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Residual oil fly ash (ROFA) is a common pollutant in areas where oil is burned. This
particulate matter (PM) with a broad distribution of particle diameters can be inhaled by
human beings and putatively damage their respiratory system. Although some studies
deal with cultured cells, animals, and even epidemiological issues, so far a comprehensive
analysis of respiratory outcomes as a function of the time elapsed after exposure to
a low dose of ROFA is wanted. Thus, we aimed to investigate the time course of
mechanical, histological, and inflammatory lung changes, as well as neutrophils in the
blood, in mice exposed to ROFA until 5 days after exposure. BALB/c mice (25 ± 5 g)
were randomly divided into 7 groups and intranasally instilled with either 10 μL of sterile
saline solution (0.9% NaCl, CTRL) or ROFA (0.2 μg in 10 μL of saline solution). Pulmonary
mechanics, histology (normal and collapsed alveoli, mononuclear and polymorphonuclear
cells, and ultrastructure), neutrophils (in blood and bronchoalveolar lavage fluid) were
determined at 6 h in CTRL and at 6, 24, 48, 72, 96, and 120 h after ROFA exposure.
ROFA contained metal elements, especially iron, polycyclic aromatic hydrocarbons (PAHs),
and organochlorines. Lung resistive pressure augmented early (6 h) in the course of lung
injury and other mechanical, histological and inflammatory parameters increased at 24 h,
returning to control values at 120 h. Blood neutrophilia was present only at 24 and 48 h after
exposure. Swelling of endothelial cells with adherent neutrophils was detected after ROFA
instillation. No neutrophils were present in the lavage fluid. In conclusion, the exposure to
ROFA, even in low doses, induced early changes in pulmonary mechanics, lung histology
and accumulation of neutrophils in blood of mice that lasted for 4 days and disappeared
spontaneously.
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INTRODUCTION
Many studies associate events of urban air pollution with signif-
icant health effects on the exposed population, including mor-
bidity and mortality due to cardiopulmonary diseases or lung
cancer (Dominici et al., 2006; Fajersztajn et al., 2013). These out-
comes have been observed even at pollution levels below current
national and international ambient air quality health standards
(Lin et al., 1999).

Elevated levels of air pollution in São Paulo (Brazil) have been
associated with increased respiratory emergency visits, hospital
admissions and even death among children and elderly people
(Saldiva et al., 1994, 1995; Lin et al., 1999, 2004; Farhat et al.,
2005; Atkinson et al., 2014). These results are in accordance

with experimental data from air pollution studies in São Paulo.
Acute exposure to diesel and traffic-derived particles impairs
lung impedance, pulmonary inflammation and histology in mice
(Pereira et al., 1995, 2011; Laks et al., 2008; Mazzoli-Rocha
et al., 2008; Zanchi et al., 2010; Riva et al., 2011; Zin et al.,
2011). In addition, long-term mice exposure to traffic-derived
particulate matter (PM) yielded worse pulmonary function,
bronchial/alveolar lesion, lung macrophage influx, and oxida-
tive stress (Mazzoli-Rocha et al., 2014), secretory cell hyperpla-
sia and ultrastructural ciliary alterations of the airway epithe-
lium (Saldiva et al., 1992a), compromised respiratory defenses
(Lemos et al., 1994), as well as cardiopulmonary oxidative damage
(Damiani et al., 2012).
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Residual oil fly ash (ROFA) consists of PM produced by oil-
burning systems and is rich in transition metals. It has been
used in murine models as a surrogate material to investigate the
responses to PM inhalation (Dreher et al., 1997; Kodavanti et al.,
1998). ROFA administration via intratracheal/intranasal instilla-
tion and aerosol inhalation disclosed functional and structural
alterations such as acute lung injury, alveolar septal thickening,
increased cellularity and lung inflammation (Dreher et al., 1997;
Gavett et al., 1997, 1999; Ghio et al., 2002; Hamada et al., 2002;
Kodavanti et al., 2002). Additionally, ROFA exposure has been
studied in association with chronic allergic pulmonary inflam-
mation, cigarette smoke, and lung infection (Gavett et al., 1999;
Antonini et al., 2002; Arantes-Costa et al., 2008; Biselli et al.,
2011). We previously reported that chronic allergic mice exposed
to ROFA show even higher hyperresponsiveness, bronchocon-
striction and mast cell infiltration after methacholine challenge
than those not exposed (Avila et al., 2011). However, so far the
timeline of the lung alterations following a single exposure to
ROFA particles has not been reported.

Thus, we aimed to investigate the time-dependency of lung
impairment in animals that underwent a single exposure to
ROFA, simulating the situation of someone visiting a polluted
place for a day. For such purpose, we analyzed ROFA com-
position, lung mechanics, alveolar collapse, inflammatory cells
recruitment, and pulmonary ultrastructure in different time
points after exposure.

MATERIALS AND METHODS
ANIMALS
All animals received humane care in compliance with the
“Principles of Laboratory Animal Care” formulated by the
National Society for Medical Research and the “Guide for
the Care and Use of Laboratory Animals” prepared by the
National Academy of Sciences, USA. The experiments were
approved by the Ethics Committee on the Use of Animal, Health
Sciences Center, Federal University of Rio de Janeiro (Protocol
IBCCF 046).

Eighty-four BALB/c mice (6–7 weeks of age) obtained from
the animal facilities of the Federal University of Rio de Janeiro,
Brazil, were housed in plastic cages with absorbent bedding mate-
rial and maintained on a 12-h daylight cycle. Food and water were
provided ad libitum.

PREPARATION
Forty-two mice (25–30 g) were randomly divided into 7 groups
intranasally instilled with: sterile saline solution (0.9% NaCl,
CTRL, n = 6) or ROFA (0.2 μg of ROFA in 10 μL of saline solu-
tion, n = 36). In CTRL group the experiments were done at 6 h
after instillation, whereas in ROFA groups the mice were studied
at 6, 24, 48, 72, 96, and 120 h after exposure (n = 6/group). Right
before the instillation, the mice were anesthetized with sevoflu-
rane and either saline or ROFA were gently instilled into their
snouts with the aid of a precision pipette. They rapidly recovered
after instillation. These animals were used for the measurement of
pulmonary mechanics and histology. In another group of 42 mice
submitted to the same protocol, inflammatory cells were counted
in the blood and in the broncho-alveolar lavage fluid (BALF).

ROFA COMPOSITION
The ROFA was obtained from an incinerator located at the
University Hospital, University of São Paulo, Brazil. The particles
were digested in an HNO3–HClO4 mixture and then analyzed
by flame atomic absorption spectroscopy (VARIAN AA1475,
Varian, Inc., Palo Alto, CA, USA) to determine their elemental
composition. ROFA was also analyzed by gas chromatography
(GC-14B with automatic injector AOC-1400, Shimadzu Corp,
Kyoto, Japan) and high performance liquid chromatography (RF-
10 with fluorescence detectors, Shimadzu Corp, Kyoto, Japan)
for organochlorine and polycyclic aromatic hydrocarbon (PAH)
quantification, respectively. All analytical procedures above were
determined as formerly described (Mazzoli-Rocha et al., 2008;
Riva et al., 2011). The distribution of particle sizes was previously
reported (Avila et al., 2011), and the average particle diameter
amounted to 66.5 μm. It should be stressed that around 7.6%
of ROFA particles presented an average diameter smaller than
10 μm, and about 2.1% were smaller than 2.5 μm (Avila et al.,
2011).

PULMONARY MECHANICS
At the aforementioned experimental times after instillation
the animals were sedated (diazepam, 1 mg i.p.), anesthetized
(pentobarbital sodium, 20 mg/kg i.p.), tracheotomized, and a
snugly fitting cannula (0.8 mm i.d.) was introduced into the
trachea. Then, the animals were paralyzed with pancuronium
bromide (0.1 mg/kg i.v.), and ventilated (frequency of 100
breaths/min, tidal volume of 0.2 ml, and flow of 1 ml/s) with
a constant-flow ventilator (Samay VR15, Universidad de la
Republica, Montevideo, Uruguay). A positive end-expiratory
pressure amounting to 2 cmH2O (Saldiva et al., 1992b) was
applied to the expiratory line of the ventilator and the ante-
rior chest wall was surgically removed. For the determination
of pulmonary mechanics a 5-s end-inspiratory pause could be
generated by the ventilator when needed.

A pneumotachograph (1.5 mm ID, length = 4.2 cm, distance
between side ports = 2.1 cm) was connected to the tracheal
cannula for the measurements of airflow (V′). Lung volume
(VT) was determined by V′ signal integration. The equipment
resistance (Req) including the tracheal cannula was calculated
(Req = 0.12 cmH2O/mL/s) and found constant up to flow rates
of 26 mL/s. The equipment resistive pressure (Pres,eq = Req·V′)
was subtracted from pulmonary resistive pressure so that the
present results represent intrinsic values. Transpulmonary pres-
sure (PL) was measured proximally to the tracheal tube by a
Validyne MP45-2 differential pressure transducer (Engineering
Corp., Northridge, CA, USA). All signals were conditioned and
amplified in a Beckman type R Dynograph (Schiller Park, IL,
USA). Flow and pressure signals were also passed through low-
pass 8-pole Bessel filters (902LPF, Frequency Devices, Haverhill,
MA, USA) with the corner frequency set at 100 Hz, sampled at
200 Hz with a 12-bit analog-to-digital converter (DT2801A, Data
Translation, Marlboro, MA, USA), and stored on a microcom-
puter. All data were collected using LABDAT software (RHT-
InfoData Inc., Montreal, QC, Canada).

Lung resistive (�P1) and viscoelastic/inhomogeneous (�P2)
pressures, total pressure drop (�Ptot = �P1 +�P2), static
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elastance (Est), and elastic component of viscoelasticity (�E)
were computed by the end-inflation occlusion method (Bates
et al., 1985, 1988). Briefly, after end-inspiratory occlusion, there
is an initial fast drop in PL (�P1) from the pre-occlusion value
down to an inflection point (Pi) followed by a slow pressure decay
(�P2), until an apparent plateau is reached. This plateau corre-
sponds to the elastic recoil pressure of the lung (Pel). �P1 selec-
tively reflects airway resistance in normal animals and humans
and �P2 reflects stress relaxation or viscoelastic properties of the
lung, together with a small contribution of time constant inequal-
ities (Bates et al., 1988; Saldiva et al., 1992b). Lung static (Est) and
dynamic elastances (Edyn) were calculated by dividing Pel and Pi
by VT, respectively. �E was calculated as Est—Edyn (Bates et al.,
1985, 1988). Pulmonary mechanics was measured 10–15 times in
each animal. All data were analyzed using ANADAT data anal-
ysis software (RHT-InfoData Inc., Montreal, QC, Canada). The
duration of the experiments approximated 30 min.

HISTOLOGICAL STUDY
Light microscopy
A lower longitudinal laparotomy was done immediately after the
determination of pulmonary mechanics, and heparin (1000 IU)
was injected into the abdominal vena cava. Three minutes later
the abdominal aorta and vena cava were sectioned, yielding a
massive hemorrhage that quickly euthanized the animal. The tra-
chea was clamped at end-expiration and the lungs were removed
en bloc.

The left lung was quick-frozen by immersion in liquid nitro-
gen, fixed with Carnoy’s solution (Nagase et al., 1992), and
embedded in paraffin. Four-μm-thick slices were obtained by
means of a microtome and stained with hematoxylin and eosin.
Morphometry and cellularity index were evaluated with an inte-
grating eyepiece with a coherent system with 100 points and
50 lines coupled to a conventional light microscope (Axioplan,
Zeiss, Oberkochen, Germany). The point-counting technique was
used across 10 random non-coincident microscopic fields to eval-
uate the fraction area of normal and collapsed airspaces and
the amount of mononuclear (MN) and polymorphonuclear cells
(PMN). Points falling on normal alveoli and collapsed airspaces
were counted and divided by the total number of points in each
microscopic field (200×). Points falling on MN and PMN cells
were counted and divided by the total number of points falling
on tissue area in each microscopic field (1000×) (Weibel et al.,
1966). Two investigators, who were unaware of the origin of the
coded material, examined the samples microscopically.

Transmission electron microscopy
To obtain a stratified random sample, three slices of 2 × 2 mm
were cut from three different segments of the right lung (cranial,
middle, and caudal lobes) and then fixed in 2.5% glutaralde-
hyde and 0.1 M phosphate buffer (pH = 7.4) for 60 min at −4◦C.
The slices were then rinsed in phosphate buffer, postfixed in 1%
osmic tetroxide in phosphate buffer for 30 min, and rewashed
three times in phosphate buffer. Finally, the slices were dehy-
drated in an acetone series and then placed in a mixture of 1:1
acetone:Epon overnight before embedding in Epon for 6 h. After
fixation, the material was kept for 48 h at 60◦C before undergoing

ultramicrotomy for transmission electron microscopy (JEOL
1010, Tokyo, Japan).

EVALUATION OF NEUTROPHILS IN THE BLOOD AND IN THE
BRONCHOALVEOLAR LAVAGE FLUID
At each experimental time, the animals were anesthetized with
isoflurane and the tip of their tails were cut off to produce a
blood smear. Neutrophil counts were determined in a Neubauer
chamber by means of an optical microscope after dilution of
blood samples in 2% acetic acid solution. The number of circu-
lating neutrophils (100 cells counted/slide, 1000× magnification)
was determined after differential cell counts on May-Grunwald-
Giemsa stained blood smears. After blood sampling the mice were
euthanized in a CO2 chamber and the alveolar lavage done. For
such purpose, the trachea was cannulated and the lungs gently
washed twice with 1 ml of phosphate buffered saline (pH = 7.4).
Neutrophils were counted after cytocentrifugation (Shandon,
East Grinstead, UK) and staining with Diff-Quick (Baxter Dade
AG, Dunding, Germany). At least 100 cells were counted and the
results expressed as number of cells/mL.

STATISTICAL ANALYSIS
SigmaStat 11.0 statistical software (SYSTAT, Chicago, IL, USA)
was used. When percentage values were to be tested, they firstly
underwent arcsine transformation. The normality of the data
(Kolmogorov–Smirnov test with Lilliefors’ correction) and the
homogeneity of variances (Levene median test) were tested. Since
in all instances both conditions were satisfied, One-Way ANOVA
followed by Bonferroni post hoc test was used (when required)
to assess differences between ROFA groups and CTRL mice. The
significance level was set at 5% (p < 0.05).

RESULTS
ROFA analysis showed the presence of metal elements, such
as copper, cadmium, chromium, nickel, manganese, lead, zinc
and mainly iron (Table 1), and PAHs, such as naphthalene, ace-
naphthylene, fluorene, acenaphthene, antracene, flouranthene,
phyrene, benzo[k]fluorantene, benzo[ghi]peryle (some with
carcinogenic potencial: benzo[a]antracene, benzo[a]pyrene,
Dbenzo[ah]antracene and ind[123cd]pyrene) (Table 2).
Organochloride elements as g-hexachlorocyclohexane (g-
HCH), endosulfan, dieldrin, op′-DDE (dichlorodiphenyl

Table 1 | Concentrations of metal elements in ROFA.

Metal ppm (mean ± SD)

Copper 5.64 ± 1.09

Cadmium 0.01 ± 0.00

Chromium 4.20 ± 0.71

Nickel 467.19 ± 9.75

Manganese 32.42 ± 4.60

Iron 12265.77 ± 2697.33

Lead 0.58 ± 0.18

Zinc 21.12 ± 1.34

ROFA, residual oil fly ash; ppm, parts per million. Values are mean ± SD of three

determinations.
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Table 2 | Polycyclic aromatic hydrocarbons in ROFA.

PAH Concentration (mg/kg)

Naphthalene 95.2
Acenaphthylene 155.6
Fluorene 2.6
Acenaphthene 67.8
Phenanthrene ND
Anthracene 1.7
Fluoranthene 5.9
Phyrene 13.9
Chrysene ND
Benzo[a]anthracene* 3.5
Benzo[b]fluorantene* ND
Benzo[k]fluorantene 7.1
Benzo[a]pyrene* 2.8
DBenzo[ah]anthracene* 13.0
Benzo[ghi]peryle 1.5
Ind[123cd]pyrene* 1.7

Total PAH, polycyclic aromatic hydrocarbons in a 0.23 g sample; ROFA, residual

oil fly ash; ND, not detectable; *polycyclic aromatic hydrocarbons with carcino-

genic potential in mammals, as considered by the International Agency for

Research on Cancer, USA.

Table 3 | Organochloride in ROFA.

Orgnochloride Concentration Orgnochloride Concentration

(ng/g) (ng/g)

G-HCH 121.7 PCB-118 ND
HCB ND PCB-138 ND
Heptachlor ND PCB-153 ND
Endosulfan 57.4 PCB-180 ND
Aldrin ND PCB-209 ND
Dieldrin 40.9 op’-DDE 391.3
Endrin ND pp’-DDE ND
Hepta-epox ND pp’-DDD ND
PCB-25 ND op’-DDT 78.3
PCB-52 ND pp’-DDT 139.1

ROFA, residual oil fly ash; ND, not detectable; G-HCH,

gamma-hexachlorocyclohexane; HCB, hexachlorobenzene; PCB, poly-

chlorinated biphenyl; op’, ortho position; pp’, para position; DDE,

dichlorodiphenyldichloroethylene; DDD, dichlorodiphenyldichloroethane;

DDT, dichlorodiphenyltrichloroethane.

dichloroethylene), op′-DDT (dichlorodiphenyltrichloroethane),
pp′-DDT were also present (Table 3).

Flows and inspired volumes did not differ among groups.
Figure 1 shows �P’s, obtained in CTRL, ROFA6, ROFA24,
ROFA48, ROFA72, ROFA96, and ROFA120 groups. �P1 aug-
mented early (6 h) in the course of lung injury (184%)
and remained elevated until 96 h (137%). �P2, Est and �E
increased in ROFA24 (70, 88, and 68% respectively) and remained
elevated until 96 h (68, 50, and 64% respectively). On the
fifth day (ROFA120) all parameters returned to CTRL values
(Figures 1, 2).

FIGURE 1 | Pressures used to overcome resistances in mice lung.

�P1, resistive pressure, �P2, pressure dissipated to overcome
viscoelastic/inhomogeneous mechanical components and �Ptot, total
pressure variation. CTRL, mice instilled with saline solution (0.9% NaCl,
measurements were done 6 h after exposure), and ROFA, animals that
received residual oil fly ash (0.2 μg in 10 μL of saline solution).
Measurements were done 6, 24, 48, 72, 96, and 120 h after exposure.
Columns represent the average of 6 mice in each group, 10–15
determinations per animal. Bars represent SEM. ∗Significantly different
from CTRL (p < 0.05).

The fraction area of alveolar collapse and PMN cell influx
into the lung parenchyma were higher in ROFA than in
CTRL at 24, 48, 72, and 96 h. Similarly, normal alveo-
lar spaces and MN cells were significantly lower in the
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FIGURE 2 | Elastic components of lung mechanics in mice. Est, static
elastance and �E, elastic component of viscoelasticity. CTRL, mice instilled
with saline solution (0.9% NaCl, measurements were done 6 h after
exposure), and ROFA, animals that received residual oil fly ash (0.2 μg in
10 μL of saline solution). Measurements were done 6, 24, 48, 72, 96, and
120 h after exposure. Columns represent the average of 6 mice in each
group, 10–15 determinations per animal. Bars represent SEM. ∗Significantly
different from CTRL (p < 0.05).

latter groups than in CTRL. ROFA120 showed values sim-
ilar to CTRL for histological parameters (Figures 3, 4).
ROFA particle was observed in alveolar space of ROFA6,
24, 48, 72, and 96 groups and not in ROFA120 (Figure 3,
insert B).

Electron microscopy of lung parenchyma in CTRL mice
showed preserved types I and II pneumocytes, endothelial cells,
alveolar interstitial wall, and components of the extracellular
matrix. At 24 h, ROFA group showed endothelial damage as rep-
resented by swelling, vacuolization and neutrophils adhered to
the pulmonary capillary wall (Figure 5).

The amount of neutrophils in the blood was higher in ROFA24
and ROFA48 than in the CTRL mice. Thereafter they did not dif-
fer from CTRL animals. No statistically significant difference was
detected for neutrophils in the BALF (Figure 6).

The survival rate was 100% in all groups throughout the
experiments.

DISCUSSION
The time course of lung functional and histological impairment
induced by ROFA dust has not been reported so far. Intranasal
instillation of a low dose of ROFA (0.2 μg in 10 μL) induced a sig-
nificant increase in resistive pressure, followed by an increment
in viscoelastic/inhomogeneous pressures and elastances, accom-
panied by increased alveolar collapse, influx of PMN cells, ultra-
structural alterations in lung parenchyma and increased number
of neutrophils in the blood. These outcomes returned to control
values at 120 h after exposure.

PM is a heterogeneous mixture of gas, liquid, and solid
particles of different origins and sizes in suspension in the
air, displaying close physical and chemical interactions. PM
is classified, according to its aerodynamic diameter, as coarse
(2.5–10 μm; PM10), fine (0.1–2.5 μm; PM2.5), and ultrafine
(≤0.1 μm) (Donaldson et al., 2001). The different profiles of
size and composition may influence particle toxicity and, conse-
quently, the magnitude of adverse health effects (Saldiva et al.,
2002). In human beings, toxicity becomes very important when
aerodynamic diameter of the particles is 10 μm, which enables
them to reach the pulmonary alveoli. In rats and mice, this value
approximates 2 μm for intratracheally instilled silica (Wiessner
et al., 1989; Takayoshi et al., 2007). The ROFA used in the present
study was mainly composed of particles bigger than 10 μm (Avila
et al., 2011), which would be less harmful than the smaller ones
(Donaldson et al., 2001). However, around 7.6% of ROFA par-
ticles presented an average diameter less than 10 μm, and about
2.1% were smaller than 2.5 μm. Another concomitant study of
our group (Avila et al., 2011), using the same dose and PM,
reported lung impairment at 24 h after exposure. It should be
stressed that the fine and ultrafine particles are known as “breath-
able” and are able to penetrate the airways, reaching the alveoli
(Dusseldorp et al., 1995; Peters et al., 1997; Brown et al., 2002;
Tao et al., 2003). Indeed, in ROFA6, 24, 48, 72, and 96 groups
the administered pollutant was detected in the alveolar space
(Figure 3).

A recent study analyzed the composition, sources and toxi-
city of PM2.5 collected in different cities in the United States
and observed an association between its toxicity and the num-
ber of vehicles and industries (Seagrave et al., 2006). São Paulo
is the most industrialized center of Latin America and has about
20,000,000 inhabitants. There are about 7,000,000 vehicles in
the area using three types of fuel: gasoline, diesel and alco-
hol (CETESB, 2013). Because of its geographical characteristics,
São Paulo presents thermal inversions, resulting in significant
increases in air pollution. Thus, São Paulo represents an excellent
place to assess the effects of air pollution on health.

In order to avoid the consequences of particle overload, we
administered a low dose of PM to the mice, reflecting more
precisely the adverse pulmonary consequences of ambient par-
ticle concentrations. The mean daily concentrations of PM2.5
and PM10 in São Paulo, where ROFA was collected, amount
to 60 and 120 μg/m3, respectively (CETESB, 2013). Considering
that a mouse inspires 0.03 m3 of air in 24 h, it represents
6.7 μg/m3 of ROFA dust in the present work. Particles were
administered by intranasal instillation to the anesthetized animal,
which is a useful and well-accepted model of exposure to PM
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FIGURE 3 | Photomicrographs of lung parenchyma stained with

hematoxylin–eosin (x200). CTRL, mice instilled with saline solution
(0.9% NaCl, measurements were done 6 h after exposure). ROFA,
animals that received residual oil fly ash (0.2 μg in 10 μL of saline
solution). Measurements were done 6, 24, 48, 72, 96, and 120 h after

exposure. Arrows show representative thickened septa and circles
indicate collapsed alveoli. In each panel insert A shows alveolar walls
and inflammatory cells therein (×1000 magnification) and insert B
displays ROFA particle in the alveolar space when present (×400
magnification). Bar: 100 μm.

FIGURE 4 | Collapsed and normal areas, and influx of

polymorphonuclear (PMN) and mononuclear (MN) cells. CTRL, mice
instilled with saline solution (0.9% NaCl, measurements were done 6 h after
exposure), and ROFA, animals that received residual oil fly ash (0.2 μg in

10 μL of saline solution). Measurements were done 6, 24, 48, 72, 96, and
120 h after exposure. Columns represent the average of 6 mice in each group.
Bars represent SEM. Data were gathered from ten random, non-coincident
fields per mouse. ∗Significantly different from CTRL (p < 0.05).
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FIGURE 5 | Electron microscopy of lung parenchyma. Upper panel:

CTRL (6625×), mouse instilled with saline solution. Note the preserved
type II pneumocyte (PII) and the alveolar interstitial wall. ∗Red blood cell.
Lower panel: ROFA (8400×), animal that received residual oil fly ash
(0.2 μg in 10 μL of saline solution). N, adherent neutrophils; C, capillary; A,
alveolar space; EC, endothelial cell. Measurements were done 6 (CTRL)
and 24 h (ROFA) after exposure.

(Southam et al., 2002). In experimental models similar to ours,
which used ROFA instilled intranasally in mice, doses amount-
ing to 25 times (Biselli et al., 2011; Magnani et al., 2013; Marchini
et al., 2014) and up to 60 times greater (Arantes-Costa et al., 2008)
than ours were used.

ROFA is a suspension of the material produced after oil burn-
ing, which was used in some experimental models of exposure
to air pollution (Ghio et al., 2002; Arantes-Costa et al., 2008;
Avila et al., 2011; Marchini et al., 2014). Although ROFA expo-
sure does not exactly mimic the overall environmental pollution,
this PM contains high concentrations of many components of
air pollution. Previous studies report that PMs from different

sources, including ROFA (Kodavanti et al., 1998), are able to
induce inflammatory processes (Sørensen et al., 2003; Park et al.,
2006). Animal studies demonstrate that the bioavailability of sol-
uble transition metals is responsible for the pulmonary injury
and inflammation observed after ROFA exposure (Dreher et al.,
1997; Kodavanti et al., 1998). The ROFA used in the present work
contains predominantly iron and nickel (Table 1), in line with
other studies. Metals, including iron, vanadium, and nickel, are
present in high concentrations as water-soluble salts in fly ash
(Schroeder et al., 1987) and largely reproduce the lung injury
induced by ROFA. Without those metals pulmonary toxicity
decreases (Dreher et al., 1997). ROFA containing iron, aluminum,
vanadium and nickel induced more pronounced cellular oxida-
tive imbalance and lung injury (Lewis et al., 2003). Iron is deeply
linked to the generation of reactive oxygen species (ROS) (Park
et al., 2006), surfactant dysfunction (Chauhan and Misra, 1991),
epithelial damage, increased vascular permeability and inflamma-
tory response followed by impaired pulmonary function (Soukup
et al., 2000; Dye et al., 2001).

In the present study, PM concentration of PAH, partic-
ularly naphthalene, acenaphthylene, acenaphthene and other
elements with potential carcinogenic risk (benzo[a]antracene,
benzo[a]pyrene, Dbenzo[ah]antracene and ind[123cd]pyrene)
were detected (Table 2). Another study of our group, analyz-
ing particles produced by traffic, detected benzo[a]pyrene and
benzo[a]anthracene in samples of total suspended PM from São
Paulo, confirming the high levels of PAH in this city (Mazzoli-
Rocha et al., 2008). Washing the diesel particles with hexane
removed a large amount of PAHs and improved respiratory out-
comes in mice (Laks et al., 2008). Finally, the presence of PAH in
ROFA has been associated with the triggering of inflammation,
generation of ROS, and lipid peroxidation (Sørensen et al., 2003),
especially in alveolar macrophages and epithelial cells (Li et al.,
2002).

ROFA was tested for the presence of some organochlorine
compounds, and a few were found: op′-DDE, pp′-DDT, op′DDT,
G-HCH, endosulfan and dieldrin (Table 3). These substances
are pesticides and constitute a family of persistent, lipophilic
compounds whose use was banned because they cause a vari-
ety of diseases in humans and wildlife (Androutsopoulos et al.,
2013). The chlorinated pesticides may be absorbed into the body
through the skin, respiratory and digestive tracts (Yohannes et al.,
2014). Organochlorines cause neurotoxic, hormonal, immuno-
modulating, and tumorigenic effects (Androutsopoulos et al.,
2013). However, to our knowledge, no study evaluated the asso-
ciation between exposure to organochlorines and pulmonary
impairment.

Although most of lung changes in mechanical properties, his-
tology and inflammatory response occured at time point of 24 h,
our control group was studied at 6 h after exposure. To support
our approach, we compared our CTRL group with that previously
reported and measured at 24 h after exposure to ROFA (Avila
et al., 2011), Their results are very similar to ours, thus allowing
the use of a 6-h CTRL group. Furthermore, we coped with Russel
and Burch’s (1959) principle of the 3Rs (reduction, refinement,
and replacement of the animal use) to minimize the number of
experimental animals.
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FIGURE 6 | Neutrophils in the bloodand bronchoalveolar lavage fluid

(BALF). CTRL, mice instilled with saline solution (0.9% NaCl, measurements
were done 6 h after exposure), and ROFA, animals that received residual oil fly

ash (0.2 μg in 10 μL of saline solution). Measurements were done 6, 24, 48,
72, 96, and 120 h after exposure. Columns represent the average of 6 mice in
each group. Bars represent SEM. ∗Significantly different from CTRL (p < 0.05).

A higher resistive pressure (that reflects Newtonian or ohmic
resistance) was the first response to ROFA, as found in ROFA6
group (Figure 1). It can be possibly explained anatomically, since
central airways are the first lung structure to be exposed to ROFA.
In a previous study, we also found increased central airway resis-
tance 24 h after exposure to ROFA; it should be noted that the
authors did not perform any measurements before that time point
(Avila et al., 2011). Viscoelastic and total pressures, static elastance
and elastic component of viscoelasticity increased significantly in
ROFA24 group and remained elevated until 4 days after expo-
sure (ROFA96), when compared to CTRL (Figures 1, 2). We also
detected higher Est and mechanical parameters related to the
lung periphery 24 h after exposure to ROFA (Avila et al., 2011).
These results could be explained by the concomitant increase in
alveolar collapse and lung PMN content (Figures 3, 4). At the
same time neutrophils adhered to the swollen pulmonary capil-
lary wall (Figure 5), indicating activation of the endothelium and
of leukocyte integrins (Langer and Chavakis, 2009), as a result of
a local proinflammatory stimulus presumably triggered by ROFA.
These neutrophils would migrate through the endothelium and
reach the pulmonary interstitial space (Figure 4). ROFA24 also
presented a higher count of PMN in the blood (Figure 6), sug-
gesting a systemic inflammatory status. All these findings were
also present in ROFA48 mice. In line with our results in ROFA24
mice, some authors observed impaired lung mechanics, alveo-
lar collapse, influx of inflammatory cells to the lung (Avila et al.,
2011), inflammatory process in the perivascular area, and inflam-
matory infiltration in the interstitial space (Medeiros et al., 2004).
Interestingly, a recent study demonstrated increased TNF-α and
IL-6 plasma levels and PMN leukocytes activation at 1, 3, and
5 h after ROFA exposure (Marchini et al., 2014), but they used
doses 25 times larger than ours. Finally, it should be mentioned
that surfactant secretion by type II pneumocytes is impaired after
inhalation of air pollutants (Müler et al., 1998) and exposure to fly
ash modifies surfactant composition (Srivastava and Misra, 1986;
Chauhan and Misra, 1991) and rheology (Anseth et al., 2005),
yielding alveolar instability and collapse. At 72 h after exposure
blood PMN count returned to control values, but the pulmonary

parameters remained higher than CTRL, suggesting that the over-
all process started to recede in the organism. ROFA96 presented
similar results. At 120 h all measured parameters returned to
baseline values.

Neutrophils count in the BALF resulted negative (Figure 6).
The method may be not sensitive enough to detect the inflam-
matory changes after the nasal instillation of ROFA or the cells
indeed did not cross the airway epithelium. In accordance with
our findings, the intranasal instillation of ROFA did not disclose
inflammatory alterations in mice BALF, even taking into consid-
eration the use of a dose 500 times larger than ours (Medeiros
et al., 2004). On the other hand, the intratracheal instillation of
ROFA in a dose 60 times larger than that in this study triggered
inflammatory alterations in BALF (Gavett et al., 1999). The dif-
ference between these two apparently discrepant results could be
the local of administration of the pollutant.

Epidemiological studies can add translational information to
our findings. Dose-dependent decreased indexes of pulmonary
function, including diminished forced vital capacity, forced expi-
ratory volume in 1 s, and forced expiratory flows were described
in boilermakers 24 h after exposure to ROFA (Hauser et al., 1995,
1996). In a 2-year longitudinal study a significant association
between working at oil-fired industries and reduced lung func-
tion was detected (Hauser et al., 2002). Finally, ROFA-exposed
individuals presented impaired pulmonary function, which was
resolved 4 weeks after they were removed from their working
stations in an oil-fired electricity generating plant (Lees, 1980).

Our study presents some limitations: (1) the animals were
exposed intranasally rather than directly to environmental air.
On one hand they received only ROFA, but on the other one
the results do not represent exactly what would be found around
the sampling site; (2) we did not measure levels of inflammatory
cytokines that could have been modified by exposure to ROFA.

In conclusion, we demonstrated that the exposure to low doses
of ROFA rapidly compromised pulmonary mechanics and histol-
ogy, triggered the influx of polymorphonuclear cells into the lung,
and increased the neutrophil count in the blood of mice. These
pathophysiological findings resolved 5 days after exposure.
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