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The songs of many insects exhibit precise timing as the result of repetitive and
stereotyped subunits on several time scales. As these signals encode the identity of a
species, time and timing are important for the recognition system that analyzes these
signals. Crickets are a prominent example as their songs are built from sound pulses that
are broadcast in a long trill or as a chirped song. This pattern appears to be analyzed on two
timescales, short and long. Recent evidence suggests that song recognition in crickets
relies on two computations with respect to time; a short linear-nonlinear (LN) model that
operates as a filter for pulse rate and a longer integration time window for monitoring
song energy over time. Therefore, there is a twofold role for timing. A filter for pulse rate
shows differentiating properties for which the specific timing of excitation and inhibition is
important. For an integrator, however, the duration of the time window is more important
than the precise timing of events. Here, we first review evidence for the role of LN-models
and integration time windows for song recognition in crickets. We then parameterize the
filter part by Gabor functions and explore the effects of duration, frequency, phase, and
offset as these will correspond to differently timed patterns of excitation and inhibition.
These filter properties were compared with known preference functions of crickets and
katydids. In a comparative approach, the power for song discrimination by LN-models was
tested with the songs of over 100 cricket species. It is demonstrated how the acoustic
signals of crickets occupy a simple 2-dimensional space for song recognition that arises
from timing, described by a Gabor function, and time, the integration window. Finally,
we discuss the evolution of recognition systems in insects based on simple sensory
computations.
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ACOUSTIC SIGNALS CARRY INFORMATION ON DIFFERENT
TIME SCALES
Communication signals of different modalities can exhibit static
and dynamic components (Bradbury and Vehrencamp, 1998).
Dynamic signals change over time, an attribute that is shared
by signals directed at different sensory modalities, from visual
and olfactory signals to acoustic signals. Even for human speech,
the temporal component is an important information channel
that is decoded with sub-millisecond precision over multiple
time scales (Giraud and Poeppel, 2012; David and Shamma,
2013; Garcia-Lazaro et al., 2013). The acoustic signals of many
species from arthropods to vertebrates and humans vary over
time and carry information in their temporal dynamic. For all
species with low resolution for carrier frequencies and thus poor
spectral analysis it is the temporal domain in which informa-
tion can be transmitted. Particularly sound (pulse) rates, sound
onsets and durations are important features in signals from
insects, fish, frogs or mammals (Rose and Capranica, 1984;
Langner, 1992; Crawford, 1997; Gerhardt and Huber, 2002;
Felix et al., 2011). Although we observe and describe many
of these features in the acoustic signals, our understanding of

the underlying feature detectors in a receiver is by far less
advanced.

The songs of insects are a case in point. Over the last hundred
years the calling songs of insects were recognized as important
barriers for pregamic isolation and the song patterns were doc-
umented in numerous monographs (Otte and Alexander, 1983;
Otte, 1994; Ragge and Reynolds, 1998). As insects usually have
low spectral resolution it is the temporal component that carries
most information. For most cases the long-range signals of insects
reveal a comparatively simple signal structure (with the exception
of grasshoppers and their courtship songs, cicadas with frequency
modulations). Nevertheless there are now several examples that
demonstrate that the information relevant for a receiver is dis-
tributed over several time scales, to which in insect songs we refer
to pulses or syllables and chirps, trills or phrases (Figures 1A,F,
Deily and Schul, 2009; Grobe et al., 2012). The physiological basis
for a basic feature detector was demonstrated for grasshoppers
(gap detection, Ronacher and Stumpner, 1988) and recently in
crickets (pulse rate detector, Kostarakos and Hedwig, 2012). The
central element of both is the timing of inhibition and excita-
tion. However, the physiological correlate of a filter on a longer
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time scale is still elusive. It remains a challenge to understand
the temporal computations on the longer time scale of chirps and
phrases.

In crickets, but also katydids, it is known that females eval-
uate song signals on several time scales (Deily and Schul, 2009;
Grobe et al., 2012). Especially, the songs of crickets are simple
and binary-like as they are composed of single sound events,
the pulses produced by the closing movements of the forewings
(Huber et al., 1989). From an evolutionary point of view there
exist several descriptions about the evolution of song patterns
(Alexander, 1962; Otte, 1992, 1994; see also Desutter-Grandcollas
and Robillard, 2003; Korsunovskaya, 2008). In these scenarios the
ancestral calling songs consisted of long pulse trains, which were
then modified by disruption into chirps and trills. Yet, it is unclear
how the corresponding feature detectors of the receiver shaped
the calling songs of crickets. We also lack an understanding of how
feature detectors on short and long time scale changed during
evolution and how these changes affected the calling song signals
that can be observed today.

Recently, a simple solution was proposed for the evaluation of
signals on different time scales (Figure 1, Clemens and Hennig,
2013). Two species of crickets within the same genus (Gryllus
bimaculatus, G. locorojo) produce song patterns with short chirps.
The females of both species evaluate the pulse rate on the short
time scale (Figures 1A,F) and the chirp pattern on the long time
scale (Figures 1B,G). A major difference between the two species
lies in the preference for the chirp pattern (Grobe et al., 2012;
Rothbart and Hennig, 2012a; see also Meckenhäuser et al., 2013).
While one species accepted chirps over a wide range of duty cycles
(Figure 1B), the other preferred chirps only over a small duty
cycle range (Figure 1G).

These phonotactic responses can be reproduced using a
general model that has 4 components: (1) a linear filter, (2)

a nonlinearity, (3) an integration time window, and (4) a
weighting function (summarized in Table 1). Linear-nonlinear
(LN)-models are commonly used to describe the computations
performed by sensory neurons (e.g., Pillow et al., 2008). These
LN models exhibit a linear part, the filter, and a nonlinearity char-
acterized by a threshold and a saturation (Clemens and Hennig,
2013). The linear filter describes the temporal tuning of the
model—positive and negative lobes of the filter can be produced
by precisely timed excitatory or inhibitory inputs to a neuron.
The filter constitutes a template, which is compared to the stim-
ulus pattern; the filter’s output as given by the filtered stimulus
thus corresponds to the similarity between the stimulus and filter
(Figures 2A–C). For the evaluation of phonotactic responses, the
output of LN-models for a test pattern was integrated over a time
window of 1 s into a single feature value (Clemens and Hennig,
2013). This corresponds to the computation performed by inte-
grator neurons used in drift-diffusion models of decision making
and found in vertebrate cortex (Brunton et al., 2013). Song signals
were processed in parallel by several LN-models, whose integrated
output was linearly weighted to yield the predicted phonotaxis
value for the test pattern (Figure 2).

Fitting this model structure to behavioral data showed that
two LN-models sufficed to predict female responses, if correctly
weighted against one another (Figures 1D,I, see Clemens and
Hennig, 2013, for details). Accordingly, two linear filters emerged
for each species (Figures 1C,H). Notably, recent recordings from
individual brain neurons in crickets (Zorović and Hedwig, 2011;
Kostarakos and Hedwig, 2012) appear be similar to the output
predicted by LN-models (Figure 2E). At least one of these filters
resembled a Gabor function; that is, a sinusoid with a given fre-
quency modulated by a Gaussian distribution (Figures 1C,H, 2,
see filter in green). Gabor filters are known from many systems
and have been used to describe the feature selectivity of sensory
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FIGURE 1 | LN-models derived from behavioral preference tests of two

Gryllus species for acoustic signals. Preference profiles for (A,F) pulse and
(B,G) chirp patterns (insets: schematic song patterns). (C,H) linear filters
(filters were scaled to unit-norm and have no units) (D,I) model output
predicts behavior, units refer to the attractiveness of test patterns from

behavioral trials with crickets and the respective output of the computational
model (E,J) 2-dimensional feature space for song recognition, DC/s refers to
the duty cycle per second (data in A,B,F and G modified from Grobe et al.,
2012 and Rothbart and Hennig, 2012a, C,D,E, and H,I,J modified from
Clemens and Hennig, 2013).
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Table 1 | Computational steps for pattern recognition using LN-models: the computational goals, the algorithms of computation and possible

physiological implementations.

Linear filter Nonlinearity Integration Weighting function

L N I W

Computational
goal

Preference function for temporal
selectivity

Adjustment of temporal
selectivity

Sampling/integrate over time Tuning/sharpening of
preference function

Algorithm Gabor function Sigmoidal function Integration time window Linear weight

Physiological
implementation

Relative timing and strength of excitation
and inhibition, intrinsic properties

Threshold and saturation Synaptic
facilitation/depression

Synaptic weights of
excitation/inhibition

Temporal coding>>> >>>Rate coding

neurons in the visual and auditory system. Interestingly, Gabor
functions have emerged as optimal filters for efficient representa-
tions of natural stimuli (Olshausen and Field, 1996; Smith and
Lewicki, 2006). These studies mainly studied generic stimulus
representations with the objective of transmitting maximal infor-
mation with the minimal amount of neural activity in a sparse
code. In the context of song recognition, they serve to repro-
duce the high behavioral specificity for relatively simple, repetitive
patterns.

Computing the preference functions of crickets with LN-
models also offered a simple solution to the question of dif-
ferent time scales. Since the filters used were short (64 ms)
temporal features on the long time scale were not explicitly
filtered. Rather, selectivity for the chirp pattern resulted from
integrating the song signal over time. The outcome of this
integration depends on the overall energy of the signal and
thereby sets the preferred duty cycle, the preference for which
is indeed different between the two species (Figures 1B,G).
Correspondingly, a new preference space for features on the
song signals of crickets can be constructed (Figures 1E,J), that
relies on temporal information on one axis (pulse rate in
Figures 1E,J) and energy on the other (duty cycle per second in
Figures 1E,J).

The computation with LN-models of preferences measured
from female crickets produced a surprisingly simple view of the
acoustic recognition system. In essence, recognition relies on the
differentiating and integrating properties in the auditory path-
way of crickets. Linear filters exhibit differentiating properties
since they possess positive and negative lobes and can thereby
be tuned to song features on the short time scale like the pulse
rate; the integration reduces the output of the LN-models to a
single value and can convey selectivity for song features on the
time scale of the chirp—mainly the overall duty cycle or energy
of the signal. Notably, the differentiating filter part of an LN-
model can be understood by the relative timing of excitation and
inhibition as it was recently observed for single brain neurons in
crickets (Kostarakos and Hedwig, 2012). The simple integration
step over time also offers a solution to a well-known paradox
observed many years ago, when Pollack and Hoy reported the
preference of female cricket for randomized and thus irregu-
lar calling songs (Pollack and Hoy, 1979). Indeed, it is an often
observed feature of calling songs of crickets in North-America

that males drop single pulses and therefore produce irregularities
in their songs (Alexander, 1957, 1962; Desutter-Grandcollas and
Robillard, 2003). However, if crickets just integrate over time, the
specific timing is less important for song recognition.

The combination of precise timing and integration in our
framework is a general feature of all decision-making processes.
Therefore, the conclusions drawn in the context of insect song
recognition potentially are of much broader relevance. Standard
models of perceptual decision-making consist of a feature detec-
tion stage, which extracts so-called “sensory evidence,” and an
integration stage, which accumulates the sensory evidence in a
decision variable. In the feature detection stage (our LN-model),
behavioral selectivity for short and precise temporal patterns can
be implemented. In contrast, the integration step leads to a poten-
tial invariance to the exact time of occurrence of these patterns
while conveying selectivity for large-scale features of the stimulus
(cf. McDermott et al., 2013).

From these observations, three question on processing and
recognition of temporal patterns arise that we aim at in the
following sections:

(1) What is the role of time and timing for analysis i.e., which
types of preference functions can be created by LN-models
with Gabor-functions as feature detectors and is there evi-
dence that these perceptual spaces exist?

(2) How do feature detectors operate? How do combinations of
excitation and inhibition—if modeled as Gabor functions—
affect preference functions? How can Gabor functions trans-
form phenotypic preference profiles during a speciation
event? What is their physiology?

(3) Is there a more general scheme of sensory processing to
which LN-models with their properties of time and timing
conform?

LN-MODELS AS FEATURE DETECTORS: PROPERTIES OF
TIME AND TIMING
The general model used for recognition of insect song signals
has 4 components, a linear filter (L), a nonlinearity (N), an inte-
gration (I) and a weighting function (W, Table 1). The linear
filters found for insect songs bear a striking similarity with Gabor
functions, a property that makes them very attractive for a more
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FIGURE 2 | Example traces for the model for Gryllus bimaculatus. The
stimulus (A) had a pulse period of 40 ms (chirp duration 200 ms, chirp period
500 ms). The first filter (B, green) exhibited a pulse period of 40 ms and
responded well to the pattern (C, green). The second filter’s dominant
modulation was relatively slow; accordingly, it responded poorly to this
stimulus (C, red). For the computation of the filtered stimulus the filter (B) is
first aligned with the beginning of the stimulus (A) and then multiplied with
the amplitude values of the stimulus over the duration of the filter. The result
is a product as a single point in time that reflects the similarity of the filter
with the stimulus, high values indicating high similarity. The filter is then

shifted by one step (given by the time resolution of the stimulus) and then
multiplied with the respective amplitude values of the stimulus as before.
This procedure is repeated until the end of the stimulus is reached and the
filtered stimulus emerges as a new time series. Patterns were normalized
such that the distribution of amplitudes over the whole stimulus set exhibited
zero mean and unit standard deviation. The nonlinearity for each filter was
relatively steep (D), transforming the stimulus into an almost binary trace (E).
This trace was then integrated over time and the resulting values for each LN
model were weighted to obtain a prediction of the phonotaxis score
(modified from Clemens and Hennig, 2013).

general approach to auditory processing in insects (Clemens and
Hennig, 2013; Clemens and Ronacher, 2013). Gabor filters offer a
useful and simple tool for parameterization of the filter part that
can also be implemented easily by general neuronal mechanisms
such as the pattern of excitation and inhibition. Therefore, Gabor-
filters served successfully in the past to model sensory processing
in different modalities (e.g., visual: Priebe and Ferster, 2012, audi-
tory: Smith and Lewicki, 2006). The complete model is abstract,
since we use behavioral data for our calculations. Therefore, we
can make no specific predictions about whether any given compo-
nent is implemented in the physiology of a single cell. In principle,
the properties of the model can be distributed over many cells and
many parallel computations. Likewise we can make no predic-
tions about biophysical implementations by specific ion channels
or synaptic receptors. If, however, the filter component was imple-
mented in a single cell, it is possible to predict the specific input
patterns of excitation and inhibition to such a cell or its intrin-
sic properties from the positive and negative lobes of the filter
function (see Table 1). Here, we examined how the linear filter
described by the different parameters of a Gabor-function affects
preference functions and tested whether it is possible to predict
preference functions for acoustic signals in crickets and katydids
by variation of linear filters.

The main parameters that specify a Gabor function are the
frequency, the duration, the phase and an offset (Figure 3).
The intrinsic frequency mainly affects the preference for pulse
rate. However, there is an additional effect as the frequency
also changes the width of the preference function. The profiles
are wider at low frequencies (Figure 3B) and more narrowly
tuned at high frequencies (Figure 2D). Corresponding examples
of wide preference profiles for low pulse rates (Figure 1E, T. leo,
Rothbart and Hennig, 2012b), intermediate profiles (G. bimac-
ulatus Hennig, 2009, T. oceanicus Hennig, 2003; Hennig, Tett.
cantans Schul, 1998) and narrow profiles (G. locorojo, Rothbart
and Hennig, 2012a) exist. Physiologically, the frequency can be set
by the relative timing of excitation and inhibition or by oscillatory
properties of subthreshold conductances (Hutcheon and Yarom,
2000; Schreiber et al., 2004).

The duration of the Gabor function at a given frequency
mostly affects the width of tuning for pulse rate (Figures 3G–I).
At longer durations the filter accommodates several oscillations
and therefore responds at lower multiples of the preferred pulse
rate (Figures 3H,I). This leads to the emergence of preference
peaks at multiples of the preferred period (Figures 3H,I, i.e., 20,
40, 60 ms at low and high duty cycles). Convincing evidence for
resonant properties stems from tettigoniids (Figure 3J, Tett. can-
tans, Bush and Schul, 2006; Webb et al., 2007, Neoconocephalus
affinis, Bush et al., 2009, and N. triops Schul et al., 2014), although
only the peak at low duty cycles was observed. At very short
durations relative to the frequency the Gabor filter becomes
single-lobed. It then exhibits a wide preference for duty cycle
(Figure 3G) as the filter will respond to a whole range of pulse
patterns and therefore becomes less precise for temporal prop-
erties of the pattern. The closest known match to a duty cycle
preference stems from tettigoniids (see also Figures 4D,G, Tett.
caudata, Schul, 1998).

The phase of the Gabor function at a given duration and fre-
quency will mostly affect the range of different pulse durations
to which the filter responds (Figures 3L–N). The change of phase
extends the preference range along the pulse duration axis and
does not affect the selectivity for pause duration (Figures 3L–N).
Examples for such preference profiles stem partly from the cricket
G. bimaculatus (Figure 1A) and the tettigoniid Tett. viridissima
that exhibits a clear preference for pause durations over a wide
range of pulse durations (Figures 3N,O, Schul, 1998, note that
the profile of Tett. viridissima was shifted to appropriate pause
durations in the preference panel). The different phases can also
be viewed as a change in the relative timing of excitation and
inhibition that is the lobes above and below zero (Figure 3K).

A change in offset of a Gabor function results in a rotation
of the preference profile that remains centered at a particular
period i.e., pulse rate (Figures 3Q–S). An extension of preferences
along the pulse or the pause duration axis is observed and corre-
sponding examples of preference profiles are known (Figure 3T,
T. commodus, Hennig, 2003, G. bimaculatus Hennig, 2009, Tett.
viridissima Schul, 1998). Physiologically, an offset corresponds to

Frontiers in Physiology | Integrative Physiology August 2014 | Volume 5 | Article 286 | 4

http://www.frontiersin.org/Integrative_Physiology
http://www.frontiersin.org/Integrative_Physiology
http://www.frontiersin.org/Integrative_Physiology/archive


Hennig et al. Timing in crickets

FIGURE 3 | From Gabor filters to behavioral preference functions for a

pulse pattern. (A–E) Variation of the frequency and resulting preference
profiles. (F–J) Variation of filter duration. (K–O) Variation of phase. (P–T)

Variation of offset. Shaded profiles on the right indicate known preference
functions for pulse patterns in crickets and katydids. The pulse profile of
Tettigonia viridissima, Tvir, was shifted from its original position (see arrow,
dashed area). Species: Gbim: Gryllus bimaculatus, Gloc G. locorojo, Tleo
Teleogryllus leo, Toce Teleogryllus oceanicus, Tcan Tettigonia cantans, Tcau

Tettigonia caudata, Tvir Tettigonia viridissima, Tcom Teleogryllus commodus,
see text for references. For calculation of the preference functions, pulse
trains with different combinations of pulse durations and pause durations
were created (chirp period 500 ms, chirp pause 250 ms). Each stimulus was
filtered with the function shown in the first row (A,F,K,P) and passed through
a sigmoidal nonlinearity (c.f. Figures 2D,E). The phonotaxis value was taken
as the integral output of the nonlinearity (for details see Clemens and Hennig,
2013).

a tonic excitation or inhibition as the mean of the Gabor function
is above or below zero (Figure 3P). A shift of the nonlinearity
toward lower or higher thresholds can have similar effects on the
preference profiles as the positive or negative offsets of the filter.

The preference profiles from Figure 3 serve to illustrate how
quantitative changes of the parameters that specify a Gabor
function will modify the range of accepted pulse patterns. A
comparison of these profiles (Figure 3) shows that different

parameters may yield the same or similar preference ranges (e.g.,
in Figures 3B,Q; Figures 3M,N,S). From an evolutionary per-
spective there are different dials at a Gabor filter that may be
turned to produce the same result. Besides the preference range
specified by the parameters of the Gabor function, the sigmoidal
nonlinearity provides an additional degree of freedom to change
the output of an LN-model (Clemens and Hennig, 2013). In
the case of simple pulses as in cricket songs, the important
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FIGURE 4 | Transitions between Gabor functions and corresponding

changes in pulse profiles. The physiological correlate of these transitions
was explored using a simple network model in which a cell integrates
inhibitory and excitatory input. (A–C) Gabor functions emerge as a result of

excitation (red) and inhibition (blue) in a network model. (D,E) Shape of Gabor
filters from (A–C). (G–I) Preference for pulse patterns as derived from the
Gabor filters in (D–F). Note that the nonlinearity used in (I) differs from the one
in Figure 3N. See Figure 3 for calculation of preference profiles.

component of the nonlinearity lies in the threshold function that
affects the value of the integral (Table 1). The nonlinearity then
serves to adjust the temporal selectivity without changing the
principal shape of the profile determined by the Gabor function
(Table 1, Clemens and Hennig, 2013).

The different preference profiles arose by modifications of the
abstract parameters of the Gabor functions (Figures 3A,F,K,P;
Table 1). Since the phenotypic preference profiles of known
sibling species differ markedly (e.g., Teleogryllus oceanicus and
T. commodus in Figures 3E,T, Tettigonia cantans and Tett. cau-
data in Figure 3J), the underlying neural circuitry is expected to
change within the short evolutionary time spans required for spe-
ciation. To explore the changes in circuit parameters that could
give rise to these different preference profiles, we used the most
simple network model that could produce Gabor-like filters in its
output by combining excitatory and inhibitory inputs (Figure 4).
The simplest, uni-lobed Gabor filter can by constructed using
only excitatory inputs to a particular neuron without an inhi-
bition (Figures 4A,D). Such a Gabor filter will respond well to
pulse trains composed of different pulse durations and pauses
that exhibit a high duty cycle and therefore this filter resem-
bles a duty cycle detector as observed for Tett. caudata and
N. robustus (Figure 4G; Deily and Schul, 2004). The operation
of a duty cycle detector corresponds to an integration of the
input signal. By addition of a preceding inhibitory input of the
same strength as the excitation a typical, multi-lobed Gabor filter
emerges as output of a neuronal network (Figures 4B,E,H) that
exhibits the frequently observed pulse rate preference (Figure 3).
Similar patterns of synaptic input are known from recordings
of single neurons in the brain of crickets that also exhibit

the corresponding preference profiles (Kostarakos and Hedwig,
2012). The operation of such a pulse rate detector corresponds
to a differentiation of the input signal, since the corresponding
Gabor filter will only respond to pulse pairs with the correct
pulse period, i.e., the inverse of the pulse rate. Delaying the
inhibitory component as well as increasing its amplitude relative
to the excitation (Figure 4C) will then produce a Mexican-hat-
like Gabor filter with a strong negative lobe (Figure 4F) that will
give rise to a preference for a particular range of pulse durations
(Figures 3P, 4I). Thus, simple and testable changes in the timing
and strength of excitation and inhibition can transform a behav-
ioral preference function from a simple energy detector to a pulse
rate detector and a pulse duration detector (Figure 4). In addi-
tion to the minimal network model (Figure 4), there are other
ways for the physiological implementation of Gabor filters. As
well as the timing of excitation and inhibition, post-inhibitory
rebound excitation has been found to contribute to period selec-
tivity (Large and Crawford, 2002). Changing the expression levels
of the conductances underlying rebound spiking (Felix et al.,
2011) could be an alternative strategy for tuning a behavioral pref-
erence function during speciation events. Independent of their
specific implementation that can be tested experimentally, Gabor
filters offer a parsimonious explanation for evolutionary transi-
tions between phenotypically different preference functions by
changes in synaptic parameters or in intrinsic properties.

GENERAL PROPERTIES OF LN-MODELS
The description of phenotypic preference profiles by LN-models
(Figures 3, 4) allows placing the computations within the
auditory pathways of crickets in a more general framework of
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sensory processing (Table 1). Barlow (1961), Marr (1982) and
Konishi (1990) emphasized the importance of understanding the
computational goals and implemented algorithms for our under-
standing of sensory processing in different modalities and sensory
pathways. The general computational goal of auditory process-
ing of crickets and katydids for mate recognition is specified by
the recognition of the conspecific song signal or, more parsimo-
niously by the discrimination of its own signal against all other
signals (c.f. Gerhardt and Huber, 2002). For each component of a
LN-model it is also possible to specify a computational goal and
an appropriate algorithm (Table 1). From computational goals
and algorithms the salient cues (Konishi, 1990) for signal discrim-
ination can be derived that consist of temporal information given
by pulse rate and duty cycle (Figures 3, 4).

The extraction of these salient cues is achieved by special-
ized circuits that represent a physiological implementation of
the linear Gabor filters, given by the timing and strength of
excitation and inhibition (Figures 3, 4), combined with their
respective nonlinearity (Table 1, Clemens and Hennig, 2013). The
other components required for signal discrimination within this
framework, the integration time window and the linear weight-
ing function, may be represented by general properties known
from synaptic transmission and dendritic integration (Table 1).
Therefore, the physiological implementations of LN-models can
be derived from intrinsic properties of neurons, their synap-
tic input patterns or small neural networks (Figure 4, Table 1).
Although examples exist that suggest single neurons can exhibit
the properties of individual LN-models (see examples in Clemens
and Hennig, 2013), the models derived from behavioral prefer-
ence functions reflect the abstract output of the whole system and
it is not explicitly necessary to observe the convergence at the sin-
gle cell level (see Clemens and Ronacher, 2013). The sequence
of processing from LN-model to integration and weighting also
involves a transformation of coding with high temporal preci-
sion to a rate code (Table 1). Such transformations are known
from the auditory pathways of insects (Schildberger, 1984; Vogel
et al., 2005; Clemens et al., 2011; Kostarakos and Hedwig, 2012)
and correspond to the more general scheme also known from
vertebrates (Joris et al., 2004).

In summary, Gabor-functions as the basic, linear part of LN-
models provide a unitary and simple way for understanding
diverse preference functions of crickets and katydids. Conceivable
evolutionary changes and transitions between preference pro-
files of sibling species can be derived easily from small changes
of properties (i.e., frequency, duration, phase, offset of Gabor
functions, Figures 3, 4). Preference functions with qualitatively
different phenotype can be transformed drastically by change of
a single parameter (Figures 3, 4). In order to better understand
such transitions it is a principal requirement to measure prefer-
ence functions of insects for acoustic signals not only as a pulse
profile but also with respect to the energy preference for a given
time window of integration (Figure 1).

THE DISCRIMINATIVE POWER OF LN-MODELS
There are only few components of which LN-models are built
(Table 1). Although the songs of crickets differ in pulse rates,
chirp rates and chirp durations as specified by the number of

pulses in a chirp, there are many known similarities within and
between different genera (Alexander, 1962; Otte, 1992). How
sufficient are these differences between species for song discrim-
ination by LN-models? To evaluate the discriminative power of
LN-models, we first surveyed the songs of more than 100 species
of crickets in 7 genera (http://entnemdept.ufl.edu/walker/buzz/
cricklist.htm). The envelopes of the song patterns were analyzed
for their temporal parameters on several time scales (Figure 5).
The shortest unit of time is given by the pulse rate (red dots in
Figure 5A). Longer temporal units are observed in the chirp pat-
tern that may consist of simple chirps or complex pulse trains as
for instance seen in chirps build from a series of shorter double
or triple pulse trains (green and blue dots in Figure 5A). From a
more traditional point of view, some species of crickets would be

FIGURE 5 | Temporal parameters in the songs of crickets. (A)

Distribution of temporal parameters in the calling song for crickets on
different time scales. (B) Distribution of calling songs in a 2-dimensional
feature space (duty cycle per second refers to the normalized integral i.e.,
the energy of the song envelope). Cricket songs exhibit mostly lower or
higher energy equivalent to songs with short chirps and long trills (red
ellipsoids). Calling songs of 106 species of crickets from http://entnemdept.
ufl.edu/walker/buzz/cricklist.htm. Song recordings were rectified and
low-pass filtered (200 Hz) to compute a smooth envelope. Temporal
measures such as pulse and chirp durations and pauses were obtained by a
threshold function (see Grobe et al., 2012, for details).
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expected to analyze the song pattern at least on two time scales,
that of the pulse and the chirp pattern (Figure 5A). Especially
the complex song patterns may require sophisticated processing
on several time scales. A transformation of the song patterns
into a 2-dimensional feature space as suggested by LN-models
(Figures 1E,J) shows that only two computations are required; an
extraction of the pulse rate and a measurement of the energy com-
ponent (Figure 5B). The songs of crickets in North America then
show a common pulse rate between 30 and 100 pps with only few
exceptions (Figure 5B). The distribution of energy in the songs
of those crickets was largely bimodal, suggesting that songs of
crickets can be roughly divided into two groups with shorter and
longer chirps (Figure 5B).

However, the question arises whether the power of LN-models
is sufficient to discriminate between the songs of different species
given that many of the song patterns show similar pulse rates
(Figures 5A,B) or energy distributions (Figure 5B). We trained
an LN model for each species to discriminate the conspecific
song from all other song patterns (N = 106, see Clemens and
Hennig, 2013, for Methods). This analysis reflects an unrealisti-
cally hard scenario, since the geographical distributions do not
require that crickets discriminate their own song from more than
100 other cricket songs (http://entnemdept.ufl.edu/walker/buzz/
cricklist.htm). Still, the discrimination of the song pattern for
a particular species was remarkably high (Figure 6, median of
correctly assigned species was 93%, chance level 1/106 = 0.94
%). The songs of most crickets were discriminated well across,
but also within subfamilies (Figures 6B–F, correctly assigned
species were between 90 and 99%). There were only few calling
songs within each subfamily that were less well discriminated.

This unexpectedly high discrimination was based on the two
features used for song discrimination by individual species of
crickets (Figure 1): a pulse rate filter based on central timing that
differentiates and a duty cycle filter from integration based on a
time window (Clemens and Hennig, 2013). LN-models then offer
a surprisingly simple view on signal recognition in crickets and
the relevant feature space (Figure 5B).

In view of LN-models the bimodal distribution of energy in
songs of cricket also suggests two levels of complexity in song pat-
tern recognition (Figure 5B). The recognition of songs with high
energy levels composed from long chirps (or trills) will require
only a single upper threshold for the computation from the inte-
gration time window (Table 1). The discrimination of songs with
short chirps would require two such thresholds, a lower one that
has to be passed and a higher one that must not be passed for the
song to be recognized. The simplicity of the former arrangement
is also in line with views on the evolution of song patterns, which
suggest that longer chirps (or trills) correspond to the ancestral
situation (Alexander, 1962; Otte, 1992; Korsunovskaya, 2008).

In summary, LN-models offer powerful discrimination of
cricket songs, based on properties of differentiation (Figure 4B)
and integration (Figure 4A). The new feature space indicates
bimodal separation of songs by energy or duty cycle, but homo-
geneous distribution of pulse rates. This view confirms the often
used taxonomic criteria of pulse rate, chirp duration (i.e., the
number of pulses) and chirp rate as useful discriminators of
cricket songs. The recognition of cricket songs can be summa-
rized by a peripheral filter for carrier frequency (Kostarakos et al.,
2009), a differentiating pulse rate filter evaluating the temporal
song components on a short time scale by the timing of excitation

FIGURE 6 | LN-models discriminate the songs of 106 North-American

species of crickets. For each species, we trained a model with two
filter-nonlinearity pairs (see Figures 1, 2) to discriminate its own song from all
the other 105 songs using a Genetic Algorithm (cf. Clemens and Hennig,
2013). Each row in (A–F) depicts the normalized output values of each
species’ model for all songs (color coded). Dark shading confined to the main
diagonal indicates high specificity (i.e., phonotaxis scores) of the model

output for the conspecific song (see color bar C). (A) Discrimination matrix
(shading indicates predicted output value of the reference species for the
tested species quality of correct assignment). (B–F) Discrimination matrix for
5 major subfamilies. Discrimination power was determined from song
envelopes (low-pass filter: 200 Hz) by LN-models. Calling songs of crickets
and taxonomical classification from http://entnemdept.ufl.edu/walker/buzz/
cricklist.htm.
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and inhibition (Figure 4) and an integrating filter for song energy
(Table 1).

CONSEQUENCES FOR THE EVOLUTION OF
COMMUNICATION SYSTEMS
The goal of the present review was to illustrate the power of a very
general coding scheme for sensory processing with only few basic
and physiologically plausible components (Table 1). The aim of
the following section is to illustrate predictions derived from the
general model about filter properties that can be falsified by neu-
rophysiological approaches and to point out consequences for the
evolution of communication systems.

TRANSITIONS AND TRANSFORMATIONS BETWEEN FILTERS
From an evolutionary perspective the properties of Gabor func-
tions suggest a simple solution to the large phenotypic differences
observed in the song patterns and preferences of sibling species
in different taxa (crickets: Teleogryllus Hennig and Weber, 1997,
tettigoniids: Tettigonia, Schul, 1998, Neoconocephalus Schul et al.,
2014, Isophya Orci, 2007, grasshoppers: von Helversen and von
Helversen, 1994). Small changes in strength and timing of excita-
tion and inhibition may already suffice to generate the observed
differences (Figures 3, 4). Even the transition from a duty cycle
preference to a pulse rate preference may require only few small
steps (Figure 4).

HOW LN-MODELS MAY SHAPE THE TEMPORAL PATTERNS OF SONG
SIGNALS
A fundamental component of LN-models is the selectivity for
temporal characteristics of the pattern that is given by the filter
part—in our case the Gabor function (Figures 3, 4, Table 1). The
properties of this filter depend on the relative strength and tim-
ing of excitation and inhibition that correspond to a fundamental
operation performed in sensory pathways in general. The calling
songs of crickets, but also other insects, would have to match the
filter part of the LN-model over a given integration time window.
Consequently a number of different song patterns may suffice to
activate the same type of Gabor filter implemented in the audi-
tory pathways of females with very different genetic background.
In this view the convergent appearance of song patterns is not sur-
prising (Otte, 1992; Bush and Schul, 2010; Korsunovskaya, 2008).
Different mechanisms of signal production may then converge to
activate the same type of LN-model as for instance by different
layouts of central pattern generators (Marder, 2011) or by the
production of the same sound signals due to stridulation with
wings or legs within the grasshopper genus Stenobothrus (Elsner
and Wasser, 1995).

SIMPLE AND COMPLEX SONGS
The songs of many insects, from crickets to katydids and
grasshoppers, are of a simple type (crickets: Gryllidae Desutter-
Grandcollas and Robillard, 2003, Tettigoniidae: Neoconocephalus
Bush and Schul, 2010, grasshoppers, Ragge and Reynolds,
1998). The recognition of such song patterns can be described
with basic LN-models. However, within all taxa complex
songs are also known (crickets: Teleogryllus Otte and Cade,
1983), Eneopterinae (Robillard and Desutter-Grandcolas, 2011;
Tettigoniidae: Phaneropterinae, Dobler et al., 1994; Walker,

2004; Hemp et al., 2009; grasshoppers: Chorthippus Ragge and
Reynolds, 1998, Stenobothrus Ostrowski et al., 2009). So far it is
still unresolved whether more complex patterns in the song sig-
nals of insects across very diverse taxa, such as pulse rate sweeps,
alternating rhythms or tick and buzz schemes can be explained
by the proposed LN-models. The high discrimination of complex
songs among the North-American crickets (e.g., Eneopterinae in
Figure 6A, c.f. Robillard and Desutter-Grandcolas, 2011) by sim-
ple LN-models that evaluate only pulse rates and duty cycle is
indeed surprising. Several scenarios may account for the evolu-
tion of complex songs. In the first case, a complex song may evolve
that can be recognized by a simple preference function. For exam-
ple, the cricket Teleogryllus oceanicus exhibits a complex song with
two rhythms, but females exhibit a simple preference for a single
pulse rate (Pollack and Hoy, 1979; Hennig and Weber, 1997; see
also Schul, 1998 for a similar example in katydids). Grasshoppers
of the genus Chorthippus exhibit elaborate and highly amplitude
modulated song signals, but females also respond to simple sound
patterns build from blocks of pulses (von Helversen and von
Helversen, 1994). In a second scenario, complex songs evolve in
response to two or more simple preference functions. For example
the cricket T. commodus exhibits a song with two pulse rates, both
of which have to present for song recognition (Hennig and Weber,
1997), a pattern that is also known for grasshoppers (Stumpner
and von Helversen, 1992). Such an atomistic recognition of fea-
tures build from several simple LN-models may account for
alternating rhythms that are known for many species of insects.
In a third scenario, the song may be as complex as the recogni-
tion similar to a Gestalt-like perception as may be the case for
individual neurons in songbirds (Margoliash and Fortune, 1992).
Presently, the call recognition of the tettigoniid Neoconocephalus
affinis is among the most complex known in insects (Bush et al.,
2009).

In summary, song signals viewed in the light of sensory pro-
cessing by a receiver based on LN-models will advance our
understanding of how song patterns evolve, how filters shape
song signals, how transitions from rate filters to integrating fil-
ters are possible and whether simple and complex songs require
simple and complex filters. It also allows us to search more specif-
ically for physiological mechanisms. Not at least, LN-models are
reminiscent of the technique of Pointillism used in impression-
istic paintings. While the sound pulses produced by insects may
represent the pixels of different shade and color over time from
which all kinds of songs, or acoustic pictures, can be made, the
Gabor functions equip us with a pointillistic view on insect songs
that touches upon perceptual capacities in much the same way
painters did about one hundred years ago.
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