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Background: Mitochondrial permeability transition pore (mPTP) opening is a terminal
event leading to mitochondrial dysfunction and cell death under conditions of oxidative
stress (OS). However, mPTP blockade with cyclosporine A (CsA) has shown variable
efficacy in limiting post-ischemic dysfunction and arrhythmias. We hypothesized that
strong feedback between energy dissipating (mPTP) and cardioprotective (mKATP)
channels determine vulnerability to OS.

Methods and Results: Guinea pig hearts (N = 61) were challenged with H2O2 (200 μM)
to elicit mitochondrial membrane potential (��m) depolarization. High-resolution optical
mapping was used to measure ��m or action potentials (AP) across the intact heart.
Hearts were treated with CsA (0.1 μM) under conditions that altered the activity of mKATP
channels either directly or indirectly via its regulation by protein kinase C. mPTP blockade
with CsA markedly blunted (P < 0.01) OS-induced ��m depolarization and delayed loss
of LV pressure (LVP), but did not affect arrhythmia propensity. Surprisingly, prevention
of mKATP activation with the chemical phosphatase BDM reversed the protective effect
of CsA, paradoxically exacerbating OS-induced ��m depolarization and accelerating
arrhythmia onset in CsA treated compared to untreated hearts (P < 0.05). To elucidate
the putative molecular mechanisms, mPTP inhibition by CsA was tested during conditions
of selective PKC inhibition or direct mKATP channel activation or blockade. Similar to BDM,
the specific PKC inhibitor, CHE (10 μM) did not alter OS-induced ��m depolarization
directly. However, it completely abrogated CsA-mediated protection against OS. Direct
pharmacological blockade of mKATP, a mitochondrial target of PKC signaling, equally
abolished the protective effect of CsA on ��m depolarization, whereas channel activation
with 30 μM Diazoxide protected against ��m depolarization (P < 0.0001). Conditions
that prevented mKATP activation either directly or indirectly via PKC inhibition led to
accelerated ��m depolarization and early onset of VF in response to OS. Investigation
of the electrophysiological substrate revealed accelerated APD shortening in response to
OS in arrhythmia-prone hearts.

Conclusions: Cardioprotection by CsA requires mKATP channel activation through a
PKC-dependent pathway. Increasing mKATP activity during CsA administration is required
for limiting OS-induced electrical dysfunction.
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INTRODUCTION
Mitochondria are central mediators of the cardiac response to
oxidative stress (OS), as they respond to reactive oxidative species
(ROS) through a host of ROS sensitive channels, which can either
amplify or limit ROS-induced injury (O’Rourke et al., 2007). Of
key importance to OS-induced mitochondrial dysfunction are the
inner membrane anion channel (IMAC) and components of the
mitochondrial permeability transition pore (mPTP). Both chan-
nel complexes activate in response to rising ROS levels. However,
as described by Aon and colleagues, they exhibit a hierarchal acti-
vation pattern (Aon et al., 2007): IMAC activates first in response

to moderate levels of OS followed by the activation of the large
conductance mPTP, which leads to irreversible mitochondrial
membrane potential (��m) depolarization (i.e., induction of the
mitochondrial permeability transition, MPT) (Aon et al., 2007).
Indeed, both channels have been implicated in mitochondrial
dysfunction through a regenerative, autocatalytic process known
as ROS-induced ROS-release (RIRR) which can culminate in elec-
trical dysfunction or cell death (Zorov et al., 2000, 2006; Yang
et al., 2010; Biary et al., 2011; Akar, 2013).

While the role of the mPTP in the activation of necrotic
cell death pathways is well established, we and others have
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demonstrated the importance of IMAC in OS-induced
arrhythmias (Akar et al., 2005; Akar and O’Rourke, 2011).
In those studies, IMAC (but not mPTP) blockade effectively
abrogated pathological OS-induced ��m and action potential
(AP) oscillations and prevented post-ischemic arrhythmias
(Akar et al., 2005). It is important to note, however, that our
previous studies focused on relatively short episodes of ischemia-
reperfusion (I/R) injury which did not result in myocardial
infarction (MI) (Akar et al., 2005; Lyon et al., 2010). Given the
hierarchal nature of mitochondrial channel activation (Aon et al.,
2007), we hypothesized that the mPTP may only play a promi-
nent role under conditions of more extreme OS. Indeed, the
immunosuppressive agent, Cyclosporin A (CsA), a desensitizer
of the mPTP in the heart through its effect on Cyclophilin-D
(CyP-D), has been shown to be effective in reducing infarct size in
patients (Piot et al., 2008; Hausenloy et al., 2012). Despite these
encouraging clinical findings, the efficacy of CsA in preventing
arrhythmias is unclear (Arteaga et al., 1992; Ko et al., 1997;
Schreiner et al., 2004), and recent experimental, preclinical (Lie
et al., 2008), and clinical findings (Ghaffari et al., 2013) have
cast new doubts regarding the overall utility and safety profile
of CsA.

Mitochondria play a dual role: on the one hand, they initiate
cell death and injury pathways through energy dissipating chan-
nels, such as the mPTP, but on the other, they act as central medi-
ators of cardioprotection (Penna et al., 2013). Indeed, multiple
stimuli (i.e., ischemic pre- and post-conditioning protocols, phar-
macological agents and volatile anesthetics) limit cardiac damage
by activating powerful cardioprotective signaling cascades which
converge on mitochondria, in large part, through mitochondrial
ATP-sensitive K (mKATP) channels (Liu et al., 1998, 1999; Sato
and Marban, 2000; Garlid et al., 2009). Whether mKATP channels
functionally interact with components of the mPTP in a man-
ner that modulates the response of the heart to OS is unclear.
In the present study, we set out to address this issue directly in
a model of acute OS that was specifically designed to elicit signif-
icant ��m depolarization and electrical dysfunction. We found
that the efficacy of CsA in limiting OS-induced mitochondrial
and electrical dysfunction was dictated by strong functional cross-
talk between the mPTP and mKATP channels through a protein
kinase C (PKC)-dependent pathway. Our findings highlight the
importance of enhancing mKATP channel activity during CsA
administration for limiting OS-induced electrical dysfunction,
and may explain discrepant reports of the utility and potential
toxicity of CsA.

MATERIALS AND METHODS
All procedures involving the handling of animals were approved
by the Animal Care and Use Committee of the Mount Sinai
School of Medicine and adhered with the Guide for the Care
and Use of Laboratory Animals published by the National
Institutes of Health. Guinea pig hearts (N = 61) were rapidly
excised, washed with ice cold cardioplegic solution, transferred
to a Langendorff apparatus, and retrogradely perfused through
the aorta with oxygenized (95% O2–5% CO2) Tyrodes solu-
tion containing (in mM): 130 NaCl, 1.2 MgSO4, 25 NaHCO3,
4.75 KCl, 5 Dextrose, and 1.25 CaCl2 at 36 ± 1◦C. Perfusion

pressure was maintained at 60–65 mmHg by adjusting perfusion
flow rate. Hearts were suspended in the buffer filled, temper-
ature controlled chamber, as we have recently reported (Jin
et al., 2010; Lyon et al., 2010). Volume-conducted electrocar-
diograms were recorded for rhythm analysis using non-contact
silver electrodes placed within the chamber. ECG signals were
recorded continuously throughout the entire ex vivo perfusion
protocol. Left ventricular (LV) cavity pressure (LVP) was mea-
sured using a buffer filled latex balloon (Harvard apparatus)
that was carefully inserted through the mitral valve into the
LV cavity. Signals were amplified (ECG100-MP150 Amplifier,
Biopac Systems, CA, USA) and displayed in real-time using the
AcqKnowledge 3.9 software package (Biopac Systems). Hearts
were positioned such that the mapping field was centered over
a 4 × 4-mm2 region of LV epicardium, midway between apex
and base. These preparations remain stable for over 4 h of
perfusion.

HIGH-RESOLUTION OPTICAL ��m IMAGING IN EX VIVO PERFUSED
GUINEA PIG HEARTS
We used a validated semi-quantitative imaging technique of opti-
cal ��m mapping using the ��m-sensitive dye tetramethylrho-
damine methylester (TMRM) (Jin et al., 2010; Lyon et al., 2010;
Smeele et al., 2011; Nederlof et al., 2013). This method allows
the assessment of mitochondrial function at a subcellular res-
olution within the intact organ (Jin et al., 2010; Lyon et al.,
2010). Briefly, following cannulation, hearts were allowed to sta-
bilize for 20 min at physiological temperature. Hearts were then
stained with TMRM (250 nM; Molecular Probes Inc.) mixed in
a 500 mL volume of Tyrodes solution (dye loading phase) for
20 min. This was followed by a 20–30 min dye washout phase.
TMRM background fluorescence intensity was measured period-
ically (in 1 min intervals) throughout the entire experiment using
a 6400 pixel CCD based optical imaging approach that allowed
the measurement of normalized ��m with subcellular resolu-
tion (50 μm) over a 4 × 4-mm2 window of the epicardial surface.
To measure TMRM background fluorescence, hearts were excited
with filtered light (525 ± 20 nm) emitted from a quartz tungsten
halogen lamp (Newport Corporation, CT, USA). Emitted fluo-
rescence was filtered (585 ± 20 nm for TMRM) and focused onto
a high-resolution CCD camera (Scimeasure, GA, USA). During
dye washout, the stability of TMRM background fluorescence was
evaluated in real-time, as this baseline level served for normal-
ization purposes during OS. In all experiments, the dye washout
phase was associated with stable signal intensity.

High-throughput analysis of optical signals was performed
using custom designed software. Peak emitted TMRM fluores-
cence signal from each of 6400 pixels was measured before and
after excitation. TMRM background fluorescence was baseline
corrected by subtracting fluorescence levels before dye staining
(<0.1%) for each pixel. Background corrected TMRM fluores-
cence (��m) during the OS protocol was then normalized to the
value of steady-state TMRM fluorescence achieved during the dye
washout phase for each of the 6400 individual pixels. Normalized
��m measurements during OS across the imaged 4 × 4-mm2

region of the heart were plotted as contour maps using Delta
Graph 5.6 (Red Rock Software).
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HIGH-RESOLUTION OPTICAL ACTION POTENTIAL MAPPING IN EX VIVO
PERFUSED HEARTS
For optical AP mapping studies, hearts were stained with di-4-
ANEPPS for 10 min as previously described (Akar et al., 2005;
Xie et al., 2013). Hearts were paced at a steady-state pacing cycle
length (PCL) of 300 ms. Unlike ��m imaging, optical AP map-
ping requires motion suppression; hence 10 mM BDM was used
in this subset of studies.

EX VIVO MODELS OF ACUTE OS LEADING TO IRREVERSIBLE ��m

DEPOLARIZATION
Perfusion of hearts with H2O2 is a well-established model of
acute OS that results in triggered activity (Sato et al., 2009)
as well as sustained atrial (Morita et al., 2010) and ventricu-
lar tachyarrhythmias (Morita et al., 2009; Biary et al., 2011).
Following dye washout and stabilization, hearts were perfused
with 200 μM H2O2 (Sigma-Aldrich) in Tyrodes for 30 min to
elicit OS. We found that this model consistently gives rise to the
regenerative process of RIRR (Biary et al., 2011), which culmi-
nates in significant ��m depolarization, contractile and electri-
cal dysfunction (Figure 1). This model served as the platform
for investigating the role of mitochondrial ion channel com-
plexes in the modulation of OS-induced ��m and arrhythmias.
Specifically, we focused on the role of the mPTP and its cross-
talk with the mKATP. The following agents and concentrations
were used in the present study: (a) CsA (0.1 μM, mPTP blocker),
(b) Chelerythrine Chloride (CHE, 10 μM, PKC inhibitor), (c)
5-Hydroxydecanoate (5-HD, 100 μM, mKATP blocker), and (d)
diazoxide (DZX, 30μM, mKATP agonist). Drug delivery was initi-
ated 10 min before OS and was maintained throughout the entire
protocol.

STATISTICAL ANALYSIS
Values were expressed as mean ± SE. Differences between two
groups were compared using the Student’s t-test and were con-
sidered significant for p < 0.05.

RESULTS
ACUTE MODEL OF OS-INDUCED MITOCHONDRIAL AND ELECTRICAL
DYSFUNCTION
The main objective of the present work was to test the efficacy
of mPTP blockade in protecting against OS-induced mitochon-
drial and electrical dysfunction. To that end, we used a simple
ex vivo model of acute OS by H2O2 challenge (Figure 1A). This
consistently resulted in significant ��m depolarization, contrac-
tile, and electrical dysfunction. Within 40 min of H2O2, 5/6 hearts
underwent spontaneous onset of VF with the remaining heart
exhibiting electrical silence. As such, this model served as a reli-
able platform for investigating the role of mitochondrial ion
channel complexes in the functional modulation of OS-induced
mitochondrial and electrical dysfunction.

CsA PROTECTS AGAINST OS-INDUCED MITOCHONDRIAL AND
CONTRACTILE BUT NOT ELECTRICAL DYSFUNCTION
We began by investigating the efficacy of CsA in altering the func-
tional response of hearts to acute OS. Shown in Figure 1B are
��m isopotential contour maps from untreated (control) and

FIGURE 1 | CsA delays OS-induced mitochondrial and contractile

dysfunction. (A) Model of acute OS. Continuous 200 μM H2O2 perfusion
for 30 min leads to ��m depolarization and initiation of VF. (B) Sequences
of isopotential contour maps depicting the spatio-temporal distribution of
��m in representative control (untreated) and CsA-treated hearts following
challenge with H2O2 (200 μM) for 30 min. (C) Average ��m response to
acute OS in all control and CsA treated hearts.

CsA-treated hearts following challenge with H2O2. Also shown
are the average normalized ��m responses from all hearts. As
expected, H2O2 challenge resulted in significant ��m depolar-
ization in control hearts. On average, ��m was reduced by 22.1%
within 30 min of H2O2 perfusion. Remarkably, CsA treatment
completely abolished this response, as ��m remained fully polar-
ized during the same time-course in CsA-treated compared to
untreated control hearts (Figure 1). Following 30 min of H2O2

challenge, ��m was 19.3% greater (p = 0.021) in CsA-treated
compared to control hearts.

We next tested whether modulation of OS-induced ��m

depolarization and its prevention by CsA had a functional
impact in terms of contractile (Figures 2A–C) and electrical
(Figures 2D,E) properties. As expected, H2O2 perfusion in con-
trol hearts resulted in a gradual decrease and eventual loss of
contractile function. Interestingly, prevention of ��m depolar-
ization by CsA was associated with relative protection against
contractile dysfunction as the loss of LVP was delayed by >8 min,
p = 0.01 (Figure 2). We next investigated whether protection
against OS-induced mitochondrial dysfunction by CsA translated
into an electrical benefit by either preventing or delaying the onset
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FIGURE 2 | CsA does not protect against electrical dysfunction. (A)

Representative time-series of LV pressure waveforms during 30 min of
H2O2 challenge, indicating reduction and ultimate loss of contractile
function. Loss of LVP is delayed in CsA treated hearts. (B,C) Average LVP
normalized to the baseline pre-H2O2 value in all control and CsA hearts.
Experiments summarized in (A–C) where performed under BDM-free

conditions. (D,E) ECG traces in control and CsA treated hearts during
H2O2 challenge and time of onset of VF in all hearts irrespective of BDM
presence in the purfase. The transition to VF is not delayed by CsA
treatment, indicating lack of electrical protection by CsA. BDM,
2,3-Butanedione monoxime; LVP, Left ventricular pressure; ECG,
electrocardiogram; VF, ventricular fibrillation. ∗∗p < 0.01.

of VF. Surprisingly, we found that CsA treatment failed to protect
against the incidence of arrhythmias as the time to onset of VF fol-
lowing H2O2 challenge was comparable (p =NS) in control and
CsA-treated hearts (Figures 2D,E).

PARADOXICAL EFFECT OF CsA
Previously, we and others have highlighted the importance of
maintaining ��m polarization in the protection against OS-
induced arrhythmias (Akar et al., 2005; Brown et al., 2010; Lyon

et al., 2010). We, therefore, proceeded to investigate the basis
for our discrepant findings regarding the role of CsA in protect-
ing against OS-induced ��m depolarization but not electrical
dysfunction. We hypothesized that differences in experimental
settings, particularly with regards to the use of the electrome-
chanical uncoupling agent BDM in AP but not ��m studies may
underlie the discrepant outcomes that we observed. Therefore,
we repeated our ��m measurements with and without addi-
tion of BDM to the perfusate. Remarkably, we found that BDM
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completely reversed the protective effect of CsA on OS-induced
��m depolarization which we had initially observed (Figure 3A,
gray background), as CsA-treated hearts exhibited a more rapid
��m depolarization compared to untreated controls follow-
ing H2O2 challenge when BDM was present in the perfusate
(Figure 3). As such, the use of BDM revealed a paradoxical
effect of CsA which was consistent with exacerbation rather
than protection against OS-induced mitochondrial dysfunction.
Importantly, BDM alone (i.e., without CsA) did not alter the
��m response of the heart to OS.

PROTEIN KINASE C INHIBITION ABROGATES THE PROTECTIVE EFFECT
OF CsA ON OS-INDUCED MITOCHONDRIAL DYSFUNCTION
BDM is a strong chemical phosphatase, which is known to oppose
the phosphorylation of serine/threonine target proteins and to

FIGURE 3 | Protective effect of CsA on mitochondrial function is

abolished by BDM. Treatment with the chemical phosphatase BDM
abolishes the protective effects of CsA. (A) For reference, ��m response
presented in Figure 1 indicating protection by CsA against OS-induced
��m depolarization. (B) Addition of the chemical phosphatase BDM
(10 mM) reversed the effect of CsA on ��m. BDM, 2,3-Butanedione
monoxime.

increase ATP depletion in metabolically challenged cardiomy-
ocytes (Stapleton et al., 1998). Therefore, we hypothesized that
the paradoxical effect that was unmasked by BDM in terms of
CsA-mediated dysfunction may be due to its interference with the
activity of the cardioprotective mKATP channel which is known to
modulate mPTP opening at least in vitro. Since mKATP activity is
dependent on PKC-mediated phosphorylation, we replaced BDM
with the selective PKC inhibitor, CHE. As shown in Figure 4,
addition of CHE completely abolished the protective effect con-
ferred by CsA. Of note, CHE failed to alter the ��m response

FIGURE 4 | Protective effect of CsA is abolished by PKC inhibition. (A)

For reference, ��m response presented in Figure 1 indicating protection
by CsA against OS-induced ��m depolarization. (B) Average ��m

response to CsA treatment in the presence of the specific PKC inhibitor
CHE. (C) Average ��m response in control and CHE treated hearts. CHE
alone (i.e., without CsA) did not alter the response. CHE, Chelerythrine;
PKC, Protein kinase C.
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of the heart to OS when delivered alone (i.e., without CsA)
(Figure 4, lower panel).

DIRECT mKATP BLOCKADE ABROGATES THE PROTECTIVE EFFECT OF
CsA ON MITOCHONDRIAL DYSFUNCTION
Since PKC has multiple mitochondrial targets that may alter the
response of the heart to OS, we tested whether direct pharmaco-
logical blockade of mKATP recapitulated the inhibitory effects of
CHE on CSA-mediated cardioprotection. Indeed, addition of 5-
HD completely abrogated the protective effect of CsA on ��m

depolarization (Figure 5). The ��m response to H2O2 was iden-
tical between the control and the combined 5-HD+CsA treated
hearts, highlighting the notion that CsA was completely ineffec-
tive as a cardioprotective agent under conditions that prevented
mKATP channel activation.

PHARMACOLOGICAL ACTIVATION OF mKATP PROTECTS AGAINST
MITOCHONDRIAL DYSFUNCTION
To further establish the role of mKATP in the modulation of the
��m response to OS, we used the pharmacological agonist of
the channel, DZX (Figure 5). Interestingly, DZX-treated hearts
exhibited a markedly blunted ��m response compared to control

hearts; thereby, establishing the efficacy of mKATP in modulating
the opening of mPTP. Once again, the protective effect of DZX
on OS-induced ��m depolarization was prevented by addition
of the chemical phosphatase BDM.

PROTECTIVE EFFECT OF CsA ON ARRHYTHMIAS IS DEPENDENT ON
mKATP CHANNEL ACTIVATION
Previously, we and others showed that interventions that stabi-
lized ��m were associated with protection against post-ischemic
arrhythmias, whereas conditions leading to ��m instability pro-
moted electrical dysfunction (Akar et al., 2005). Therefore, we
asked whether modulation of the ��m response in this model of
acute OS could also explain differential vulnerability to arrhyth-
mias. Seven groups were examined in terms of their relative
sensitivities to OS-induced mitochondrial dysfunction (quanti-
fied by the slope of ��m depolarization) and electrical dys-
function (assessed by the time to onset of VF). As shown in
Figure 6, conditions that led to accelerated ��m depolariza-
tion were indeed associated with enhanced vulnerability to VF as
they exhibited significantly (p < 0.05) shorter time to onset of
VF in response to OS challenge. While 11/13 BDM (+) hearts
exhibited early (within 15 min) onset of VF, only 1/19 BDM (−)

FIGURE 5 | Protective effect of CsA is modulated by mKATP. (A)

For reference, ��m response presented in Figure 1 indicating
protection by CsA against OS-induced ��m depolarization. (B)

Treatment with the mKATP antagonist abrogates the protective

effect of CsA on mitochondrial dysfunction. (C) mKATP activation
by DZX protects against OS-induced ��m depolarization. (D) BDM
abolishes the protective effect of DZX on mitochondrial dysfunction.
DZX, Diazoxide.
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hearts were prone to VF within this short time-frame. These
findings indicate significantly heightened sensitivity to sustained
arrhythmias of hearts treated with the chemical phosphatase
(p = 0.000006).

To further address the link between mitochondrial and
electrophysiological instability and to elucidate the potential

mechanism underlying the CsA mediated pro-arrhythmic effect
which we uncovered under conditions that prevented mKATP

channel activation and that led to more pronounced ��m

depolarization (Figure 7A), we performed detailed optical AP
mapping. Analysis of AP properties revealed accelerated shorten-
ing of APD in response to OS in CsA-treated hearts compared

FIGURE 6 | Cross-talk between mKATPand mPTP modulates

mitochondrial and electrical response of hearts to OS. (A) ��m response
to OS in CsA-treated hearts without (top) and with (bottom) concomitant
perfusion with the chemical phosphatase BDM. The relative sensitivity of
hearts to OS-induced mitochondrial dysfunction was quantified by measuring

the slope of ��m collapse 10–20 min following H2O2 perfusion (red line). (B)

Average slope of OS-induced ��m change in all groups tested. (C)

Representative ECG traces from all groups tested, indicating vulnerability to VF
in BDM (+) hearts. (D) Time to onset of VF following OS challenge as an index
of electrical vulnerability in all hearts from all groups. VF, ventricular fibrillation.
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to controls (Figures 7B–E). These data suggest a heightened
electrophysiological sensitivity to OS, particularly with regards to
the activation of repolarizing currents as the potential mechanism
for CsA-mediated pro-arrhythmia (Figure 7).

DISCUSSION
Acute OS manifests in a majority of patients with coronary
artery disease, the leading cause of arrhythmic deaths in the
United States. Central to the pathology of OS is mitochondrial

FIGURE 7 | (A) ��m at 15 min of OS normalized to baseline value in control
and CsA treated hearts. (B,C) Representative action potentials recorded
during early challenge with acute OS in control and CsA treated hearts. AP
shortening is more pronounced in CsA compared to control hearts, indicating

heightened sensitivity to OS. (D) OS-induced % change in APD relative to
baseline (pre-H2O2 value) in control and CsA treated hearts. (E)

Representative APD contour maps showing global shortening of APD in
response to OS in CsA treated hearts compared to controls.

Frontiers in Physiology | Mitochondrial Research July 2014 | Volume 5 | Article 264 | 8

http://www.frontiersin.org/Mitochondrial_Research
http://www.frontiersin.org/Mitochondrial_Research
http://www.frontiersin.org/Mitochondrial_Research/archive


Xie et al. Functional crosstalk between mKATP and mPTP

dysfunction. Although the role of mitochondria as mediators of
cell injury is well established, their contribution to arrhythmias is
less understood. Indeed, the exact mitochondrial transport path-
ways that modulate the susceptibility of the heart to electrical
dysfunction remain unclear.

In the present work we focused on the mPTP because of its
established role in cellular necrosis and MI. Specifically, we inves-
tigated the efficacy of CsA in protecting against OS-induced mito-
chondrial and electrical dysfunction. We chose a simple ex vivo
model of H2O2 challenge which reliably and predictably causes
��m depolarization and VF within a relatively short (<30 min)
time-frame. Our experiments revealed important discrepancies
which initially appeared to discredit our central hypothesis that
stabilization of ��m is anti-arrhythmic, as CsA seemed to protect
against ��m depolarization but worsen electrical dysfunction.
Further analysis revealed the basis of these discrepant observa-
tions, as we uncovered a dual role for CsA in either protecting
or impairing cardiac function depending on the cellular milieu.
As will be discussed below, our initial findings led us to refine our
central hypothesis by examining the functional cross-talk between
the mPTP and the cardioprotective mKATP channels in ulti-
mately mediating the response of the heart to OS. In the present
work, we highlight the importance of mKATP channel avail-
ability in determining the efficacy of CsA as a cardioprotective
agent.

MITOCHONDRIAL ION CHANNELS AS MEDIATORS OF CARDIAC
DYSFUNCTION: ROLE OF mPTP
��m is a key metric of mitochondrial function as it forms the
proton-motive force used for ATP synthesis. In normal hearts,
��m is tightly regulated such that ATP synthesis and ROS gen-
eration are maintained within a physiological range. In response
to OS, ��m is disrupted, altering over-all energy and redox
balance within cardiac myocytes. Specifically, under these con-
ditions, ROS build-up can exceed a threshold level that triggers
the sequential opening of mitochondrial channels in a hierarchal
manner (IMAC followed by mPTP) (Aon et al., 2007), which in
turn leads to ��m instability. ��m instability can lead to inex-
citability at the cellular level and conduction block and arrhyth-
mias at the organ level, via a mechanism termed “metabolic sink”
(Akar et al., 2005). Furthermore, pharmacological blockade of
IMAC which blunted ��m depolarization improved electrical
and functional recovery of the heart following IR injury (Akar
et al., 2005; Brown et al., 2008; Aon et al., 2009). That work,
however, focused on relatively mild levels of OS produced by
short episodes of IR injury. Since energy dissipating mitochon-
drial channels exhibit a hierarchal activation pattern in response
to rising ROS levels (Aon et al., 2007), we focused in the present
work on the efficacy of mPTP blockade by CsA in a model that
was tailored to reliably depolarize ��m and generate VF via MPT
formation.

CYCLOSPORIN A AS A CARDIOPROTECTIVE AGENT
The initial success of the immunosuppressive agent CsA in reduc-
ing infarct size in patients with coronary artery disease through its
potent CycP-D inhibitory activity has fueled considerable inter-
est in its potential use as a therapeutic agent for a wide variety of

cardiovascular disorders (Piot et al., 2008; Hausenloy et al., 2012).
Despite these encouraging clinical findings, the efficacy of CsA in
preventing arrhythmias is unclear (Arteaga et al., 1992; Ko et al.,
1997; Schreiner et al., 2004), and recent experimental, preclinical
(Lie et al., 2008), and clinical findings (Ghaffari et al., 2013) have
cast new doubts regarding the overall utility of CsA. Our current
work was designed to directly address issues related to CsA effi-
cacy in improving metabolo-electrical function under conditions
of OS.

Consistent with the expected therapeutic benefit of prevent-
ing irreversible mPTP opening, CsA treatment in our experi-
ments significantly delayed the onset of OS-induced ��m col-
lapse and the loss of contractile function in ex vivo perfused
hearts (Figures 1, 2). However, we found that this metabolo-
contractile improvement did not translate into an electrical bene-
fit (Figure 2D). Rather, we found evidence of compromised elec-
trical function with no improvement in the onset of VF. As such,
our findings regarding lack of arrhythmic protection are fully
consistent with those of Artega et al. who reported impairment
rather than protection against reperfusion arrhythmias (Arteaga
et al., 1992).

Our overarching hypothesis is that stabilization of ��m

is anti-arrhythmic. However, our initial findings regarding
improved mitochondrial but not electrophysiological function
by CsA appeared to disprove this premise. This prompted us to
examine this issue in greater detail. As will be discussed next,
our subsequent experiments led to the discovery of an intricate
cross-talk within a mitochondrial macromolecular complex that
ultimately dictated the functional response of the heart to OS, and
conferred upon CsA a dual role as a mediator of protection or
dysfunction depending on the specific cellular milieu.

CROSS-TALK BETWEEN mPTP AND mKATP IN MODULATING ��m

AND ARRHYTHMIAS
A major finding of the present report is the demonstration that
the cardiac response to OS is dictated by complex cross-talk
between multiple mitochondrial transport mechanisms. Indeed,
we found that OS is mediated through an intra-mitochondrial
signaling pathway that can either worsen or protect against
arrhythmias depending on the nature of its activation. We first
showed that BDM, a classical electromechanical uncoupling
agent, not only abrogated the protective effect afforded by CsA
but rather led to an acceleration of OS-induced mitochondrial
depolarization in response to CsA treatment. This paradoxical
effect can explain the worsened electrical outcome in terms of
APD shortening that we saw upon CsA treatment. Indeed, the
synergy between accelerated mitochondrial depolarization and
APD shortening is fully consistent with previous cellular and
organ level findings (Akar et al., 2005; Aon et al., 2007). It is
important to note that BDM alone (without CsA) did not alter
the mitochondrial response to OS. This highlights an interaction
of BDM with key proteins that modulate the mPTP (the main
target of CsA).

Since BDM inhibits phosphokinases and actively dephospho-
rylates serine/threonine residues on multiple proteins (Stapleton
et al., 1998), we hypothesized that the phosphorylation state of
a certain target protein which interacts with elements of the

www.frontiersin.org July 2014 | Volume 5 | Article 264 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Mitochondrial_Research/archive


Xie et al. Functional crosstalk between mKATP and mPTP

mPTP may be critical for mediating the protective effects of
CsA. Given the established role of PKC in mediating cardiopro-
tection by ischemic pre and post-conditioning (Inagaki et al.,
2006), we tested whether the detrimental effects of BDM could be
explained (at least partially) through its PKC inhibitory activity.
We addressed this issue by replacing BDM with the specific PKC
inhibitor, CHE. Here too, protection against OS-induced mito-
chondrial dysfunction by CsA was completely abolished. As such,
our findings are consistent with elegant work by the Mochly-
Rosen group who highlighted the importance of PKC mediated
signaling in the protection against mitochondrial dysfunction in
multiple organ systems, including the heart, as well as pioneer-
ing molecular and biochemical work from the Garlid laboratory
demonstrating the desensitization of mPTP to ROS by PKCε.
Unlike BDM, however, CHE did not accelerate (i.e., worsen) the
rate of mitochondrial depolarization suggesting involvement of
additional off target effects by BDM that adversely impact mito-
chondrial function. These may include the effects of BDM on a
variety of tyrosine kinases as well as its reported role in depleting
ATP levels in myocytes under conditions of metabolic challenge
(Stapleton et al., 1998). Our present findings not only inform
regarding the signaling pathways involved in CsA mediated car-
dioprotection but also serve to emphasize the need to exercise
caution when interpreting findings of studies in which BDM
is used, especially those addressing issues relating to metabolic
stress.

PKC has numerous target substrates that can impact mito-
chondrial function either directly or indirectly. One critical target
of PKC signaling which has emerged from elegant work by the
Marban group and others is the mKATP channel (Sato et al.,
1998). We tested whether direct pharmacological modulation of
the channel could potentially explain the detrimental effects of
PKC inhibition which we observed. Indeed, we found that 5-HD
was as effective as CHE in fully abrogating the protective effects of
CsA on OS-induced ��m depolarization. Although Baines et al.
demonstrated that PKCε interacts with multiple key components
of the mPTP, including VDAC, ANT, and HKII independently
of its interaction with mKATP(Baines et al., 2003), our present
work argues that such mKATP-independent interactions do not
impact the functional response of the intact heart to OS. Indeed,
we provide functional data that extend previous in vitro studies
and give credence to the notion that mKATP is the central media-
tor of the cardioprotective effects of PKC on the heart. In light of
the importance of mKATP we went on to investigate the functional
consequences of channel activation and found that DZX treat-
ment was as protective as CsA in preventing ��m collapse. Once
again, that protection was prevented by the chemical phosphatase
BDM, consistent with the notion that PKC mediated phosphory-
lation of mKATP is critical to its opening and therefore efficacy in
cardioprotection.

LIMITATIONS
Our study has several important limitations that require men-
tion. For one, we relied upon a pharmacological strategy using
DZX and 5-HD to modulate the activity of mKATP. Although this
standard approach which included carefully chosen concentra-
tions was based on numerous published reports, we cannot fully

exclude the possibility that minor mKATP-independent effects
may have contributed to our findings.

Moreover, we used a non-ratiometric, semi-quantitative
method of TMRM imaging to assess relative (not absolute)
changes in mitochondrial function in ex vivo perfused hearts.
Using this validated method, changes in TMRM fluorescence sig-
nal caused by altered cellular membrane potential as opposed to
��m are negligible.

Finally, we used CsA to inhibit the mPTP. While this is a widely
accepted and effective strategy in the heart, Li et al. have shown
tissue-specific differences in CyP-D expression and therefore sen-
sitivity to CsA (Li et al., 2012). In particular, they reported that
mPTP inhibition in tissues exhibiting low expression of CyP-D,
is achieved more effectively using Rotenone than CsA (Li et al.,
2012).

CONCLUSION
In summary, our current findings highlight the notion that CsA-
mediated cardioprotection against OS requires mKATP channel
activation through a PKC-dependent pathway. Increasing mKATP

activity during CsA administration is required for limiting OS-
induced electrical dysfunction. On the other hand, CsA admin-
istration during conditions that may prevent mKATP channel
activation may exert unintended pro-arrhythmic consequences
through accelerated APD shortening. Our findings may explain
existing controversy in the basic and clinical literature surround-
ing the utility of CsA as a cardioprotective agent.
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