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The extracellular matrix (ECM) of decellularized organs possesses the characteristics
of the ideal tissue-engineering scaffold (i.e., histocompatibility, porosity, degradability,
non-toxicity). We previously observed that the muscle acellular scaffold (MAS) is a
pro-myogenic environment in vivo. In order to determine whether MAS, which is basically
muscle ECM, behaves as a myogenic environment, regardless of its location, we analyzed
MAS interaction with both muscle and non-muscle cells and tissues, to assess the effects
of MAS on cell differentiation. Bone morphogenetic protein treatment of C2C12 cells
cultured within MAS induced osteogenic differentiation in vitro, thus suggesting that
MAS does not irreversibly commit cells to myogenesis. In vivo MAS supported formation
of nascent muscle fibers when replacing a muscle (orthotopic position). However,
heterotopically grafted MAS did not give rise to muscle fibers when transplanted within
the renal capsule. Also, no muscle formation was observed when MAS was transplanted
under the xiphoid process, in spite of the abundant presence of cells migrating along the
laminin-based MAS structure. Taken together, our results suggest that MAS itself is not
sufficient to induce myogenic differentiation. It is likely that the pro-myogenic environment
of MAS is not strictly related to the intrinsic properties of the muscle scaffold (e.g., specific
muscle ECM proteins). Indeed, it is more likely that myogenic stem cells colonizing MAS
recognize a muscle environment that ultimately allows terminal myogenic differentiation.
In conclusion, MAS may represent a suitable environment for muscle and non-muscle 3D
constructs characterized by a highly organized structure whose relative stability promotes
integration with the surrounding tissues. Our work highlights the plasticity of MAS,
suggesting that it may be possible to consider MAS for a wider range of tissue engineering
applications than the mere replacement of volumetric muscle loss.

Keywords: extracellular matrix, niche, osteogenic differentiation, myogenic differentiation, tissue engineering,

regenerative medicine

INTRODUCTION
A niche is composed of elements that surround stem cells: tis-
sue specific cells, extracellular matrix and local growth factors
(Yin et al., 2013). These elements determine the local microenvi-
ronment that supports the maintenance of stem cell identity and
regulates the function of stem cells (Kuang et al., 2008). In addi-
tion, the niche supports stem cells and controls their self-renewal
in vivo (Spradling et al., 2001) by modulating the asymmetric cell
division insomuch as it ensures stem cell renewal and produc-
tion of a sufficient number of committed daughter cells for tissue

homeostasis and repair (Kuang et al., 2008). It is worth bearing
in mind that the local microenvironment affects not only stem
cell behavior (particularly the stem cell specific auto-renewal fea-
ture) but also the differentiation potential and cell division of
committed daughter cells deriving from stem cell asymmetrical
division. Indeed, a fibroblast-specific niche has been described for
cell culture purposes (Sivan et al., 2014), while the bone marrow
niche that regulates hematopoietic stem cells is also reported to
be necessary for B-cell commitment (Adler et al., 2014). Future
challenges involved in the recreation of cell niches as platforms
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FIGURE 1 | MAS is suitable for 3D myogenic cultures in vitro. (A)

Hematoxylin and eosin staining of C2C12 cells cultured in MAS in myogenic
differentiation medium for 1 week, showing both the sponge-like MAS
network (arrow) and cell aggregates (arrowhead); the latter are also visible
at a higher magnification in the inset. (B) Immunofluorescence localization
of laminin (green) and myosin (red) on a serial section demonstrates that
well differentiated muscle cells lie in aggregates on base
membrane-derived laminin sheets. The image is representative of a
triplicate experiment. Bar: 200 µ.

for culture models, which will allow the true in situ regenera-
tive niche to be investigated, have been reviewed by Kirkpatrick
(Kirkpatrick, 2014).

The definition of the microenvironment affecting both stem
cell renewal and committed daughter cell differentiation is
of particular relevance to tissue engineering (TE). TE repre-
sents an innovative approach based on the emulation of neo-
organogenesis aimed at recreating a wide range of tissues to
be used to replace lost tissues (Klumpp et al., 2010). A com-
monly applied definition of TE, provided by Langer and Vacanti,
is “an interdisciplinary field that applies the principles of engi-
neering and life sciences toward the development of biological
substitutes that restore, maintain, or improve tissue function or
a whole organ” (Langer and Vacanti, 1993). For TE purposes
cells are often transplanted or seeded into a structure capable of

supporting three-dimensional tissue formation. These structures,
referred to as scaffolds, are critical, both ex vivo and in vivo, to
recapitulate the niche and to support cell adhesion, survival and
differentiation. Indeed, not only do scaffolds allow cell migra-
tion and/or attachment, but they also deliver and retain cells
and biochemical factors, permit the diffusion of vital cell nutri-
ents and exert mechanical and biological influences that control
cell behavior (Macchiarini et al., 2008; Whitney et al., 2012).
Scaffolds may be made of either natural or synthetic materials.
Indeed, various derivatives of the extra cellular matrix (ECM)
have been studied because they possess all the features of the
ideal tissue-engineered scaffold or biomaterial, which include his-
tocompatibility, bioactivity, porosity, degradability, non-toxicity
and mechanical properties that match those of the original tissue
(Borschel et al., 2004).

An alternative to the production of constructs composed of
cells seeded into scaffolds is ECM. ECM can be used to support
in situ regeneration, thereby relying on the bioactivity of autol-
ogous or heterologous biomaterial on autologous cells. Indeed,
ECM is manufactured by the resident cells of each tissue and
organ and is in a state of dynamic equilibrium with its surround-
ing microenvironment. We may assume, even without decipher-
ing the complex three-dimensional organization of the structural
and functional molecules of which it is composed, that ECM is
biocompatible because cells produce their own matrix (Badylak,
2007). Recently, an increasing amount of attention has been paid
to the use of ECM-based scaffolds for TE interventions. ECM-
based scaffolds not only preserve the structure and molecular
features of the native ECM, but also release matricryptic peptides
during degradation. Matricryptic peptides affect cell motility,
proliferation and differentiation, thereby greatly influencing the
constructive remodeling of new tissue (Faulk et al., 2013). For
these reasons, various forms of intact ECM have been used as bio-
logical scaffolds to promote the constructive remodeling of tissues
and organs (Dahms et al., 1998; Meyer et al., 1998), with many
of these ECM materials being marketed for a variety of thera-
peutic applications (Perniconi and Coletti, 2014; Teodori et al.,
2014). Intact ECM is typically obtained by means of decellular-
ization from explanted tissue in such a way as to create scaffolds
that maintain the original spatial organization and biochemical
composition. Tissue decellularization may be achieved in various
ways, all of which eliminate the cellular compartment and leave
a spatially and chemically preserved ECM (Crapo et al., 2011;
Teodori et al., 2014).

We previously produced muscle acellular scaffolds (MAS) by
means of decellularization at the whole organ scale of murine
skeletal muscles. We characterized the in vivo response to grafted
MAS and observed that such a construct provides a pro-myogenic
environment (Perniconi et al., 2011). In particular, we reported
that MAS orthotopically transplanted in mice was colonized by
both inflammatory and stem cells and supported de novo mus-
cle fiber formation (Perniconi et al., 2011). By definition MAS
possesses only one component of the niche, i.e., the muscle
ECM, being deprived of tissue specific cells and growth factors.
In our previous experimental settings (Perniconi et al., 2011),
as MAS was orthotopically grafted to replace a Tibialis anterior
muscle (TA), the relative contribution to muscle formation by

Frontiers in Physiology | Striated Muscle Physiology September 2014 | Volume 5 | Article 354 | 2

http://www.frontiersin.org/Striated_Muscle_Physiology
http://www.frontiersin.org/Striated_Muscle_Physiology
http://www.frontiersin.org/Striated_Muscle_Physiology/archive


Perniconi et al. Muscle acellular scaffold as a biomaterial

FIGURE 2 | C2C12 3D culture myogenic differentiation. (A)

Immunofluorescence analysis of all myosin expression (MF20 antibody,
red) in pellets of C2C12, whose nuclei are counterstained by Hoechst
(blue), cultured for 5 days in a minimal medium consisting of DMEM
supplemented with 1% BSA. The inset at a higher magnification shows
myosin positive syncytia. (B) Serial sections of C2C12 pellets (distance
between section = 15 µm) following immunofluorescence analysis for
myosin showing the appearance (green arrows) and disappearance
(purple arrowheads) of the signal, suggesting that the dimension of the
objects is of the order of magnitude of 30 µm. Nuclei are
counterstained by Hoechst and post-processed to withe to ameliorate

contrast. (C) Q-PCR of muscle markers expressed by C2C12 pellets
cultured in 1% BSA for 5 days (pellet) as compared to C2C12 2D
cultures in growth medium (GM) and differentiation medium (DM), used
as a negative and positive control, respectively. From left to right:
murine (m) myogenin, MyoD and embrionic (e) myosin heavy chain
(MHC). The mean ± s.e.m. of triplicate samples is shown. ∗p < 0.05
vs. GM, by Student’s t-test. Culturing myogenic cells in 3D aggregates
is sufficient to trigger a certain extent of myogenic differentiation.
Therefore, whether MAS promotes muscle differentiation in serum-free
medium (i.e., in the absence of pro-myogenic stimuli) cannot be clearly
ascertained due to lack of proper 3D culture controls.
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the graft and the surrounding environment could not be fully
assessed because both MAS and TA were of muscular origin. The
aim of the present work was to investigate whether MAS per se
is exclusively a pro-myogenic environment (which would mean
its use is limited to muscle tissue engineering applications) or
is compatible with other differentiation pathways. In order to
achieve this aim, we analyzed, in vitro and in vivo, the interaction
between MAS and both muscle and non-muscle cells and tissues,
to determine whether MAS is necessary or sufficient to induce
myogenesis regardless of its location.

MATERIALS AND METHODS
CELL CULTURES
C2C12 mouse myoblasts were cultured in growth medium (GM),
composed of Dulbecco’s Modified Eagle Medium (DMEM) with
4.5 g/l Glucose, L-Glutamine (Sigma), supplemented with 15%
fetal bovine serum (FBS), and 100 U/ml penicillin/100 microg/ml
streptomycin (Invitrogen). For differentiation experiment posi-
tive controls, C2C12 were cultivated in GM until they reached
80–90% of confluence on plastic Petri dishes, then were shifted
to 2% horse serum (HS) medium (DM). Alternatively, 2 × 106

FIGURE 3 | BMP induces osteogenic differentiation both in 2D and 3D

C2C12 and primary cultures. ALP staining of C2C12 cultures on plastic in
the absence (A) or presence (B) of 300 ng/ml BMP-2 for 5 days, showing
that C2C12 possess osteogenic potential when cultured in the presence of
BMP. The cells were counterstained with Hematoxylin and the osteoblasts
(red cells) were quantified (C). The mean ± s.e.m. of quadruplicate
samples is shown. ∗p < 0.05 vs. GM, by Student’s t-test. (D) A similar
myogenic to osteogenic conversion upon BMP treatment occurs in
myogenic cell primary cultures: an ALP+ cell is visible in the
photomicrograph; the inset shows the myogenic lineage of primary

cultures from skeletal muscle by desmin expression (red), while nuclei
were counterstained by Hoechst (blue). Nuclear size and shape
discriminate myoblasts/osteoblasts from fibroblasts. Bar: 50 µ. (E) Q-PCR
of bone markers expressed by C2C12 pellets cultured in 1% BSA for 5
days (pellet), in the absence of presence (+BMP-2) of 300 ng/ml BMP-2,
as compared to C2C12 2D cultures in growth medium (GM) and
differentiation medium (DM), both used as a negative controls for
osteogenic markers. From left to right: murine runt-related transcription
factor 2 (Runx2) and alkaline phosphatase (ALP). The mean ± s.e.m. of
triplicate samples is shown. ∗p < 0.05 vs. GM, by Student’s t-test.
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C2C12 cells were resuspended in 50 microL of GM and injected
within a MAS derived from a murine TA (see the paragraph
Decellularization of skeletal muscle, below). The cells were treated
for 5–7 days with 2% HS (horse serum) in the absence or presence
of BMP-2.

DECELLULARIZATION OF SKELETAL MUSCLE
For decellularization of skeletal muscle we dissected TA or
Extensor digitorum longus (EDL) and immediately incubated
them in sterile 1% SDS in distilled water for 48 and 24 h, respec-
tively, at RT under slow rotation. At least 10 ml of SDS solution

FIGURE 4 | MAS does not irreversibly commit C2C12 cells to a

myogenic fate. Immunofluorescence analysis of all myosin expression
(MF20 antibody, red) in C2C12 cells, whose nuclei are counterstained by
Hoechst (blue), cultured for 5 days in MAS in a medium consisting of
DMEM supplemented with 2% HS in the absence (A) or presence (B) of
300 ng/ml BMP-2. The inset in (A) shows a muscle section used as a
positive control. Myosin positive cells (red) are visible in both cases;
however, myogenic differentiation seems to occur predominantly in tightly
aggregated cells, since the scattered, ALP positive cells do not express
myosin in serial sections (see the arrows in B,E). (C) Quantification of
myosin (red fluorescence) from quadruplicate samples as above. Mean ±

s.e.m. ∗p < 0.05 vs. GM, by Student’s t-test. As shown by ALP staining,
and hematoxylin counterstaining, of C2C12 cells cultured in MAS in the
absence (D) or presence (E) of BMP, C2C12 do express ALP but only in
the presence of BMP. The bulk cell aggregates deriving from the original
injection of cell suspension into the MAS are indicated by light ellipses.
The insets in (D) represent positive controls: an ovary section (left) and
BMP-treated C2C12 cells (right); the inset in (E) shows ALP expressing
cells at a higher magnification. The latter are abundant in the region in
which MAS was colonized by cells (arrow in E), which are likely to have
migrated out of the cell aggregate visible in the center of the MAS. Black
bar = 500 µ, white bar = 100 µ.
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was used for each pair of muscles. After the decellularization pro-
cedure, the muscles were thoroughly washed by means of 3 incu-
bations lasting at least 30 min each in sterile PBS. Decellularized
scaffolds were used on the same day as they were produced or
were stored for specific experiments.

ANIMALS AND SURGICAL PROCEDURES
Adult sex-matched BALB/C mice were used throughout this study
as both donors and hosts. Mice were treated according to the
guidelines of the Institutional Animal Care and Use Committee.
Donor animals were sacrificed before skeletal muscle removal,

FIGURE 5 | (A) Analysis of transplanted acellular scaffold in vivo. The
Tibialis anterior muscle was removed, with the exception of a proximal
fragment (light blue) and the MAS (open ellipse) was sutured to the muscle
at the proximal end and to the tendon at the distal end. The black silk suture
knots, visible in the hematoxylin and eosin stained cryosections, were used
as a reference of the graft extremities. The first third, second third and last
third of the graft, starting from the proximal region, were defined as the
proximal, mid-belly and distal parts of the grafted MAS, respectively. (B)

Renal capsule grafting technique. The kidney was exposed by dorsal skin
incision (picture) and the renal capsule cut lengthwise for about 5 mm; a
pocket was created under the connective tissue renal capsule by using a
fire polished Pasteur pipet (picture inset). The graft was inserted into the
pocket by mean of forceps and the tip of the pipet (2 and 1 in the drawing,
respectively). For this specific experiment, the grafted MAS was obtained
from an extensor digitorum longus muscle (Graft, EDL-derived MAS)
because of the size of the latter was compatible with the grafting technique.

while host animals were anaesthetized before muscle dissec-
tion and MAS engraftment. The transplantation procedure is
described in detail below. TA acellular scaffolds were used to
replace TA of inbred, age- and sex-matched wild type mice. The
grafts were subsequently dissected from the host 2 weeks follow-
ing transplantation. The surgical procedures have been described
previously (Perniconi et al., 2011).

Scaffold grafting within the renal capsule. Animals were
weighed and anaesthetized. After a small incision had been made
in the body wall, the kidney popped out of the hole in the body
wall when pressure was applied on either side of the kidney using
the forefinger and thumb. An incision of approximately 5 mm was
made in the renal capsule. Then a glass Pasteur pipette, which had
been drawn thin and fire-polished with a rounded closed end, was
used to obtain a capsule pocket by manipulating the pipette point
tangential to the kidney in such a way as to detach the renal cap-
sule. The scaffold was inserted into the pocket under the capsule
using the polished glass pipette. After replacing the kidney within
the peritoneal cavity, the body wall was sutured with 1 or 2 stitches
of silk thread.

Scaffold grafting under the xiphoid process. Animals were
weighed and anaesthetized. A small incision was made under the
sternum. Without touching the muscle diaphragm, the scaffold
was attached with a suture to the xiphoid process in order to
suspend it within the peritoneal cavity in close contact with carti-
lage tissue. The body wall was sutured with 1 or 2 stitches of silk
thread.

HISTOLOGICAL ANALYSIS
At the end of the experimental period the pellets within the
scaffolds were frozen within OCT mounting medium (Leica)
in liquid nitrogen-cooled isopentane. Cryosections (8 µm) were
obtained using a Leica cryostat. For histological analysis, the sec-
tions were stained with hematoxylin and eosin using standard
methods (Sigma). Alternatively, cryosections were stained with
0.05% Toluidine blue (BDH) for 30 min. Photomicrographs were
obtained using an Axioscop 2 plus system equipped with an
Axiocam HRc (Zeiss) at 1300 × 1030 pixel resolution.

ALKALINE PHOSPHATASE (ALP) ASSAY FOR THE CHARACTERIZATION
OF OSTEOBLASTIC PHENOTYPES
A leukocyte ALP kit (Sigma-Aldrich) was used for ALP staining
according to the recommended protocol. Cells were counter-
stained with 0.05% neutral red (Sigma). They were then fixed
by immersion in fixative solution (citrate-acetone-formaldehyde)
for 30 s, gently rinsed with water and put in an alkaline-dye mix-
ture (sodium nitrite solution, FRV-Alkaline solution, deionized
water, Naphthol AS-BI Alkaline solution) for 15 min. The samples
were then rinsed for 2 min in deionized water and counterstained
for 2 min with Hematoxylin solution Gill N.3, rinsed in tap water
and air dried.

IMMUNOFLUORESCENCE ANALYSIS
Transverse cryosections were rinsed in PBS for 5 min at RT and
then incubated with Blocking minBuffer (1%BSA, 10% Goat
Serum in PBS) for 1 h at RT. The samples were washed in
PBS and incubated with primary antibody (Ab) MF20 (Mouse
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IgG2b myosin Hybridoma bank) at a 1:50 dilution in PBS, and
polyclonal anti-laminin Ab (policlonal Rabbit Sigma) at a 1:50
dilution in PBS. The sample were incubated with the secondary
Ab anti-mouse-Dylight 549 and anti rabbit AlexaFluor 488 a
1:400 dilution in PBS for 1 h. Alternatively, laminin Ab was
detected by anti-rabbit-Alexa 568 Ab. Secondary Abs were used
to detect endogenous IgG on cryosections of the grafted material
using anti-mouse-Alexa 488. Pre-immune serum was used for the
negative control. Finally, 0.5 ug/ml Hoechst 33342 (Sigma) was

used to counterstain cell nuclei. Photomicrographs were obtained
by means of an Axioskop 2 plus system (Zeiss) or a Leica Leitz
DMRB microscope fitted with a DFC300FX camera for confocal
analysis (Leica).

Quantitative analysis was performed on fluorescence images of
10 randomly chosen microscopic fields acquired in the red chan-
nel. Post-processing of the images was performed using Adobe
Photoshop and Scion Image Softwares (the latter, a software orig-
inally developed with the name of NIH Image at NIH, Bethesda,

FIGURE 6 | MAS is sufficient to support muscle regeneration in

volumetric muscle loss. Hematoxylin and eosin staining of
cross-cryosections of MAS grafted in the place of the Tibialis anterior in a
syngeneic mouse and analyzed at the level of distal (A,C) and mid-belly
(B,D,F) muscle sections (for the definition of these positions, refer to
Figure 5A), 2 (A,B) and 3 (C,D,F) weeks following transplantation. Numerous

regenerating muscle fibers (arrow), characterized by centrally located nuclei,
are visible within the inflammatory infiltrate. Multiple and/or centrally located
nuclei in the same rose cytoplasm indicate bona fide nascent muscle fibers
(F), as confirmed by sarcoglycan (green) and myosin (red) expression around
centrally located nuclei (blue) shown by immunofluorescence in (E). The
picture is representative of triplicate experiments. Bar = 200 µ.
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FIGURE 7 | MAS is not sufficient to promote myogenesis within the

renal capsule. Hematoxylin and eosin staining of cross-cryosections of a
peripheral region of the kidney and its renal capsule in the absence (A) or in
the presence (B) of grafted MAS, 2 weeks following transplantation. The
immunofluorescence analysis (C) for laminin (green) and myosin (red)
shows the absence of muscle fibers in the grafted MAS. Note that the
glomeruli are strongly autofluorescent. Nuclei are stained by Hoechst
(blue). Bar = 200 µ. The picture is representative of triplicate experiments.

is freely downloadable at http://rsb.info.nih.gov/ij/index.html).
Modifications were the same for all images and consisted in
a conversion to gray scale, followed by the measure of the
mean fluorescence calculated on the whole field. The values

were normalized by the area examined and expressed as arbi-
trary units (AU). Values deriving from the 10 sampled fields
were averaged and the result was considered representative of one
sample. At least four independent replicates were analyzed and
averaged.

QUANTITATIVE REAL-TIME REVERSE TRANSCRIPTION POLYMERASE
CHAIN REACTION (RT-qPCR)
Total mRNA was isolated using an RNeasy mini kit (Qiagen,
Courtaboeuf, France) or a TRIzol® reagent method (Invitrogen)
as described by the manufacturers. DNAse-treated RNA was
reverse transcribed with SuperScript® III RT (Invitrogen), the
cDNA obtained was amplified using TaqMan® or SYBR®Green
chemistries (Applied Biosystems by Life Technologies,
Courtaboeuf, France), and monitored with the 7500HT
Fast Real-Time PCR System (Applied Biosystems). Primers
used for RT-qPCR are listed below. Amounts of cDNA of
interest were normalized to that of GAPDH (�Ct = Ct gene
of interest—Ct GAPDH). Results were reported as relative
gene expression (2-�Ct). The following couples of primers
were used for murine (m) or human (h) genes: (1) glycer-
aldehyde 3-phosphate dehydrogenase (mGAPDH: forward
CTGAGCAAGAGAGGCCCTA; reverse TATGGGGGTCTGGGA
TGGAA; (2) runt-related transcription factor 2 (mRUNX2:
forward TTGACCTTTGTCCCAATGC; reverse AGGTTGGAGG
CACACATAGG); (3) alkaline phosphatase (mALP: forward
TGTCTGGAACCGCACTGAACT; reverse CAGTCAGGTT
GTTCCGATTCAA); (4) glyceraldehyde 3-phosphate dehydroge-
nase (GAPDH: forward CCAGCAAGAGCACAAGAGGA; reverse
AGATTCAGTGTGGTGGGGG); (5) runt-related transcription
factor 2 (hRUNX2: forward GAATCCTCCACCCACCCAAG;
reverse AATGCTGGGTGGCCTACAAA); (6) bone sialoprotein
2 (hIBSP: forward CCATTCTGGCTTTGCATCCG; reverse
GACAAGAAGCCTATTACTTTGC); (7) bone sialoprotein 2
(hOC: forward GTGCAGAGTCCAGCAAAGGT; reverse TCCCA
GCCATTGATACAGGT); (8) alkaline phosphatase (hALP: for-
ward GTGCAGAGTCCAGCAAAGGT; reverse TCCCAGCCAT
TGATACAGGT); (9) myogenin (forward GCACTGGAGTTCGG
TCCCAA; reverse TATCCTCCACCGTGATGCTG); (10) Myo
D (forward ACCCAGGAACTGGGATATGGA; reverse AAGTC
GTCTGCTGTCTCAAA); (11) embryonic myosin heavy chain
(e-MHC: forward CGTCTGCTTTTGGCAA; reverse TGGTC
GTAATCAGCAGCA). RUNX2 and ALP represent classic markers
of osteogenic differentiation (Coquelin et al., 2012; Leotot et al.,
2013), while MyoD, myogenin and myosin represent the standard
markers for myogenic differentiation (De Arcangelis et al., 2003,
2005; Naro et al., 2003; Musaro et al., 2007).

RESULTS
MAS IS SUITABLE FOR 3D MYOGENIC CELL CULTURES
To assess whether MAS supports cell attachment, survival and
differentiation, we cultured myogenic C2C12 cells in MAS in
DM for 1 week. C2C12 is a multi-potent cell line derived from
muscle satellite cells, and is thus primarily myogenic. On the
other hand, MAS is a muscle-derived biomaterial which we had
previously demonstrated is pro-myogenic in vivo, without know-
ing whether it retained the same properties in vitro. In these
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conditions, C2C12 cells showed the tendency to aggregate in a
cell-cell fashion (Figure 1A), even though they clearly came into
contact with the MAS laminin (Figure 1B), when cultured within
MAS. The cells survived for several days in culture and were able
to differentiate, i.e., to express markers of fully differentiated mus-
cle fibers (Figure 1B). Therefore, we considered that MAS was
sufficiently stable to support cell cultures and was compatible
with myogenic differentiation.

C2C12 are cells that fuse with each other during differentiation
to form myotubes in vitro. As expected, cell-cell contact represents
a condition leading to fusion for these cells (Rochlin et al., 2010).
However, this is not a sufficient trigger when C21C2 are cultured

in a minimal medium supplemented with 1% BSA in 2D cultures,
a condition that is not associated with their myogenic differenti-
ation and cell fusion. On the other hand, 3D cultures of C2C12
are still poorly characterized (Carosio et al., 2013). Therefore, we
decided to characterize the effects of 3D culturing per se on C2C12
differentiation with the aim to better interpret the C2C12 3D cul-
tures within MAS. We noticed that 3D C2C12 aggregates obtained
by pelleting C2C12 before placing them in culture, displayed sev-
eral markers of myogenic differentiation both in 2% HS in 1%
BSA (Figure 2 and data not shown). In particular, C2C12 2D cul-
tures in 2% HS (the gold standard myogenic differentiation for
this type of cells) were compared to C2C12 pellets cultured in

FIGURE 8 | MAS grafted under the xiphoid process. (A) Toluidine blue
staining of the region of the xiphoid process without grafting. Cartilage
tissue (arrow) is strongly metachromatic. (B) Hematoxylin and eosin
staining of the same region including grafted MAS, 2 weeks following
transplantation. The absence of muscle fibers in the grafted MAS
(arrowhead) is evident when the latter is compared with skeletal
muscles of the pectoral muscles in the upper region of the image. The

insets, at a higher magnification, show: (bottom right)
immunofluorescence analysis for laminin (green) and myosin
(red)—nuclei are stained by Hoechst (blue)—on a serial section
demonstrating the absence of muscle fibers in the grafted MAS; (upper
left) toluidine blue staining showing the position of the xiphoid process,
whose matrix is highly metachromatic. The picture is representative of
triplicate experiments.
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1% BSA. The latter showed: not detectable myogenin but sig-
nificant MyoD expression (Figure 2C), which was sufficient to
trigger myosin expression (detectable with an anti-pan-myosin
antibody such as MF20, Figure 2A). Among the myosin isoforms
possibly expressed by C2C12, we found low embryonic myosin
expression (Figure 2C), suggesting that other isoforms typical
of more mature fibers are expressed, in spite of the absence of
elongated myotube formation (Figure 2B). Such aberrant differ-
entiation resembled that of rhabdomyosarcomas and the Rb cell
line (Wang et al., 2010). However, since a 3D organization was

FIGURE 9 | MAS is not sufficient to promote myogenesis under the

xiphoid process. (A) The panel represents a reconstruction (with insets at
a higher magnification) of the whole region, following an
immunofluorescence analysis for myosin (red) and nuclei (blue), once again
demonstrating the absence of muscle markers in the spongy structure of
MAS; this is in contrast to the pectoral muscles in the upper region of the
image, which represent a positive control for the immunofluorescence
reaction. (B) Reconstruction (with insets at a higher magnification) of the
whole region, following an immunofluorescence analysis for laminin (red),
immunoglobulins (green) and nuclei (blue), which demonstrates MAS
colonization by cells during an inflammatory process. All the analyses in this
figure were performed 2 weeks following transplantation, which is a
sufficient amount of time for muscle regeneration in MAS grafted to
replace a Tibialis muscle. The picture is representative of triplicate
experiments. Bar = 400 µ.

per se myogenic to a certain extent, a 3D C2C12 culture in MAS
in 1% BSA was considered to be unsuitable to test whether MAS
was sufficient to induce differentiation under minimal medium,
conditions owing to the lack of an adequate negative control
in vitro.

MAS DOES NOT IRREVERSIBLY INDUCE 3D CELL CULTURES TO A
MYOGENIC FATE
Both C2C12 cells and muscle primary cell cultures, while com-
mitted to a myogenic lineage, differentiate into osteoblasts in the
presence of BMP (Katagiri et al., 1994; Friedrichs et al., 2011). We
confirmed this notion for 2D C2C12 and primary satellite cells
obtained from murine skeletal muscle and cultured for 5 days
in 2%HS supplemented with 300 ng/ml BMP-2 (Figures 3A–D).
BMP-treated cells displayed loss of myogenic differentiation, such
as multinucleated myotube formation (Figure 3A) in favor of a
potent pro-osteogenic conversion as demonstrated by the pres-
ence of non-fused, ALP expressing cells (Figures 3B–D). Worth
noting BMP-2 effects on standard osteogenic markers (Coquelin
et al., 2012; Leotot et al., 2013) were still potent in 3D C2C12
cultures (Figure 3E), indicating that 3D cultures are not imper-
meable nor insensitive to BMP treatment and suggesting to use
BMP as a non-myogenic cue to test whether MAS irreversibly
commit C2C12 to a non-myogenic fate.

To this purpose, we treated C2C12 cultured in MAS for 5
days within 2%HS in the absence or presence of 300 ng/ml
BMP-2. While C212 in MAS accumulated myosin and did
not express ALP (Figures 4A,D), the same cells showed signif-
icantly reduced myosin expression and differentiated in ALP-
expressing osteoblasts in the presence of BMP (Figures 4B,C,E).
Interestingly, ALP expression was stronger in those cells that dis-
played migratory activity by leaving the bulk cell aggregate and
becoming isolated cells (Figure 4E, inset). Thus, MAS supports at
least two differentiation pathways for cells of mesenchymal ori-
gin and, while participating in the muscle environment in vivo,
does not suppress the pro-osteogenic stimulus induced by BMP-2
in vitro.

MAS PROMOTES MUSCLE REGENERATION IN VOLUMETRIC MUSCLE
LOSS
To assess in vivo whether MAS itself is inherently myogenic, we
grafted the MAS both orthotopically (i.e., replacing a Tibialis
anterior) and ectopically (i.e., within the renal capsule or under-
neath the xiphoid process). The Figure 5 illustrates these proce-
dures, that are described in detail elsewhere and represent stan-
dard in vivo approaches to test xeno- or auto-grafts (Mericskay
et al., 2004; Perniconi et al., 2011).

The presence of muscle fiber formation within orthotopically
grafted MAS (Figures 6A–D) confirmed our previous in vivo
results (Perniconi et al., 2011). Within 2 weeks from transplan-
tation MAS was colonized by cells and showed the presence of
nascent muscle fibers characterized by centrally located nuclei
and muscle fiber specific markers such as myosin and sarcoglycan
(Figures 6E,F), thereby demonstrating that MAS represents an
environment that is compatible with neo-myogenesis. We found
it striking that MAS alone, i.e., an empty scaffold even though
of muscle origin, was colonized by cells and hosted new muscle
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formation, suggesting that it represents a pro-myogenic niche
per se. To verify whether MAS was sufficient to induce myogen-
esis, we grafted MAS in anatomically different regions, i.e., the
renal capsule and the peritoneal cavity under the xiphoid pro-
cess. The renal capsule represents the gold standard for in vivo
transplantation and assessment of allografts survival, bioactiv-
ity and function, because it is a highly vascularized environment
that lends itself to the rapid integration and nutrition of the
grafts. Two weeks following transplantation, we found grafted
MAS (derived from EDL muscle for this specific experiment)
within the renal capsule, which retained its sponge-like, laminin-
based structure. While we observed that numerous cells came
into contact with and colonized MAS, we did not detect any
overt differentiated muscle fiber, by either the morphological or
immunofluorescence analysis of muscle fibers (Figure 7).

To confirm this result, we grafted MAS under the xiphoid pro-
cess by suturing it to the latter. In physiological conditions under
the xiphoid process, which is a cartilaginous organ enveloped by
connective tissue, there is the empty intraperitoneal space and the
liver (Figure 8A). When grafted in this position, MAS was recog-
nized by its sponge-like structure but could not be confirmed as a
site of neo-myogensis, even though many cells did colonized the
MAS and interacted with its laminin matrix (Figure 8B). Most of
the cells migrating within the MAS and along the laminin are, in
fact, likely to have been inflammatory cells, as demonstrated by
the presence of abundant immunoglobulins (Figure 9A), which
is consistent with our previously published findings. As a result,
while myosin positive muscle tissue is visible in the analyzed sec-
tions, this is clearly not deriving from the grafted scaffold, on the
basis of its histology and anatomical localization, which is distant
and not in continuity with the grafted MAS (Figure 9B).

All together, the aforementioned results indicate that MAS per
se is not sufficient to induce myogenesis in vivo, but it requires
the presence of surrounding muscles to show robust myogenesis,
an effect further increased if MAS is seeded with myogenic cells
before engraftment.

DISCUSSION
In tissue engineering interventions, grafting of decellularized
tissues or organs, such as MAS, is an increasingly widespread
approach in pre-clinical and clinical settings (Badylak et al.,
1998, 2013; Perniconi and Coletti, 2014; Teodori et al., 2014). In
particular, ECM of muscle origin has been proposed as en effi-
cient scaffold for organ-scale reconstruction following volumetric
muscle loss (Ott et al., 2008; Perniconi et al., 2011). When MAS
is orthotopically grafted in mouse to replace a skeletal muscle,
de novo myogenesis is observed within a few weeks, probably as
a result of MAS colonization by stem cells of host origin with
myogenic potential (Perniconi et al., 2011). However, the relative
contribution to muscle formation by the graft and the surround-
ing environment cannot be fully understood using this approach,
because both are of muscular origin. In order to verify whether
MAS possesses pro-myogenic properties per se, i.e., regardless
of the site of transplantation, we grafted MAS in a heterotopic
position in syngeneic mice. Using this approach, here we demon-
strate that MAS is neither sufficient nor necessary for myogenesis.
Indeed, when MAS is transplanted within the renal capsule or the

peritoneal cavity under the xiphoid process it is colonized by an
abundant cell infiltrate but does not display any regenerating fiber
within its laminin network. These results demonstrate that MAS
is stable in anatomical sites other than the skeletal musculature,
but does not provide enough signals to trigger myogenesis by the
colonizing cells. By cultivating C2C12 cells in 3D aggregates, we
showed that the 3D culture condition is a potent pro-myogenic
cue, that facilitates the formation of fully differentiated myotubes,
which is in agreement with other reports (Carosio et al., 2013); 3D
cell-cell contacts bypass inhibitory signals for muscle differentia-
tion, such as culture in minimal, serum-free medium (Minotti
et al., 1998; De Arcangelis et al., 2003), and promote the for-
mation of a functionally active construct capable of contraction.
From these results, we conclude that MAS is not necessary for
muscle formation in 3D cultures. We do, however, confirm the
results of our previous study (Perniconi et al., 2011), demonstrat-
ing that MAS is an excellent support for 3D myogenic cultures,
both in vitro and in vivo (in the latter case, when orthotopically
grafted). In addition, MAS is compatible with the differentiation
toward the osteogenic lineage, obtained by BMP-2 treatment of
the C2C12 cell line, which thus demonstrates that MAS does not
represent a signal that fully and irreversibly commits cells to a
myogenic fate. In conclusion, MAS has scaffold properties insofar
as it supports cell attachment, migration, survival and differenti-
ation. Whether MAS is a good support for cells of non-muscle
origin and whether it can be exploited in trans-species experi-
ments, such as cultivating human cells in murine MAS, remains
to be addressed. However, accumulating evidence suggests that
acellular scaffolds of biological origin are multipurpose and may
be exploited for cell culture and tissue engineering of different tis-
sue types regardless of their origin (Badylak et al., 1998; Conconi
et al., 2005; Wolf et al., 2012).

It is widely accepted that the niche supports stem cells and
controls their self-renewal in vivo (Spradling et al., 2001) by mod-
ulating asymmetric cell division and ensuring stem cell renewal
and the production of a number of committed daughter cells that
is sufficient for tissue homeostasis and repair (Kuang et al., 2008).
The notion of the niche appears to be closely linked to that of
the stem cell; however, in addition to affecting stem cell renewal,
the microenvironment also controls commitment and differentia-
tion of daughter cells deriving from asymmetrically dividing stem
cells (Zhang et al., 2009; Bhattacharyya et al., 2012). Intriguingly,
the niche itself is not always indispensable for asymmetric divi-
sion and stem cell renewal, as shown by the case of lymphocyte
differentiation in the absence of a permanent niche (Chang and
Reiner, 2008). Cell-intrinsic factors, such as DNA strand asym-
metric division and segregation, play additional, important roles
in determining the asymmetric fate of daughter cells (Shinin et al.,
2006). A very recent report established a novel paradigm for stem-
cell maintenance according to which a dynamically heterogeneous
cell population functions long term as a single stem-cell pool
(Ritsma et al., 2014). Our findings suggest that this degree of plas-
ticity might be extended to committed cells and be inherent to
ECM components.

The notion of the microenvironment is of paramount impor-
tance when dealing with tissue engineered constructs aimed at
regenerative medicine applications. Although some features of
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regeneration are shared by different tissues whereas others are
tissue-specific, all those features are ultimately controlled by the
tissue microenvironment. Understanding the mechanisms under-
lying tissue regeneration, particularly the choice between tissue
restoration and reconstruction (two different strategies following
tissue injury), is essential for regenerative medicine interventions
(Coletti et al., 2013). The microenvironment (including the stem
cell niche) is determined by three major components: the ECM,
the cells and the local growth factors. In our work, we investigated
whether MAS (which is basically composed of muscle ECM) is
sufficient to recapitulate the effects of the muscle microenviron-
ment on cell differentiation. We found that MAS displays features
that are typical of a scaffold, though it is not strictly limited to
muscle applications since it does not irreversibly commit cells to
a myogenic fate. We conclude by saying that since MAS does not
fully recapitulate muscle-specific microenvironment properties, it
may be more plastic, and consequently easier to exploit, than has
previously been believed.
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