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The large-conductance voltage- and Ca2+-activated K+ channel (BKCa) is an important
regulator of membrane excitability in a wide variety of cells and tissues. In myometrial
smooth muscle, activation of BKCa plays essential roles in buffering contractility to
maintain uterine quiescence during pregnancy and in the transition to a more contractile
state at the onset of labor. Multiple mechanisms of modulation have been described
to alter BKCa channel activity, expression, and cellular localization. In the myometrium,
BKCa is regulated by alternative splicing, protein targeting to the plasma membrane,
compartmentation in membrane microdomains, and posttranslational modifications. In
addition, interaction with auxiliary proteins (i.e., β1- and β2-subunits), association with
G-protein coupled receptor signaling pathways, such as those activated by adrenergic
and oxytocin receptors, and hormonal regulation provide further mechanisms of variable
modulation of BKCa channel function in myometrial smooth muscle. Here, we provide an
overview of these mechanisms of BKCa channel modulation and provide a context for them
in relation to myometrial function.
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BKCa CHANNEL FUNCTION IN MYOMETRIUM
The myometrium, the middle layer of the uterine wall respon-
sible for uterine contractions, undergoes marked structural and
functional modifications throughout pregnancy. During most of
gestation, the myometrium remains in a quiescent state, whereas
at the onset of labor, it becomes highly contractile to deliver the
newborn. Regulation of myometrial contractility during preg-
nancy, and in particular labor, has been the focus of many studies,
but the mechanisms controlling the transition from quiescence
to contractility are intricate and remain elusive. Moreover, this
transition is often mistimed; in the U.S., approximately 12%
of babies are born prematurely and up to 10% of pregnan-
cies are described as post-term (Gulmezoglu et al., 2012; Martin
and Osterman, 2013). Thus, understanding how this transition
is controlled is essential to ensure the health of mothers and
newborns.

Uterine contraction is primarily mediated by rises in
cytoplasmic Ca2+ concentration and activation of Ca2+-
calmodulin/myosin light chain kinase pathways (Wray, 1993;
Bru-Mercier et al., 2012). The mechanisms that elicit increases in
intracellular Ca2+ levels and contraction in myometrial smooth
muscle cells (MSMCs) include: (i) Ca2+ influx through voltage-
gated Ca2+ channels, (ii) agonist (e.g., acetylcholine or ATP)
binding to receptor-operated channels, and (iii) binding of ago-
nists (e.g., oxytocin) to receptors that evoke Ca2+ release from
intracellular stores (Inoue et al., 1992; Wray, 1993; Sanborn,
2000). Additionally, the onset of labor requires the MSMCs to
switch from a hyperpolarized to a more depolarized state. This
transition is controlled, in part, by a complex regulation of ion
channel activity. Multiple types of ion channels are responsible for

changes in the membrane potential in MSMCs (Sanborn, 2000;
Shmygol et al., 2007a; Chan et al., 2014); potassium channels,
in particular, play an important role in controlling membrane
potential and attenuating excitation to maintain quiescence in
pre-labor MSMCs.

Several lines of evidence indicate that the large-conductance
voltage- and Ca2+-activated K+ channel (BKCa) is a key regula-
tor of myometrial membrane potential and the maintenance of
uterine quiescence. First, the BKCa channel is one of the most
abundant potassium channels in myometrial tissue (Tritthart
et al., 1991; Perez et al., 1993; Chan et al., 2014). Second, early
reports described an outward K+ current activated by Ca2+
influx in MSMCs (Vassort, 1975); pharmacological characteri-
zation later attributed this current to the BKCa channel (Anwer
et al., 1993). Third, inhibition of BKCa depolarizes MSMCs
and increases myometrial contractility in both rat and human
tissue (Anwer et al., 1993). Fourth, activity of BKCa channels
evokes a large efflux of K+ and repolarization of the membrane.
Finally, enhancing BKCa channel opening has a potent relaxant
effect on myometrium from different species (Khan et al., 1998;
Choudhury et al., 2011; Xu et al., 2011).

It must be noted that some evidence argues against the impor-
tance of the BKCa channel. For example, mice lacking the BKCa

channel gene, mSlo1, give birth to smaller pups and litters,
although they reach term successfully (Meredith et al., 2004);
however, compensatory mechanisms to systemic channel abla-
tion have not been addressed. Additionally, a few studies have
shown a minimal effect of BKCa channel blockers or openers on
rodent and human myometrial contraction in vitro (Aaronson
et al., 2006; Smith et al., 2007; Sadlonova et al., 2011). However, as
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we shall see below, this channel is modulated by multiple factors
that are difficult to replicate in vitro.

The BKCa channel is formed by homo-tetramers of α-
subunits; each subunit comprises seven conserved transmem-
brane domains (S0 through S6), an extracellular N terminus, and
a large C-terminal domain (Wallner et al., 1996; Meera et al.,
1997). The C-terminal domain encompasses four hydrophobic
segments (S7–S10), two predicted regulators of K+ conductance
domains (RCK1 and RCK2), and a Ca2+ sensor domain. The
pore-forming α-subunit is frequently associated with various
auxiliary subunits, β1–β4 or γ1–γ4 (Knaus et al., 1994b; Wallner
et al., 1999; Behrens et al., 2000; Brenner et al., 2000; Uebele et al.,
2000; Yan and Aldrich, 2012), which confers further functional
diversity.

Several mechanisms have been described to regulate BKCa

channel function, such as expression of splice variants, com-
partmentation in membrane microdomains, posttranslational
modifications, interaction with auxiliary proteins, and hormonal
regulation. Here, we provide an overview of some of these mech-
anisms and discuss them in relation to myometrial function.
Figure 1 provides a schematic representation of the mechanisms
we describe.

INTRINSIC MECHANISMS OF BKCa CHANNEL MODULATION
SPLICE VARIANTS
The gene encoding the BKCa channel (slo1/KCNMA1) was first
cloned from Drosophila (Atkinson et al., 1991; Adelman et al.,
1992), and a mammalian gene was identified later (Butler et al.,
1993). The BKCa channel is encoded by a single gene, and alter-
native splicing allows this channel to respond to a variety of
regulatory inputs in a tissue-specific manner. To date, over 30
exons have been reported in the human KCNMA1 gene (http://
www.genecards.org/cgi-bin/carddisp.pl?gene=KCNMA1), lead-
ing to a large number of potential isoforms of the channel.
Early studies demonstrated that splice variants of the BKCa chan-
nel have altered Ca2+ and voltage sensitivities (Tseng-Crank
et al., 1994), and key phosphorylation sites are created by
the inclusion of certain exons (Tian et al., 2001). In mouse
myometrium, the expression of BKCa channel isoforms with
low sensitivity to Ca2+ increases at mid-pregnancy (Benkusky
et al., 2000). In human myometrium, expression of specific
spliced isoforms can be altered during pregnancy and at the junc-
ture between non-laboring and laboring states (Curley et al.,
2004), allowing the uterus to attain a more excitable state dur-
ing labor. For example, although the overall levels of BKCa

channel transcript and protein decrease as term approaches
(Matharoo-Ball et al., 2003; Gao et al., 2009), the propor-
tion of the mK44 isoform transcript increases at this time
(Curley et al., 2004). This isoform bears a unique 44 amino-acid
insertion and undergoes endoproteolytic cleavage, with mem-
brane localization of the N terminus variant and intracellular
retention of the remaining cleaved pore-forming C terminus
(Korovkina et al., 2006). Additionally, mK44 is less sensitive to
Ca2+ and voltage than the canonical (lacking the insert) chan-
nel (Korovkina et al., 2001), suggesting that this isoform may
modulate uterine activity near the time of labor (Curley et al.,
2004).

Other splice variants that are widely expressed could play an
important role in myometrial excitability during gestation, such
as the stress axis regulated exon (STREX) isoform, which intro-
duces 59 amino acids into the linker between cytosolic domains
S8 and S9 (Saito et al., 1997). This idea is supported by studies
showing that the STREX variant is regulated during pregnancy
(Benkusky et al., 2000) in mice and rats by adrenocorticotropic
hormone, estrogen, and progesterone (Xie and McCobb, 1998;
Zhu et al., 2005). Additionally, STREX harbors a consensus PKA
phosphorylation motif, whose phosphorylation inhibits chan-
nel activity (Tian et al., 2001). STREX expression decreases in
rat myometrium during pregnancy, likely due to an estrogenic
effect (Zhu et al., 2005) (see Section Hormonal regulation).
Although this isoform does not appear to play a dominant role
in human myometrium, it may affect myometrial excitability in
other species.

Alternative splicing is usually considered a mechanism to
derive variability from single gene products, but it may also reg-
ulate protein trafficking, as suggested by the existence of yet
another splice variant termed SV1. In this protein, 33 amino
acids that include an endoplasmic reticulum (ER) retention motif
(CVLF) are inserted within the S1 transmembrane domain. Thus,
this isoform is retained in the ER, where it acts as a naturally
occurring dominant negative (Zarei et al., 2001). Although the
role of this isoform in controlling myometrial excitability has
not been fully explored, its expression could provide an impor-
tant mechanism for BKCa channel modulation and regulation of
uterine contraction. Table 1 presents a summary of the known
myometrial splice variants and their modified functions.

TRAFFICKING
Membrane trafficking of the BKCa channel regulates a wide vari-
ety of physiological processes including pregnancy (Song et al.,
1999), aging (Marijic et al., 2001), and aldosterone-induced K+
secretion from the gut (Sorensen et al., 2008). Two regions that
control BKCa channel surface localization are the intracellular
C-terminal linker between the RCK1 and RCK2 domains (Lee
et al., 2009; Chen et al., 2010) and an actin-binding domain in
the C terminus (Zou et al., 2008). In addition, isoforms contain-
ing different C-terminal sequences have distinct trafficking to the
cell surface (Kim et al., 2007a; Ma et al., 2007).

Variation of the α-subunit by alternative splicing can add or
delete signal sequences that modify channel localization by facil-
itating its retention in or targeting to intracellular organelles,
including the ER (Zarei et al., 2001; Chen et al., 2010) and mito-
chondria (Singh et al., 2013). In rat myometrium, a splice variant
containing the SV1 exon is retained in the ER, thereby prevent-
ing surface localization and affecting cell excitability (Zarei et al.,
2001, 2004). In addition to splicing, co-expression with the aux-
iliary β1-subunit enhances internalization of the BKCa α-subunit
into endosomes, thus controlling its membrane localization (Toro
et al., 2006). Likewise, a related β4-subunit has an ER retention
signal at its C terminus and prevents the α-subunit from exit-
ing the ER (Shruti et al., 2012). As noted above, ER retention
mechanisms have been explored in the myometrium, but their
physiological relevance in modulating uterine contractility during
pregnancy is still unknown.
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FIGURE 1 | Several mechanisms modulate the BKCa channel in the

myometrium. Certain splice variants (SV1 and mK44) of the BKCa channel
are retained in the endoplasmic reticulum, whereas actin filaments induce
traffic of BKCa to the plasma membrane of the myometrial smooth muscle
cell (MSMC). Localization of BKCa channels in membrane microdomains (i.e.,
caveolae) and interaction with caveolin-1 and -2 and actin filaments modulate
the channel’s activity. The BKCa auxiliary β1- and β2-subunits modify channel
activation by direct interaction and, in the case of β1, by inducing its
internalization to endosomes. Novel BKCa auxiliary γ-subunits are expressed
in the uterus, but their significance for MSMC excitability has not been
assessed. The vasoactive molecules nitric oxide (NO) and
epoxyeicosatrienoic acid (5,6-EET) induce relaxation of the myometrium likely
by modulation of BKCa channel activity. The steroid hormones 17β-estradiol
(E2) and progesterone (P4) are important in maintaining pregnancy and
inducing labor. These hormones modulate activity of the BKCa channel in
several ways: directly modulating BKCa channel activity, inducing proteosomal
degradation of the channel, and regulating expression of the genes encoding
the BKCa α-subunit (KCNMA1/mSlo1) or β-subunits (KCNMB1 and KCNMB2).
Another pregnancy-related hormone, human chorionic gonadotropin (hCG),
modulates BKCa channel activity to induce relaxation of the myometrium.

Several G-protein coupled receptors (GPCRs) regulate BKCa channel activity
in MSMCs. Norepinephrine (NE) and nociceptin bind their receptors, β2- and
β3-adrenoceptors (β2- and β3-AR) and the orphan opioid receptor-like 1
(ORL-1), respectively, and thereby activate G-proteins (Gαs, Gβγ). This leads
to adenylyl cyclase (AC) production of cyclic AMP (cAMP), which activates
protein kinase A (PKA) and modulates BKCa channel activity. Oxytocin and
melatonin stimulate oxytocin receptor (OTR) and melatonin receptors 1 and 2
(MT1 and MT2), respectively, and thereby induce Gαq/11-dependent activation
of phospholipase C (PLC). This leads to production of diacylglycerol (DAG),
which in turn causes protein kinase C (PKC)-dependent phosphorylation of
the BKCa channel. PLC also produces inositol 1,4,5-triphosphate (IP3) from
membrane-bound phosphatidylinositol 4,5-bisphosphate (PIP2) and thereby
brings about Ca2+ release from the sarcoplasmic reticulum. In addition to
activation by Ca2+ release from intracellular stores, the BKCa channel is
activated by Ca2+ influx from nearby voltage- or ligand-gated Ca2+ channels
(VGCC and LGCC, respectively). Corticotropin-releasing hormone (CRH) binds
to its receptors CRH-R1 and CRH-R2, which are linked to multiple signaling
pathways and induce up- or down-regulation of BKCa channel activity. Finally,
a particular BKCa channel (mitoBKCa) targets to the inner membrane of
mitochondria and may influence MSMC contractility.

Table 1 | BKCa channel splice variants expressed in the myometrium.

Splice

variant

name

Affected

domain

Number of

amino acids

added

Functional modification References

mK44 S0-S1 loop 44 decreased voltage and Ca2+ sensitivity,
endoprotease cleavage

Korovkina et al., 2001, 2006; Curley
et al., 2004

SV1 S1 33 endoplasmic reticulum retention Zarei et al., 2001, 2004
STREX S8-S9 loop 59 increased voltage and Ca2+ sensitivity, switches

from PKA activation to inhibition
Saito et al., 1997; Benkusky et al., 2000;
Tian et al., 2001; Zhu et al., 2005

MITOCHONDRIAL LOCALIZATION
A mitochondrial BKCa (mitoBKCa) channel was first identi-
fied by patch clamp studies performed on mitoplasts prepared
from human glioma cells (Siemen et al., 1999). The structure

of mitoBKCa is similar to the plasmalemmal BKCa except for
the inclusion of a mitochondrial-targeting sequence, DEC, in
the C-terminal region (Singh et al., 2013). Located in the
inner mitochondrial membrane, mitoBKCa channels appear to
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be structurally and functionally coupled to the respiratory chain
(Bednarczyk et al., 2013). In cardiac myocytes, activation of
mitoBKCa channels attenuates mitochondrial Ca2+ overload
(Sato et al., 2005). A similar effect is observed after activa-
tion of mitochondrial ATP-sensitive K+ channels, but these
effects seem to be independent (Sato et al., 2005). The link
between the mitoBKCa channel and myometrial function has not
been explored. However, disruption of mitochondrial function
decreases the amplitude and frequency of spontaneous contrac-
tions in non-pregnant mouse uterus, and some data suggest that
this effect is, at least in part, mediated by Ca2+-activated K+ chan-
nels, such as the BKCa channel (Gravina et al., 2010). Notably, the
effect occurs through modulation of Ca2+ influx and membrane
potential. The idea that mitoBKCa functions in the myometrium
is appealing. For example, activation of mitoBKCa improves mito-
chondrial respiratory function and thus protects the heart from
ischemic injury (Xu et al., 2002). Moreover, mitoBKCa channels
are more sensitive to hypoxia than plasma membrane BKCa chan-
nels in glioma cells (Gu et al., 2014), suggesting functional differ-
ences between these forms. Therefore, further work is required to
determine (i) whether the mitochondria-dependent modulation
of Ca2+ levels and uterine contractility changes during preg-
nancy, and (ii) whether mitoBKCa function affects mitochondria
to accommodate changes in Ca2+ dynamics in the myometrium.

MEMBRANE COMPARTMENTATION
Localization of proteins in cholesterol- and sphingolipid-rich
membrane microdomains has been proposed as a mechanism
to modulate membrane excitability and intracellular signaling
(Razani et al., 2002). Several lines of evidence indicate that such
microdomains play important roles in controlling myometrial
excitability. First, the number of a specific type of microdomain,
caveolae, increases in myometrial cells toward the end of preg-
nancy (Turi et al., 2001). Second, two isoforms of the scaffolding
proteins that form caveolae, caveolin-1, and caveolin-2, are down
regulated by estrogen (Turi et al., 2001) and labor (Chan et al.,
2014). Third, depletion of membrane cholesterol and consequent
disruption of membrane microdomains, induces an increase in
uterine contractions and Ca2+ transients (Smith et al., 2005).
Finally, multiple studies have shown that BKCa channels localize
to membrane microdomains in both cells used for heterologous
expression and smooth muscle cells (Bravo-Zehnder et al., 2000;
Babiychuk et al., 2004). For example, co-localization of BKCa

channels with downstream effectors and other receptors in cave-
olae alters channel function in vascular smooth muscle cells (Lu
et al., 2010).

The discrete membrane localization of the BKCa channel with
its effectors and regulators might be an important mechanism
to modulate BKCa function in myometrium. In support of this
idea, a sub-population of BKCa channels in MSMCs localizes to
caveolae where they associate with both structural components
of caveolae, caveolin-1, and caveolin-2, and cytoskeletal proteins,
α- and γ-actin (Brainard et al., 2005). Specific down-regulation
of caveolin-1 decreases BKCa currents and alters localization
of BKCa channels from detergent-resistant to detergent-soluble
membrane microdomains (Brainard et al., 2009). This effect is
also observed by deleting the entire caveolin-binding motif in

the C terminus of the BKCa channel (Alioua et al., 2008) or
by mutating key amino acids in this region (Brainard et al.,
2009). Moreover, disruption of caveolae by depletion of mem-
brane cholesterol or depolymerization of the actin cytoskeleton
increases BKCa activity in human MSMCs (Brainard et al., 2005).
Conversely, cholesterol depletion decreases BKCa activity in rat
MSMCs (Shmygol et al., 2007b). These contradictory observa-
tions might be explained if the cholesterol-depleting agent used
in both studies differentially affected other membrane-bound
proteins such as Ca2+ or K+ channels (Levitan et al., 2010).
Nonetheless, it is tempting to speculate that differential local-
ization of BKCa isoforms within caveolar domains of the plasma
membrane partially explains the Ca2+-insensitive BKCa currents
that are observed in laboring myometrium (Khan et al., 1993).

POSTTRANSLATIONAL MODIFICATIONS
The BKCa channel possesses numerous phosphorylation sites, and
the phosphorylation state of these residues can regulate chan-
nel activity (Toro et al., 1998; Schubert and Nelson, 2001; Kyle
et al., 2013). Below, we discuss three potential kinase modulators
of BKCa channel activity in the myometrium: protein kinase A
(PKA), protein kinase C (PKC), and protein kinase G (PKG).

In the myometrium, the association of PKA with the plasma
membrane is regulated by progesterone and labor (Ku and
Sanborn, 2002; Ku et al., 2005). Activation of the PKA path-
way by cyclic AMP contributes to uterine quiescence during
pregnancy through phosphorylation of various proteins (Lopez
Bernal, 2007; Tyson et al., 2008). The BKCa channel is one such
target; in non-pregnant myometrium, PKA inhibits BKCa chan-
nels, whereas in pregnant myometrium, phosphorylation by PKA
activates the channel (Perez and Toro, 1994). This disparity may
be explained by the fact that, as mentioned in section Splice vari-
ants, different splice variants of the BKCa channel respond in
distinctive ways to PKA modulation (Tian et al., 2001; Zhou et al.,
2001).

PKC is a serine/threonine kinase activated by increasing intra-
cellular levels of diacylglycerol or Ca2+. In vascular SMCs, PKC
directly phosphorylates the BKCa channel α-subunit, reducing its
activity (Schubert and Nelson, 2001; Zhou et al., 2010). In these
cells, PKC can also reduce BKCa channel activity indirectly by
decreasing the release of Ca2+ sparks from the sarcoplasmic retic-
ulum (Bonev et al., 1997; Hristov et al., 2014). Although the PKC
modulation of agonist-dependent myometrial contractions has
been explored (Phillippe, 1994; Breuiller-Fouche et al., 1998; Eude
et al., 2000), the role of BKCa channels in this process remains
elusive.

PKG, a serine/threonine-specific protein kinase that is acti-
vated by intracellular cyclic GMP, enhances BKCa activity by
direct phosphorylation of serine residues (Alioua et al., 1998;
Kyle et al., 2013). In SMCs, PKG has been shown to acti-
vate BKCa channels (Robertson et al., 1993; Archer et al., 1994;
Zhou et al., 1996). Likewise, PKG enhances the activity of
BKCa channels originally cloned from myometrium and subse-
quently expressed in a heterologous system (Zhou et al., 1998).
Furthermore, PKG activation increases the activity of BKCa chan-
nels in myometrium (Zhou et al., 2000b), suggesting a role for
PKG in maintaining uterine quiescence by modulation of BKCa
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channel activity. Functional contraction studies aimed at dis-
secting the effects of PKG on BKCa currents in non-pregnant
and pregnant myometrium are required to elucidate whether this
interaction has a role in the myometrium during pregnancy or
labor.

EXTRINSIC MECHANISMS OF BKCa CHANNEL MODULATION
INTERACTION WITH AUXILIARY PROTEINS
The pore-forming BKCa channel α-subunits can associate with
and be regulated by auxiliary β- and γ-subunits (Knaus et al.,
1994b; Tanaka et al., 1997; Yan and Aldrich, 2012). Four dis-
tinct β-subunits proteins (β1-4) have been found to regulate the
function and localization of the BKCa channel α-subunit (Knaus
et al., 1994a; Wallner et al., 1999; Behrens et al., 2000; Brenner
et al., 2000; Uebele et al., 2000). We will focus on the β1- and
β2-subunits as these are expressed in MSMCs (Behrens et al.,
2000; Chan et al., 2014). In addition, four members of a γ-subunit
family, also known as leucine-rich repeat-containing (LRRC) pro-
teins, that associate with the BKCa channel α-subunits: LRRC26
(γ1), LRRC52 (γ2), LRRC55 (γ3), and LRRC38 (γ4) (Yan and
Aldrich, 2012) will be examined.

β-subunits
The β1-subunit is the predominant β-subunit in the
myometrium. Association with β1 decreases the voltage
dependency and enhances the apparent Ca2+-sensitivity of the
BKCa channel α-subunits (McManus et al., 1995; Wallner et al.,
1995; Tanaka et al., 1997; Lorca et al., 2014). The β1-subunit
also modulates the membrane trafficking (Toro et al., 2006; Kim
et al., 2007b), mobility (Yamamura et al., 2012), pharmacology
(Giangiacomo et al., 2000), and alcohol and estrogen sensitivity
(Valverde et al., 1999; Feinberg-Zadek and Treistman, 2007) of
the α-subunits. In human myometrium, expression of both α-
and β1-subunits decreases at the onset of labor (Matharoo-Ball
et al., 2003; Gao et al., 2009; Chan et al., 2014). Their association
with one another is not altered at this time (Matharoo-Ball
et al., 2003), suggesting that dissociation of BKCa channels from
accessory β1-subunits is not a mechanism to alter channel activity
during pregnancy. However, certain variants of the BKCa channel
α-subunit can be modulated differentially by the β1-subunit
(Lorca et al., 2014), thus acting to fine tune the properties of
BKCa to best fulfill its cell type-specific functions.

Similarly to β1, β2 increases BKCa channel Ca2+ and volt-
age sensitivity (Wallner et al., 1999), although the mechanisms
of modulation may differ (Orio and Latorre, 2005; Yang et al.,
2008; Lee et al., 2010). In addition to enhancing the activity of the
α-subunit, the β2-subunit inactivates the channel currents by N-
type inactivation (Wallner et al., 1999; Xia et al., 2003). Consistent
with the idea that β2 inhibits uterine contractility during preg-
nancy, progesterone (which is high until the end of pregnancy)
increases the expression of the BKCa α-subunit but decreases
expression of β2 in MSMCs (Soloff et al., 2011).

γ-subunits
The γ1–γ4 subunits belong to a subgroup of the LRRC pro-
tein family, the “Elron” cluster, so named because they contain
only the extracellular LRR region (Dolan et al., 2007). The

effect of these auxiliary proteins on BKCa activity is remarkable,
inducing shifts between −140 mV and −20 mV in the channel’s
voltage-activation curve in the absence of Ca2+ (Yan and Aldrich,
2012), thus providing strong modulation of channel function.
In particular, the γ1-subunit enhances the voltage-dependency
of BKCa channel activation, allowing activation at resting mem-
brane potential and intracellular Ca2+ concentrations (Yan and
Aldrich, 2010). This effect requires at least four γ1-subunits
to associate with the pore forming α-subunits (Gonzalez-Perez
et al., 2014). The γ1-subunit also reduces the sensitivity of the
BKCa channel to its opener mallotoxin (Almassy and Begenisich,
2012). Likewise, the γ2-subunit has been shown to modulate a
BKCa-related pH-sensitive channel (Slo3) in sperm (Yang et al.,
2011).

An extensive study by Yan and Aldrich (2012) showed that all
four γ-subunits are expressed in the human uterus. This finding
is intriguing because myometrial BKCa channel activity is signifi-
cantly higher in women at labor than in non-pregnant women; in
fact, at labor, BKCa activity is independent of intracellular Ca2+
(Khan et al., 1993). Thus, it is feasible that increased activity of
the BKCa channel in labor is mediated by γ-subunit association.
Further analysis of the biophysical properties of the myome-
trial BKCa channel at different gestational stages is necessary to
elucidate its modulation by γ-subunits.

MODULATION BY G-PROTEIN COUPLED RECEPTORS
Adrenergic modulation
Catecholamines, such as epinephrine and norepinephrine, have
been well described to play a pivotal role in controlling uter-
ine contraction through various G protein-coupled receptors
(GPCRs), specifically the α- and β-adrenergic receptors (AR)
(Bulbring and Tomita, 1987). Activation of α- and β-AR trigger
two main signaling pathways: (i) activation of Gs- or Gi-protein,
activation/inhibition of adenylyl cyclase (AC), and changes in
cyclic AMP (cAMP) levels, and (ii) activation of Gq/11-protein,
production of inositol 1,4,5-triphosphate (IP3) and diacylglycerol
(DAG), and an increase in intracellular Ca2+.

Clinically, β-AR agonists have been used as tocolytic agents,
inducing relaxation of the myometrial smooth muscle through
membrane hyperpolarization. However, the adverse cardiovascu-
lar and metabolic side effects in the mother and fetus (Jeyabalan
and Caritis, 2002; Berkman et al., 2003) have dampened their
effectiveness and limited their usage. Hence, a better understand-
ing of the pathways downstream of adrenergic signaling might aid
the design of new tocolytic agents. Interestingly, one of the main
effectors of adrenergic signaling pathways involved in myometrial
contractility is the BKCa channel.

In both the myometrium and lipid bilayers isolated from
MSMCs, activation of β-AR increases Ca2+-activated K+ cur-
rents, which are likely mediated by BKCa channels (Toro et al.,
1990; Anwer et al., 1992). Moreover, selective activation of β2-AR
increases AC activity, resulting in increased cAMP levels, activa-
tion of PKA, and increased BKCa currents (Zhou et al., 2000a).
When both α2- and β2-AR are stimulated in MSMCs from a preg-
nant woman, a synergistic increase in BKCa current is observed,
likely due to concomitant activation of AC by both Gβγi-subunit
and Gαs (Zhou et al., 2000a). Two findings further support
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this observation: (i) β2-AR and the BKCa channel physically
interact, and (ii) activation of β2-AR relaxes pregnant human
myometrium, and this relaxation is attenuated by the BKCa chan-
nel blocker paxilline (Chanrachakul et al., 2004). Conversely,
α2-AR stimulation antagonizes β2-AR in MSMCs from non-
pregnant women. Therefore, a precise balance between α2- and
β2-AR activity during pregnancy leads to increased BKCa channel
function.

Interestingly, β2-AR and BKCa channels seem to be part of a
macromolecule complex involving the A-kinase anchoring pro-
tein (AKAP79/150), PKA, and L-type Ca2+ channels (Liu et al.,
2004), making the control of BKCa channel activity by phospho-
rylation and Ca2+ more efficient. Expression of AKAP79 and PKA
are significantly lower in myometrial tissues from women in labor
than in tissue from women not in labor (Ku et al., 2005). It has
been proposed that these complexes are linked to caveolins and/or
actin filaments (Lu et al., 2006), as observed for BKCa channel-
angiotensin II signaling (Lu et al., 2010), and that disruption of
these complexes and reduction of BKCa activity could lead to
increased contractions at term.

Similar to the effects of β2-AR, selective stimulation of β3-AR
activates single-channel and whole-cell BKCa currents in iso-
lated human MSMCs (Doheny et al., 2005). Moreover, β3-AR
activation inhibits both spontaneously occurring and oxytocin-
induced contractions of myometrial strips from pregnant women,
an effect that is abolished by blocking BKCa channels with iberi-
otoxin (Doheny et al., 2005). Hence, the adrenergic modulation
of myometrial activity involves BKCa channel modulation and
seems to vary according to the type of AR that is activated and
the physiological state of the myometrium.

Modulation by other G-protein coupled receptors
The association of BKCa channels with, and their regulation by,
GPCRs has been well established in other tissues. For example,
M2 muscarinic receptors inhibit BKCa currents in tracheal SMCs
(Zhou et al., 2008), whereas the G protein-coupled estrogen
receptor 1 stimulates BKCa activity in coronary SMCs (Yu et al.,
2011). Here we discuss five GPCRs that have been linked to uter-
ine function: oxytocin, prostaglandin F2α, corticotropin-releasing
hormone, nociceptin, and melatonin receptors.

The neuromodulator oxytocin increases the force and dura-
tion of myometrial contractions and is a widely used uterotonin
to induce labor (Hawkins and Wing, 2012). The oxytocin receptor
(OTR) is coupled to Gq/11 protein and mediates both activation of
the phospholipase C (PLC)/DAG/PKC pathway (Morrison et al.,
1996) and IP3-induced intracellular Ca2+ increase (McKillen
et al., 1999; Willets et al., 2009). OTR-dependent increases in
intracellular Ca2+ lead to activation of BKCa channels (Zhou
et al., 2007), which may serve as a negative feedback for oxytocin-
induced uterine contractions. Further understanding of oxy-
tocin’s effects on BKCa channel activity will hopefully lead to
strategies to avoid some of the side effects associated with the use
of this labor-inducing drug.

Prostaglandins (PGs), derivatives from arachidonic acid, par-
ticipate in several physiological processes, including regulation of
smooth muscle contractility (Wong and Vanhoutte, 2010) and
inflammation (Ricciotti and FitzGerald, 2011). The prostaglandin

F2α (PGF2α) is a potent uterotonin (Crankshaw and Dyal, 1994),
and the levels of both PGF2α and its receptor (FP) rise in the
amniotic fluid at the onset of labor (Dray and Frydman, 1976;
Brodt-Eppley and Myatt, 1999). Activation of the FP receptor,
which is coupled to Gq protein, leads to increases in IP3, DAG,
and intracellular Ca2+ levels. During labor, PGF2α also regulates
the expression of uterine contraction-associated proteins, such
as connexin 43, OTR, and FP receptor, thus promoting uter-
ine contractility (Xu et al., 2013). Inhibition of the FP receptor
by the specific antagonist THG113 prevents pre-term labor in
mouse (Peri et al., 2002) and induces marked relaxation of human
myometrial tissue (Doheny et al., 2007). These effects may be
explained by the fact that THG113 induces activation of BKCa

channels in human MSMCs. However, the detailed mechanism
of BKCa channel activation by this agent remains elusive (Doheny
et al., 2007). Further studies will be necessary to determine the
precise relationship between BKCa channel activity and signaling
by PGF2α or other PGs in the myometrium.

Corticotropin-releasing hormone (CRH), a polypeptide
expressed in the placenta and uterus, activates the CRH receptors
(CRH-R) expressed in the myometrium (Warren and Silverman,
1995). The plasma levels of CRH and its affinity for its receptors
increase during pregnancy (Goland et al., 1986; Campbell
et al., 1987; Hillhouse et al., 1993). CRH-R activation induces
contraction of myometrium through different G-protein coupled
signaling pathways, such as AC/cAMP/PKA and PLC/DAG/PKC
(Grammatopoulos, 2007), an effect that appears specific to term
pregnancy (Simpkin et al., 1999). CRH-Rs associate with the
BKCa channel, and the two major subtypes, CRH-R1 and CRH-
R2, regulate the expression of BKCa in MSMCs in a complicated
manner (Xu et al., 2011). During pregnancy, CRH increases BKCa

expression via CRH-R1, whereas it decreases BKCa expression
via CRH-R2. Conversely, after onset of labor, CRH-R1 decreases
BKCa expression, whereas CRH-R2 increases BKCa expression
(Xu et al., 2011). These findings indicate that a finely tuned
regulation of BKCa activity by CRH could control the transition
of the myometrium from a quiescent to contractile state. How
this occurs is yet to be fully defined.

Nociceptin is an opioid-related neuropeptide that is expressed
in the uterus where it acts as a relaxant (Klukovits et al., 2010;
Deak et al., 2013). The effect of nociceptin in myometrium is
likely mediated by binding to its receptor, the orphan opioid
receptor-like 1 (ORL-1), which is a Gi and Gs coupled receptor
that regulates AC activity. In term pregnant rat uterus, activa-
tion of ORL-1 by nociceptin stimulates the production of cAMP
(Klukovits et al., 2010). Interestingly, the relaxant effect of noci-
ceptin is diminished by application of paxilline, a selective blocker
of BKCa channels, suggesting that nociceptin-induced relaxation
involves activation of BKCa channels (Klukovits et al., 2010).

Melatonin, a monoamine that regulates circadian rhythms, is
expressed by pregnant human myometrium. In the myometrium,
signaling via melatonin receptors-1 and -2 (MT1 and MT2)
(Schlabritz-Loutsevitch et al., 2003) elicits several cellular sig-
naling pathways, including inhibition of AC/cAMP formation
and stimulation of Ca2+ transients through the PLC/IP3 pathway
(Witt-Enderby et al., 2003). Melatonin increases BKCa channel
activity in MSMCs in a PLC-dependent manner (Steffens et al.,
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2003), suggesting a role of melatonin in regulating myome-
trial excitability. However, melatonin can also enhance oxytocin-
induced contraction of MSMCs (Sharkey et al., 2009). Both BKCa

channels and melatonin are modulators of circadian rhythm
behavior (Arendt and Skene, 2005; Meredith et al., 2006), which
might impact the timing of parturition (Olcese et al., 2013),
so additional evaluation of the effects of melatonin on BKCa

channel activity and its role on uterine contractility might be
necessary.

HORMONAL REGULATION
Numerous hormones regulate BKCa channel expression and
activity in different tissues. Two relevant steroid hormones in the
uterus, estrogens and progesterone, are key regulators for both
maintaining uterine quiescence during pregnancy and for induc-
ing labor at term. Although the levels of both hormones increase
during pregnancy in humans (Boroditsky et al., 1978; Buster
et al., 1979; Montelongo et al., 1992), changes in responsiveness
of the target cells are key for their function. Here, we discuss ways
in which BKCa might contribute to myometrial cell responsive-
ness to estrogens, progesterone, and also the hormone human
chorionic gonadotropin.

The steroid hormone 17β-estradiol (E2) helps maintain preg-
nancy. As such, circulating E2 levels rise throughout pregnancy
(Boroditsky et al., 1978; Buster et al., 1979; Montelongo et al.,
1992), and the activity of the estrogen receptor α (ERα) is
increased in myometrium near term (Mesiano and Welsh, 2007;
Welsh et al., 2012). E2 regulates expression of the BKCa channel
by species-specific mechanisms. For example, expression of the
mouse BKCa gene (mSlo1) is up-regulated by E2 through acti-
vation of ERα and binding to estrogen response elements in the
mSlo1 promoter (Kundu et al., 2007). Expression of the human
homolog (KCNMA1 or hSlo1) is also up-regulated by E2 inter-
action with ERα, but through the phosphatidylinositol 3-kinase
pathway (Danesh et al., 2011). Furthermore, E2 activation of ER
decreases expression of the STREX variant in rat myometrium,
mimicking the effect of pregnancy on this variant (Zhu et al.,
2005). In addition, E2 augments the expression of the BKCa

auxiliary β1-subunit in mouse uterus (Benkusky et al., 2002).
Although less studied, the estrogen receptor β (ERβ) has also been
suggested to play a role in myometrial quiescence and labor (Wu
et al., 2000). Furthermore, ERβ is necessary for the E2-induced
increase in BKCa currents in a neuronal cell line (Nishimura et al.,
2008), but whether ERβ modulates myometrial BKCa currents has
not been studied.

Although not yet fully explored, it is feasible that, at the
onset of labor, E2 triggers activation of BKCa channel activity
directly rather than by activation of ERα and up-regulation of
BKCa gene expression in MSMCs. This is a strong possibility
because BKCa channel expression is reduced at the end of preg-
nancy (Matharoo-Ball et al., 2003; Gao et al., 2009; Chan et al.,
2014). Additionally, E2 can increase BKCa channel activity both
in the presence (Valverde et al., 1999; De Wet et al., 2006) or
absence (Wong et al., 2008) of the auxiliary β1-subunit by directly
binding to the channel. An E2-dependent increase in BKCa chan-
nel activity has also been observed in uterine vascular SMCs
(Hu et al., 2011). However, a lower concentration of E2 reduces

BKCa currents and induces proteosomal degradation of the BKCa

α-subunit (Korovkina et al., 2004). Hence, further studies are nec-
essary to address the physiological significance of the E2-BKCa

channel interaction in the myometrium.
Myometrial quiescence during pregnancy is, in part,

attributable to high plasma levels of the steroid hormone pro-
gesterone. Progesterone acts through its receptor PR to inhibit
expression of contraction-associated proteins such as OTR,
connexin 43, and cyclooxygenase-2, a key enzyme in the biosyn-
thesis of prostaglandins (Renthal et al., 2010; Williams et al.,
2012). Progesterone has been shown to inhibit BKCa channel
currents in human sperm (Mannowetz et al., 2013) as well as in
heterologous expression systems (Wong et al., 2008), suggest-
ing a direct interaction between PR and the BKCa α-subunit.
However, other evidence indicates that progesterone regulates
expression of BKCa. For example, longer progesterone treatment
increases mRNA and protein expression of the BKCa α-subunit in
human immortalized MSMCs. Likewise, progesterone treatment
decreases the expression of the β2-subunit (Soloff et al., 2011)
without changing the expression of β1-subunit in mouse uterus
(Xu et al., 2011). Although the effects of progesterone are wide
and complex in the myometrium, elucidation of its effects on
BKCa channel activity and expression will help to inform our
understanding of the regulation of myometrial function by this
hormone.

The human chorionic gonadotropin (hCG) is a glycopro-
tein produced mainly by the placenta. In addition to its role in
sustaining early pregnancy, hCG may also participate in main-
taining uterine quiescence during pregnancy. One study reported
that hCG induces a potent relaxation of human myometrium
in vitro, an effect partially attributable to an hCG-dependent
increase in BKCa currents in MSMCs (Doheny et al., 2003).
Simultaneously, another study found that certain unidentified
chorionic-derived factors reduce oxytocin-mediated contraction
in guinea pig myometrium in a paracrine manner, an effect that
involves the activation of myometrial BKCa channels (Carvajal
et al., 2003). Thus, BKCa channel seems to be a predominant
effector of the uterorelaxant effects of chorionic-derived factors,
including hCG.

OTHER MODULATORS
Other modulators of vascular smooth muscle such as nitric oxide
(NO) and certain eicosanoids have been reported to change BKCa

channel activity in the myometrium. NO is a gaseous molecule
that acts as a potent vasodilator mainly via activation of solu-
ble guanylyl cyclase and production of cGMP in smooth muscle.
NO production increases during pregnancy (Choi et al., 2002),
and decreases toward labor, suggesting a role in regulating uterine
contractility. NO has been shown to increase the open proba-
bility of the BKCa channel in human MSMCs (Shimano et al.,
2000), but whether this occurs by a direct interaction or by
cGMP-dependent pathways is unknown.

Another modulator of BKCa channels in the myometrium is
the non-prostanoid eicosanoid, 5,6-epoxyeicosatrienoic acid (5,6-
EET), a metabolite of arachidonic acid. The 5,6-EET isomer, the
most abundant eicosanoid isomer in myometrial tissue (Zhang
et al., 2007), reduces oxytocin-induced contractions in human
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pregnant myometrium by increasing BKCa currents (Pearson
et al., 2009). Additional studies should elucidate the nature of this
interaction and its physiological significance in the myometrium,
as well as in other tissues.

CONCLUDING REMARKS
During pregnancy, the myometrium must remain in a quiescent,
relaxed state, and the MSMCs must remain hyperpolarized. At
term, however, the MSMCs convert to a more depolarized state
to allow the myometrium to become contractile. Modulation of
BKCa channel function is pivotal for proper regulation of both
these states. Thus, enhanced activity of BKCa channels might
underlie myometrial quiescence during pregnancy. Conversely,
reduced activity of this channel might result in earlier labor, and
failure to properly modulate channel activity at the end of labor
might interfere with the transition to a contractile state. Thus,
it is perhaps not surprising that so many mechanisms function
to regulate the BKCa channel and thus fine-tune the excitabil-
ity of the myometrium. In addition to those regulators that are
known to regulate BKCa in the myometrium, numerous modu-
lators of BKCa channel activity have been described in different
tissues and under different physio(patho)logical states. Complete
understanding of these modulatory mechanisms will provide
opportunities to develop precise treatments for labor mistiming
and dysfunction.
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