastic lamina (IEL) is a layer of collagen and elastin separating
these two cell types. The thickness of the IEL was thought to pre-
clude direct contact between endothelium and smooth muscle.
Work over the last decade, however, have revealed the presence of
“holes” in the IEL, regions devoid of elastin (Sandow et al., 2002,
2006, 2009; Ledoux et al., 2008b). These regions contain thin
endothelial projections that extend through the IEL and make
contact with the overlying smooth muscle (Sandow et al., 2002,
2006, 2009). While the process by which they are formed remains
elusive, endothelial projections appear to retain structures such
as endoplasmic reticulum (ER), caveoli, and trafficking vesicles.
More importantly, the proteins essential to controlling resis-
tance vessel tone are preserved. These proteins will be discussed
below.

GAP JUNCTIONS
Gap junctions are comprised of two docking hemichannels (con-
nexons) that enable the movement of charge (anions and cations)
and small metabolites/molecules among neighboring cells (Revel
and Karnovsky, 1967). Each connexon is an oligomer of six con-
nexin (Cx) subunits (Caspar et al., 1977; Makowski et al., 1977),
each of which possess four hydrophobic membrane-spanning
domains, two conserved extracellular domains and three vari-
able intracellular domains. Connexins retain distinct molecular
properties and varying connexon composition alters the specific
permeability of gap junction channels (Bruzzone et al., 1996;
Willecke et al., 2002; Saez et al., 2005). This is exemplified by the
ability of Cx40 to enable passive diffusion of IP3 a key second mes-
senger (Sneyd et al., 1998; Kanaporis et al., 2011). Among the 21
members of the Cx family, Cx37, Cx40, Cx43, and Cx45 are typi-
cally observed in vascular cells (Little et al., 1995; Li and Simard,
2001; Hill et al., 2002). Immunohistochemical evidence suggests
that Cx expression in the endothelium is substantively higher
than in the smooth muscle (Sandow and Hill, 2000; Sandow
et al., 2003). Consistent with this view, coupling resistance among
endothelial cells (1.5–3.0 M�) (Lidington et al., 2000) was 30 fold
lower than among smooth muscle cells (Yamamoto et al., 2001).
Interestingly, myoendothelial coupling is orders of magnitude
greater than smooth muscle cells (>1800 M�) (Yamamoto et al.,
2001). This high resistivity is in agreement with the immunohis-
tochemical evidence demonstrating few Cx37 and Cx40 expressed
in IEL “holes” (Sandow et al., 2006). Although MEGJs are
present in endothelial projections passing through the IEL, not
all IEL holes possess endothelial projections. Indeed, as vessel size
increases, the incidence of MEGJs appears to decrease (Sandow
and Hill, 2000; Sandow et al., 2009) indicative of myoendothelial
feedback playing a greater role in small resistance arterioles. As
these MEGJs are sparsely distributed, the channels stimulated by
transiting second messengers must be very close to MEGJs.

IP3 RECEPTORS
The three isoforms of IP3R (i.e., IP3R1, IP3R2, IP3R3) are widely
expressed and uniquely distributing in a range of cells. In whole
mesenteric arteries, all 3 isoforms have been detected, with IP3R1
and IP3R2 appearing to be heavily expressed in endothelial cells
(Ledoux et al., 2008b; Sandow et al., 2009). These receptors are
important in vascular tone development, as they are involved in
regulating intracellular [Ca2+]. IP3 binds to the IP3Rs and lowers
the affinity of the stimulatory site for Ca2+, thereby promot-
ing channel opening and release of Ca2+ (Bootman et al., 1995;
Chalmers et al., 2007). In the presence of IP3, these receptors are
activated by intracellular [Ca2+] of ∼300 nM. Functional stud-
ies demonstrate that IP3Rs on the ER play an important role
in myoendothelial feedback as impairing ER Ca2+ mobilization
and inhibition of IP3Rs augmented agonist-induced contraction
(Nausch et al., 2012; Tran et al., 2012). The original model for
myoendothelial feedback required the flux of second messengers
across the MEGJs from the contracting smooth muscle. Given
that MEGJ communication is minimal, bulk diffusion of Ca2+
alone is unlikely to elevate endothelial [Ca2+] (Dora et al., 1997;
Kansui et al., 2008). If IP3 were to cross the MEGJs to elicit a
change in endothelial [Ca2+], the IP3Rs would have to localize
near the myoendothelial contact site in order to elicit a response.
Past immunohistochemistry studies support the view that a close
spatial relationship between IP3Rs and MEGJ proteins (i.e., Cx37
and Cx40) does indeed exist (Ledoux et al., 2008b; Sandow et al.,
2009; Nausch et al., 2012; Tran et al., 2012). Localization of IP3Rs
within the endothelial projections place these receptors in an ideal
position to respond when a small quanta of IP3 crosses the MEGJs
from contracting smooth muscle. Subsequent release of Ca2+
from the ER causes a discrete rise in endothelial [Ca2+]. In order
for a discrete rise in [Ca2+] to influence global [Ca2+], that Ca2+
must be able to affect neighboring Ca2+ sensitive ion channels.

CALCIUM ACTIVATED K+ CHANNELS
The likely candidates for discrete activation by Ca2+ are the cal-
cium activated K+ channels. Within this family of channels, the
SK and IK channels are purported to be the most important in
terms of myoendothelial feedback. To date, three members of the
SK channel family have been identified (i.e., KCa2.1–2.3). Due to
high degree of similarity with other SK channels, the previously
identified IK or KCa3.1 channel is often viewed as the fourth mem-
ber of the SK family. Both KCa3.1 and KCa2.3 channels are predom-
inantly expressed in the endothelial cells (Nilius and Droogmans,
2001; Taylor et al., 2003; Sandow et al., 2006). Both KCa2.3 and
KCa3.1 channels lack voltage sensitivity (Ledoux et al., 2008a); they
are instead gated by nanomolar intracellular [Ca2+] (i.e., EC50

300–500 nM) via coupling of calmodulin to the carboxy-terminus
acting as Ca2+ sensor (Bond et al., 1999; Schumacher et al., 2001).
In order to be involved in myoendothelial feedback, these chan-
nels must be localized within endothelial projections where the
discrete ER Ca2+ release occurs which is also near the MEGJ. In
fact, immunohistochemistry has repeatedly shown KCa3.1 chan-
nels are expressed in close proximity to MEGJs (Sandow and
Hill, 2000; Sandow et al., 2002, 2004, 2006; Haddock et al., 2006;
Dora et al., 2008; Tran et al., 2012). However, the KCa2.3 chan-
nels appear to be more diffusely distributed (Sandow and Hill,

Frontiers in Physiology | Vascular Physiology June 2014 | Volume 5 | Article 243 | 2

http://www.frontiersin.org/Vascular_Physiology
http://www.frontiersin.org/Vascular_Physiology
http://www.frontiersin.org/Vascular_Physiology/archive


Tran et al. Myoendothelial feedback

FIGURE 1 | Illustrative diagram of the myoendothelial feedback

pathway. Smooth muscle agonists activate G protein-coupled receptors
(GPCR) initiating IP3 production via phospholipase C (PLC). This second
messenger crosses myoendothelial gap junctions and triggers Ca2+ release
via IP3Rs positioned on the endoplasmic reticulum. As Ca2+ wavelets/
pulsars spread, they activate intermediate-conductance Ca2+-activated K+
(IK) channels within or near the endothelial projection. The resulting
hyperpolarization conducts back to smooth muscle where it sequentially
attenuates depolarization, Ca2+ influx through voltage-gated Ca2+ (VGCC)
and arterial constriction. Modified from Tran et al. (2012).

2000; Sandow et al., 2002, 2006, 2009). Further support for the
KCa3.1 channel was the functional evidence showing TRAM34, a
KCa3.1 channel blocker, but not apamin, a KCa2.x channel blocker,
inhibit myoendothelial feedback (Nausch et al., 2012; Tran et al.,
2012). Thus, the KCa3.1 channel appears to be localized within
the endothelial projection where it can be involved in myoen-
dothelial feedback. Activation of endothelial KCa3.1 channels leads
to hyperpolarization and mediates relaxation via transmission of
hyperpolarizing current through MEGJs.

CURRENT PERSPECTIVE
The original view of myoendothelial feedback has been adapted
and applied to a setting where constrictor agonists are glob-
ally applied to induce a depolarization-dependent constriction
(Figure 1). The extent of that depolarization, and thereby con-
striction, is reduced by negative myoendothelial feedback (Tran
et al., 2012). This feedback involves the generation of Ca2+
wavelets and/or perhaps Ca2+ pulsars within or near endothelial
projections (Nausch et al., 2012; Tran et al., 2012). Irrespective
of whether Ca2+ wavelets are kinetically distinct from Ca2+ pul-
sars, both events are spatially and temporally discrete, sensitive
to IP3R blockade and strikingly distinct from the global eleva-
tions of endothelial [Ca2+], reported in previous studies (Dora
et al., 1997; Yashiro and Duling, 2000; Lamboley et al., 2005). The
distinct characteristics of the Ca2+ wavelets are consistent with
the focal nature of IP3R expression within or near the endothelial
projections. Local elevations in Ca2+ activate KCa3.1 and perhaps
KCa2.3 channels expressed near the endothelial projections to elicit
hyperpolarization.

LIMITATIONS
Recent observations on myoendothelial feedback have provided
mechanistic insights into this process. This perspective is, how-
ever, built on measurements that assess the outcome of second
messenger flux and not transcellular flux itself. This is due to
the absence of techniques to directly evaluate IP3 movement.
It should also be recognized that the structural requisites for
myoendothelial feedback might not be present in all resistance
arteries. As such, caution should be applied when extending cur-
rent findings beyond the vascular beds of skeletal muscle or the
mesentery.

CONCLUSIONS
In summary, our understanding of the role myoendothelial feed-
back plays in vascular function has undergone considerable
refinement over the past decade. Starting from the unlikely model
of bulk Ca2+ flux (Dora et al., 1997; Yashiro and Duling, 2000,
2003), the field has progressed to a more discrete model involv-
ing specific channels and receptors positioned in close proximity
to one another (Tran et al., 2012). The discrete character of this
response was highlighted herein to provide a framework to eval-
uate other vascular functions that might be impacted by myoen-
dothelial feedback (i.e., angiogenesis). At the same time, this work
has implications for our understanding of vascular pathologies
like hypertension where conduction along the endothelium is
reduced (Kurjiaka, 2004; Kurjiaka et al., 2005). As conduction
relies on communication through MEGJs, this apparent decline
in MEGJ might be accompanied by a reduction in myoendothe-
lial feedback, which could contribute to the increased constriction
observed in the hypertensive vasculature. In any case, further
work is required to better understand the functional implications
of myoendothelial feedback for the resistance vasculature.
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