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The large conductance calcium- and voltage-activated K+ channel (KCa1.1, BK, MaxiK)
is ubiquitously expressed in the body, and holds the ability to integrate changes
in intracellular calcium and membrane potential. This makes the BK channel an
important negative feedback system linking increases in intracellular calcium to outward
hyperpolarizing potassium currents. Consequently, the channel has many important
physiological roles including regulation of smooth muscle tone, neurotransmitter release
and neuronal excitability. Additionally, cardioprotective roles have been revealed in recent
years. After a short introduction to the structure, function and regulation of BK channels,
we review the small organic molecules activating BK channels and how these tool
compounds have helped delineate the roles of BK channels in health and disease.
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INTRODUCTION
The large conductance calcium- and voltage-activated K+ chan-
nel (BK, KCa1.1, MaxiK) channel is encoded by a single gene
(KCNMA1, SLO-1). Structurally the channel consist of four pore-
forming BK α-subunits, each with 7 transmembrane segments
and an extracellular N-terminus. The channel monomer is com-
posed of essentially two distinct modules, one being primarily
responsible for voltage-sensing and the other for Ca2+-sensing
(Meera et al., 1997).

The BK channel is ubiquitously expressed in the body and rep-
resents a unique class of potassium channels, not only because of
its high single channel conductance (Butler et al., 1993; Pallanck
and Ganetzky, 1994) (∼250 pS measured in symmetrical K+),
but also because it can be activated by Ca2+ alone, membrane
depolarization alone, or synergistically by both (Magleby, 2003).
The ability to integrate changes in intracellular calcium and
membrane potential makes the BK channel an important nega-
tive feedback system, linking changes in intracellular calcium to
outward hyperpolarizing potassium currents. Consequently, the
channel has many important roles, including regulation of neu-
rotransmitter release, neuronal excitability and smooth muscle
tone (Salkoff et al., 2006). In agreement with this experimental
down-regulation of BK in mice is associated with erectile dysfunc-
tion, bladder over-activity, urinary incontinence (Meredith et al.,
2004; Werner et al., 2005; Sprossmann et al., 2009) and hyper-
tension (Sausbier et al., 2005). In addition, a gain-of-function
mutation in KCNMA1 has been reported to result in a syndrome
of coexistent generalized epilepsy and paroxysmal dyskinesia in
humans (Du et al., 2005); Gain-of-function mutations in the β1
subunit were associated with low prevalence of diastolic hyperten-
sion (Fernández-Fernández et al., 2004). However, the role of BK
channels in epilepsy is not straight forward, as a loss of function
mutation has also been associated with temporal lobe epilepsy, as

described in detail in the paragraph “BK channels in the central
nervous system.”

To serve its many diverse roles, and considering its wide tis-
sue distribution, it is not surprising that BK activity is regulated
by numerous mechanisms. On the transcriptional level, exten-
sive alternative splicing gives rise to channels with altered Ca2+
sensitivity, channel kinetics, localization and hormone sensitivity
(for review see Shipston, 2001). Moreover co-assembly with aux-
illary subunits including β1-4 and leucine-rich repeat-containing
proteins (LRRC) changes the channels calcium- and voltage-
sensitivity, as well as pharmacological properties (Knaus et al.,
1994; McManus et al., 1995; Valverde et al., 1999; Wallner et al.,
1999; Meera et al., 2000; Yan and Aldrich, 2010, 2012). On the
post-translational level, channel activity is regulated by a num-
ber of endogenous mediators such as arachidonic acids, NO, pH
(Avdonin et al., 2003), zinc (Hou et al., 2010), and phosphoryla-
tion of the channel (Yan et al., 2008) by protein kinase A, C, G, and
CaMKII (Hou et al., 2009; Wang et al., 2013; Hosseinzadeh et al.,
2014; Toro et al., 2014). Other modifications such as palmitoy-
lation favor cell surface expression, while myristoylation appear
to favor endocytosis (Jeffries et al., 2010; Alioua et al., 2011; Tian
et al., 2012). Finally, BK channels have been found to localize to
macro-molecular signaling complexes that also contain calcium
channels (Grunnet and Kaufmann, 2004; Fakler and Adelman,
2008) or in close proximity to the IP3-receptors and ryanodine
receptors (Nelson et al., 1995; Weaver et al., 2007). This co-
localization to areas of high local calcium levels adds a regulatory
level. Consequently, it is difficult to predict the activity of BK
channels in a given cell; but because of their synergistic activa-
tion by voltage and calcium, one can assume that pharmacological
activation of the channel will tend to potentiate the existing physi-
ological regulatory role that BK channels play. Hence, under most
physiological conditions, drugs that increase the open probability
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of BK channels will promote an efflux of potassium ions upon
increases in intracellular Ca2+. This hyperpolarization of cell
membranes leads to cellular responses such as decreased cell
excitability and smooth muscle relaxation. Due to this, drugs that
activate BK channels could represent a novel therapeutic strat-
egy for treatment of certain types of epilepsy, bladder instability,
erectile dysfunction, ischemic heart disease and chronic obstruc-
tive pulmonary disease. Despite intense academic and industrial
focus, no drugs intentionally targeting BK channels are on the
market and to the best of our knowledge only one drug (Andolast)
is currently in clinical development.

BK CHANNEL ACTIVATORS
Many different chemical entities have been found to increase the
activity of BK channels. Within these entities, differences in cal-
cium dependency, subunit composition and drug binding sites
have been found. Based on their origin and structure the chemical
entities can be classified in: (A) Endogenous BK channel modu-
lators and structural analogs; (B) Naturally occurring BK channel
openers and structural analogs; (C) Synthetic BK channel open-
ers. Only a handful of interesting examples will be provided. For
a comprehensive review see Nardi and Olesen (2008).

ENDOGENOUS BK CHANNEL MODULATORS AND STRUCTURAL
ANALOGS
Endogenous chemicals such as arachidonic acid and the metabo-
lites of cytochrome P450, epoxygenase and lipoxygenase, have
been found to increase BK channel activity and be important
regulators of vascular tone (for review see Félétou, 2009; Hou
et al., 2009). Likewise, other unsaturated free fatty acids such
as the omega-3 docosahexaenoic acid have also been found to
increase BK channel activity (Denson et al., 2000) in an β-subunit
dependent manner (Hoshi et al., 2013a). In vivo studies involving
omega-3 docosahexaenoic acid report lowering of blood pressure
in anesthetized wild-type, but not in Slo-1 knockout mice (Hoshi
et al., 2013b). Direct activation of BK channels by the sex hor-
mone 17β-estradiol has also been reported, with its effect being
dependent on the presence of the β-1 subunit (Valverde et al.,
1999). 17β-estradiol was later shown to protect cardiac cells from
ischemia reperfusion injuries via a possible mitochondrial BK
effect, which led the authors to speculate its possible contribu-
tion to the increased incidence of post-menopausal heart attack
(Ohya et al., 2005). Likewise other steroid hormones also modu-
late BK channel activity in a β-subunit dependent manner (King
et al., 2006). Later it was found that already marketed drugs such
as the xenoestrogen Tamoxifen also displays BK channel activa-
tion (Dick et al., 2001). However, the binding site and mechanism
of both estrogen and xenoestrogens are still largely unknown.
Other drugs on the market targeting CNS excitability and smooth
muscle contraction also display BK channel activating properties
in the therapeutic concentration range. These include the anti-
epileptics zonisamide (Huang et al., 2007) and chlorzoxazone
(Liu et al., 2003), along with the phosphodiesterase III inhibitor
(cilostazol) approved for treatment of intermittent claudication
(Wu et al., 2004).

Recently the first peptide BK channel activator was described.
Human β-defensin 2 is an antimicrobial peptide that is important

in the innate immune system. It was found to increase the open
probability of the BK channel complex when applied in physio-
logically relevant concentrations, with the effect being dependent
on two amino-acids in the β-1 loop. Interestingly the authors
further demonstrated that this peptide was down-regulated in
sera from hypertensive patients, and that infusion of human β-
defensin 2 in monkeys significantly reduced blood pressure (Liu
et al., 2013).

NATURALLY OCCURRING BK CHANNEL OPENERS AND STRUCTURAL
ANALOGS
Natural occurring BK channel activators are found in herbs, roots,
fungi, and leaves, and have been used in folk medicine for treat-
ment of asthma and smooth muscle disorders (Nardi et al., 2003).
Isolation of natural occurring compounds revealed several BK
channel activators including DHS-I that was found to dramati-
cally increase the open probability of smooth muscle BK channels
when applied to the intracellular site (McManus et al., 1993). The
effect like many openers was dependent on the presence of β-1
subunit (McManus et al., 1995).

SYNTHETIC BK CHANNEL OPENERS
A wealth of synthetic BK channel activators capable of increasing
channel open probabilities have been synthesized by a number of
companies. NeuroSearch was among the first to report on small
molecule BK channel activators such as NS004 (Olesen et al.,
1994a). Later, another benzimidazolone in the form of NS1619
was introduced (Olesen et al., 1994b), which turned out to be
the most used tool compound for studying the functional effect
of BK channels. NS1619 has been used to study the involvement
and therapeutic potential in smooth muscle disorders such as pul-
monary hypertension (Vang et al., 2010; Revermann et al., 2014),
erectile dysfunction (Spektor et al., 2002; González-Corrochano
et al., 2013; Király et al., 2013), bladder instability (Soder and
Petkov, 2011; La Fuente et al., 2014) and shock-induced vascular
hyperactivity (Hu et al., 2014) along with research into migraines
(Lu et al., 2014), inflammatory pain (Akerman et al., 2010), and
cytoprotection (Xu et al., 2002; Gáspár et al., 2009).

The binding site of NS1619 has not been established. However,
a recent report on another BK channel activator, Cym04, found
that the activating effects of both drugs were dependent on the
S6/RCK (Regulator of Conductance for K+) linker; the sensitiv-
ity to both drugs was lost in BK channel variants with a distinct
S6/RCK linker sequence having two deletion mutations. Whether
the linker serves as a direct binding site, or is merely important for
indirect conformational changes that lead to activation induced
by the drug, is not known (Gessner et al., 2012). This linker has
previously been proposed to act as a spring that transmits the
conformational changes in the RCK upon calcium binding to
opening of the channel’s gate (Jiang et al., 2002).

The use of NS1619 is however hampered by a relative poor
potency, and many off target effects such as inhibition of cal-
cium channels. Consequently, we generated the biarylthiourea
NS11021 as a more selective and potent tool compound to study
BK channel function. Like many other activators, NS11021 works
by shifting the voltage-activation curve of the channel to more
negative potentials. At the single channel level this is reflected in
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an increased open probability (Bentzen et al., 2007). This com-
pound has been found to reduce infarct sizes and increase cardiac
performance after ischemia, to improve mitochondrial respira-
tion and to protect isolated cardiomyocytes from reperfusion
injuries (Bentzen et al., 2009; Aon et al., 2010; Borchert et al.,
2013). With regard to studies on smooth muscle dysfunction,
NS11021 has been found to enhance erectile responses in rats pri-
marily through its BK activating effects (Kun et al., 2009), and
to evoke a pronounced relaxation in small human penile arteries
(Király et al., 2013), both equipotent to that induced by the phos-
phodiesterase type-5 inhibitor sildenafil. In the guinea pig bladder
NS11021 decreased excitability and contractility of urinary blad-
der smooth muscle. This effect was antagonized by iberiotoxin,
a selective toxin inhibitor of BK channels (Layne et al., 2010). In
the CNS NS11021 has been used to establish a role of BK chan-
nels in migraine (Wulf-Johansson et al., 2010; Liu et al., 2014).
More recently a new family of BK channel activators called the
GoSlo-SR family was introduced. They are capable of shifting
the voltage dependence of BK activation by more than −100 mV
when applied at 10 μM to rabbit bladder smooth muscle cells
(Roy et al., 2012), with newer derivatives producing the same
effects at lower concentrations (Roy et al., 2014). The voltage-
sensitive dye bis-(1, 3-dibutylbarbituric acid) trimethine oxonol
[DiBAC4(3)] at submicromalor levels (Morimoto et al., 2007)
produced a shift in the voltage-dependence of the BK channel
only when β-1 and β-4 subunits were present, whereas saturat-
ing concentrations (30 μM), produced huge negative shifts by
up to −300 mV in the voltage-dependent activation of BK chan-
nels, but this effect was neither dependent on calcium nor the
presence of β-subunits (Scornik et al., 2013). Subunit dependent
potency and efficacy was also recently demonstrated for a series
of N-arylbenzamide, with loss of effect when β-1 subunits were
co-expressed (Kirby et al., 2013). We recently reported a novel
positive BK channel modulator, NS19504 identified in a HTS
FLIPR screen (Nausch et al., 2014). This compound represent
a novel chemical scaffold and was observed to activate endoge-
nous BK channels in native smooth muscle cells from guinea
pig bladder, and to reduce spontaneous contractions in bladder
strips in an iberiotoxin-sensitive manner. This suggests NS19504
could serve as a tool to elucidate BK channel function in complex
tissues.

Over the last decades a range of structurally distinct syn-
thetic BK channel activators have been produced by different
pharmaceutical companies. One of these was BMS204352 that
showed neuroprotective effects in animal models (Cheney et al.,
2001), and was advanced to phase III clinical trials for the treat-
ment of acute ischemic stroke but failed. A related compound,
BMS223131, was shown to relax smooth muscle (Boy et al., 2004)
and studied clinically for overactive bladder, but not developed.
Other newly synthesized small molecule BK channel activators
include thioureas, tetrahydroquinolines, such as compound 36
(Gore et al., 2010) and compound Z (Ponte et al., 2012), ter-
penes and benzofuroindoles. These were intended mostly for the
treatment of urinary incontinence, overactive bladder, erectile
dysfunction and stroke, and some of the drugs entered phase I
and II clinical trials (for a comprehensive review of synthetic BK
channel activators please refer to Nardi and Olesen, 2008). To

our knowledge the only BK channel activating drug still consid-
ered for clinical development is Andolast. It is neither selective
nor potent, but according to the manufacture, Rottapharm, it
has shown clinical efficacy and an acceptable safety profile in
mild/moderate asthma. However, phase III clinical trials have not
been commenced.

BK CHANNELS IN THE WORKING MYOCARDIUM
Following a coronary artery occlusion, early restoration of blood
perfusion to the ischemic myocardium by reperfusion therapy is
of most importance in order to salvage the heart (Keeley et al.,
2003). Paradoxically, restoration of blood flow to an ischemic
myocardium also causes a so-called reperfusion injury by which
cardiac myocytes that were viable immediately before reperfu-
sion die giving rise to an increased infarct size. Because infarct
size is recognized as the major determinant of myocardial func-
tional recovery and mortality, any therapy aimed at reducing
reperfusion injuries would be appreciated (for review see Yellon
and Hausenloy, 2007). In 1986 Murry and colleagues were the
first to demonstrate such an intervention when they showed that
four short cycles of ischemia interspersed by reperfusion before
the sustained ischemic event resulted in a dramatic reduction
in infarct size of ∼75% (Murry et al., 1986). The nature of this
protective mechanism probably involves cardiac K+ channels.

The role of BK channels in cardiomyocytes was for many years
neglected because of their absence from the plasma membrane of
cardiomyocytes.

However, in 2002 the group of Brian O’Rourke demon-
strated the presence of mitochondrial BK channel in cardiomy-
ocytes (Xu et al., 2002). Patch-clamp recordings on mitoplasts
from isolated guinea pig cardiomyocytes revealed a voltage- and
calcium-dependent potassium current, with a single channel con-
ductance of 307 pS that could be blocked by charybdotoxin,
thereby resembling the properties of the plasma membrane BK
channel, oriented with its C-terminal facing the mitochondrial
matrix. They further demonstrated that mitochondrial uptake of
K+ was blunted by charybdotoxin and iberiotoxin and acceler-
ated by the BK channel activator NS1619. The molecular identity
of the channel remained unknown, but a link to cardioprotec-
tion was made by demonstrating that NS1619 when administered
prior to the ischemic event, protected isolated perfused rabbit
hearts from global ischemia and reperfusion injury, and that this
effect was blocked when the BK channel blocker paxilline was co-
administered (Xu et al., 2002). Subsequent studies have confirmed
that administration of NS1619 protects the heart from ischemia-
reperfusion injury both in mice (Wang et al., 2004; Redel et al.,
2008), rats (Cao et al., 2005; Gao et al., 2005) guinea pigs (Stowe
et al., 2006), rabbits (Shi et al., 2007), dogs (Shintani et al., 2004),
and in aged rats (Heinen et al., 2014). Likewise, we found that
NS11021 protected the heart from ischemia-reperfusion injury
when applied prior to, or immediately after ischemia and that this
could be antagonized by paxilline (Bentzen et al., 2009).

Because most of the data addressing the role of mitochon-
drial BK channels rely on pharmacological tools, controversies
exist about the importance of mitochondrial BK channels in
cardioprotection, as it has been found that both the activators
and inhibitors used display unspecific effects. NS1619 at higher
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concentrations directly inhibits L-type Ca2+ channels in rat ven-
tricular myocytes (Park et al., 2007), Ca2+-activated chloride
currents (Saleh et al., 2007), and voltage-activated Ca2+, K+,
and Na+ channels (Edwards et al., 1994; Olesen et al., 1994b;
Holland et al., 1996). Moreover, Cancherini et al. demonstrated
that NS1619 also display non-ion channel effects on mitochon-
dria, which they claim could explain some of the cardioprotective
effects of NS1619 (Cancherini et al., 2007). A study using the
cardioprotective BK channel activator NS11021, found that in
nanomolar concentration NS11021 displayed beneficial effects on
mitochondria, whereas when the concentration was increased,
unspecific effects not related to mitochondrial BK channels were
observed (Aon et al., 2010). Interestingly, a methylated analog of
NS11021 that is inactive on BK channel, and does not provide car-
dioprotection (Bentzen et al., 2010) still possesses the unspecific
effects on mitochondria of NS11021. This supports the notion
that the cardioprotection mediated by NS11021 is BK channel
related and not caused by the unspecific effects of the compound
(Aon et al., 2010).

With regards to the BK channel inhibitors used as tool com-
pounds for studying cardioprotection, there is concern about
the use paxilline as it has been found at higher concentra-
tions to inhibit the sarco/endoplasmatic reticulum Ca2+-ATPase
(SERCA) (Bilmen et al., 2002). Moreover, the cardioprotective
effects of the BK channel activator isoflurane were abolished by
paxilline both in wild-type and in KCNMA1−/− hearts, arguing
for unspecific effects of paxilline (100). In addition, this study also
suggested a dispensable role for KCNMA1 in both mitochondrial
K+ transport and cardioprotection. Instead, using C. elegans as a
model system they found that the related K+ channel Slo-2 was
required for mitochondrial K+ transport and cardioprotection.

Recently a study by Singh et al. helped to settle the con-
troversies about the pharmacology and role of mitochondrial
BK channels in cardioprotection, as they describe the molecu-
lar identity of the mitochondrial BK channel. They found that
the mitochondrial BK channel in the heart is encoded by a
splice variant (VEDEC) of the plasma membrane KCNMA1,
and that it holds a 50-aa splice insert which they report is
essential for trafficking to the mitochondria. Moreover they also
demonstrated that the cardioprotection offered by NS1619 was
lost in KCNMA1 KO mice (Singh et al., 2013), cementing the
involvement of BK channels in the cardioprotection conferred by
NS1619.

Additionally, Soltysinska et al. recently report electrophysio-
logical evidence for a BK-mediated current of 190 pS in mitoplasts
from wild-type but not KCNMA1−/− cardiomyocytes. Moreover,
changes in reactive oxygen species (ROS) production and atten-
uated oxidative phosphorylation capacities in KCNMA1−/− car-
diomyocytes were observed. This suggests a mitochondrial role of
KCNMA1 encoded BK channels in fine-tuning the oxidative state
of the cell (Soltysinska et al., 2014).

The discrepancy between these two studies demonstrating a
role of KCNMA1 in mitochondria and cardioprotection and the
earlier work by Wojtovich on Slo-2 where they found KCNMA1 to
be dispensable cannot be easily resolved; it should be remembered
that different genetic models and experimental procedures were
utilized in conducting the research. Moreover, as the authors also

state, their results do neither preclude the presence of KCNMA1
in the mitochondria nor a role for KCNMA1 channels in other
protective paradigms (Wojtovich et al., 2011).

It is difficult to imagine how the mitochondrial BK channel
can at all function considering the negative inner mitochon-
drial membrane potential in the range of −180 mV. However,
the phosphorylation state of the channel, the presence of aux-
illary subunits such as β-1 (Ohya et al., 2005), β-4 (Piwonska
et al., 2008; Fretwell and Dickenson, 2009; Skalska et al., 2009)
and perhaps LRRCs, could allow for channel activation under
physiological and pathophysiological conditions, although the
role of LRRCs needs to be explored further. Moreover, consid-
ering the high single channel conductance and the large driving
force for K+ entry, a too high open probability would be detri-
mental for the mitochondria, as the influx of K+ to the matrix
would depolarize the mitochondria. Therefore, the channel needs
to be present in low abundance and/or with a tightly controlled
open probability so that channel activation does not dissipate the
proton motive force and ionic homeostasis.

How opening of mitochondrial BK channels confer cardiopro-
tection is largely unknown, but could take place by affecting one
or more of the following parameters:

1. Mitochondrial calcium accumulation: K+ influx leads to a
partial depolarization of the inner membrane potential (Aon
et al., 2010). This will reduce the driving force for calcium
entry, thereby reducing calcium overload during ischemia
(Sato et al., 2005; Stowe et al., 2006). Indeed Stowe et al.
found that pre-treatment with the BK channel activation by
NS1619 in isolated perfused guinea pig hearts attenuated
mitochondrial calcium accumulation following an ischemic
event (Stowe et al., 2006). Moreover Singh et al. recently
demonstrated that pre-treatment with NS1619 increased the
Ca2+ retention capacity of mitochondria, and that this effect
was lost in KCNMA1−/− mice (Singh et al., 2013).

2. ROS production: Studies on isolated mitochondria from
hearts and neurons have demonstrated a reduced ROS pro-
duction following stimulation with NS1619, along with the
putative activator of mitochondrial BK channels, CGS7184
(Heinen et al., 2007; Kulawiak et al., 2008). This finding
was confirmed in isolated heart studies (Stowe et al., 2006).
Moreover, using isolated cadiomyocyte mitochondria from
KCNMA1−/− mice it was found that the absence of BK chan-
nels resulted in elevated post-anoxic ROS levels (Soltysinska
et al., 2014).

3. ATP preservation: Opening the mitochondrial BK channel
has been shown to improve mitochondrial energy produc-
tion, likely via swelling of the mitochondrial matrix (Aon
et al., 2010). Likewise, genetically engineered loss of BK chan-
nels have been found to attenuate oxidative phosphorylation
capacity (Soltysinska et al., 2014).

Taken together, at reperfusion, the improved oxidative phospho-
rylation, reduced ROS and mitochondrial calcium levels would
prevent activation of the mitochondrial permeability transition
pore (MPTP), which would otherwise lead to a non-selective per-
meabilization of the inner mitochondrial membrane resulting in
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mitochondrial collapse, termination of ATP synthesis and cell
death (Szabo and Zoratti, 2014).

Indeed, experiments on mitochondria isolated from the brain
have demonstrated that opening of MPTP is accelerated in the
presence of iberiotoxin (Cheng et al., 2008).

The recent findings using genetically engineered models
have clearly demonstrated that KCNMA1 is important for
cardioprotection and mitochondrial function. However, much
exploration is still needed in order to understand the physio-
logical role of mitochondrial BK channels and how they confer
cardioprotection.

From a therapeutic perspective, the recent findings are encour-
aging and help to clarify the role of BK channel activators in
cardioprotection. Considering the importance of BK channels in
controlling vascular tone, and their role in intra-cardiac neurons
(Pérez et al., 2013; Wojtovich et al., 2013) it is also important
to understand how, and if these extra-cardiac BK channels con-
tribute to cardioprotection. Somewhat surprising, and to the best
of our knowledge, little research has been undertaken to explore
the importance of BK channel mediated flow changes in car-
dioprotection. Future work using tissue specific knock-down of
KCNMA1 could shed light on this interesting aspect.

BK CHANNELS IN BLADDER FUNCTION
The BK channel α-pore forming subunit and auxillary β-1 and
β-4 subunits are expressed in urinary bladder smooth muscle
(UBSM) cells (Ohya et al., 2000; Ohi et al., 2001; Petkov et al.,
2001; Werner et al., 2007; Chen and Petkov, 2009; Hristov et al.,
2011), where BK channels have been shown to be important regu-
lators of bladder contractility and excitability (reviewed in Petkov,
2014).

One line of studies has demonstrated that inhibition of
BK channel function markedly affects bladder function. Thus,
the BK channel blockers iberiotoxin and paxilline have been
shown to increase contractility in detrusor smooth muscle strips
from humans (Darblade et al., 2006; La Fuente et al., 2014),
pigs (Buckner et al., 2002), guinea pigs (Heppner et al., 1997;
Kobayashi et al., 2000; Mora and Suarez-Kurtz, 2005), rats
(Uchida et al., 2005), and mice (Herrera et al., 2005) when
stimulated electrically or pharmacologically.

In addition, support for a role of BK channels in bladder func-
tion has been provided by genetic mouse models. In bladder strips
from BK deficient mice lacking the BK pore forming α-subunit,
contractility has been found to be markedly increased in response
to both cholinergic and purinergic stimulation. This is reflected
in a lower frequency of electrical stimulation required to elicit
a contraction (Thorneloe et al., 2005; Werner et al., 2007). In
vivo, KCNMA1−/− mice without functional BK-expression show
a pronounced increase in voiding frequency and the occurrence of
non-voiding bladder contractions. The mice have increased aver-
age bladder pressure and decreased void volume (Meredith et al.,
2004; Thorneloe et al., 2005).

Mice deficient in the BK subunit β-1, the predominant acces-
sory subunit in smooth muscle cells show moderate hypertension
(Brenner et al., 2000; Plüger et al., 2000). Bladder strips from
these mice showed increased amplitude and decreased frequency
of phasic contraction similar to strips from WT mice treated with

iberiotoxin. However, an additional response to iberiotoxin was
still present in strips from KO mice (Petkov et al., 2001). Thus,
studies on BK β-1 KO mice support a role of BK and specifically
the β-1 subunit in modulation of smooth muscle contractility in
the cardiovascular system and bladder.

Taken together, there is considerable support that inhibi-
tion or block of BK function adversely affects bladder function,
increasing contractility in mice in vivo and in isolated bladder
preparations from several species including mice, guinea pigs,
and humans. This could suggest that increased BK channel activ-
ity in the bladder may counteract excessive detrusor contractions
in bladder overactivity. Indeed, in pharmacological studies, pos-
itive modulation of BK channels by means of small molecules
including NS-8, NS1608, and NS1619, have been shown to at
varying degrees to reduce contractility of bladder strips from rats,
guinea pigs, pigs (Imai et al., 2001; Malysz et al., 2004; Mora and
Suarez-Kurtz, 2005), and humans (La Fuente et al., 2014). In one
study, NS8 and NS1619 reduced rat bladder and aorta contrac-
tility with approximately similar potency (Malysz et al., 2004);
while in another study, using NS-8, a clear selectivity for rat blad-
der over portal vein was reported. This supports the notion of
BK channels being an attractive target in overactive bladder and
urgency urinary incontinence. NS-8 was also reported to increase
bladder capacity in urethane-anaesthetized rats after duodenal
administration (Nicot et al., 1992).

In detrusor myocytes, BK channels may be activated both by
increases in internal Ca2+ mediated via voltage-dependent L-type
calcium channels and transiently by ryanodine receptors medi-
ating local “Ca2+ sparks” as shown by patch clamp in guinea
pig and human myocytes (Ohi et al., 2001; Herrera and Nelson,
2002; Hristov et al., 2011; Malysz et al., 2013). BK channels are
thereby thought to mediate a negative feedback to limit con-
tractions of the detrusor smooth muscle (Herrera et al., 2000,
2005) and to regulate patterns of spontaneous phasic contrac-
tions. Thus, in human UBSM cells BK channel outward currents
have been shown to be a major determinant of repolarization fol-
lowing action potentials. Moreover, BK channel activity is also
an important regulator of the resting potential and spontaneous
phasic contraction amplitude, as well as the amplitude of electric
field stimulation-induced contractions in UBSM strips (Hristov
et al., 2011).

Spontaneous non-voiding contractions have been associated
with bladder overactivity (Brading, 1997; Andersson, 2010);
Inhibition of spontaneous phasic contractions, with minimal
effect on voiding contractions have been suggested as a favorable
profile in myogenic bladder overactivity. Interestingly, decreased
BK channel α- and β-subunit expression have been reported in
tissue from prostate patient bladders with detrusor overactiv-
ity, when compared with patients with similar obstruction but
without detrusor overactivity (Chang et al., 2010). Therefore,
positive modulation of BK channels may represent a strategy
to alleviate bladder overactivity and increased detrusor contrac-
tility. The BK channel modulators NS11021 and NS19504 have
been studied in guinea pig strips, and shown to potently inhibit
spontaneous phasic contractions with more modest effects on
contractions induced by electric field stimulation (Layne et al.,
2010; Nausch et al., 2014). This supports the potential of BK
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openers to normalize detrusor function in bladder overactivity
with minimal effect on voiding contractions.

BK channel openers have also been suggested as a strategy to
alleviate bladder overactivity of neurogenic origin. Interestingly,
decreased BK UBSM expression, increased contractility and
increased excitability in cells from humans with neurogenic
detrusor overactivity have been reported (Hristov et al., 2013).
However, in a study of the BK opener NS1619, effect on spon-
taneous contractions was only observed in detrusor strips from
normal subjects, not in strips from patients with neurogenic blad-
der overactivity (Oger et al., 2011). In another study using isolated
human UBSM cells and strips from subjects without prior history
of overactive bladder, NS1619 was found to inhibit myogenic and
nerve-evoked contractions (Hristov et al., 2012).

The underlying pathophysiology in overactive bladder is often
not well understood and may be multifactorial, depending on
both myogenic and neurogenic factors (Hanna-Mitchell et al.,
2013). In addition to being a major regulator of UBSM contrac-
tility and excitability, BK channels may also be important for
bladder afferent nerve activity and urothelial function. However,
the role of BK channels in specific pathophysiologies associated
with bladder overactivity are not known. Regulation of BK chan-
nel activity is complex; in the bladder it is regulated by voltage
levels, calcium levels, kinase activity and by the action of signal
molecules involved in dysregulation of UBSM function (Hristov
et al., 2014). It was recently reported that BK channel activity
mediates PGE2 induced increase in spontaneous phasic contrac-
tions in detrusor strips (Parajuli et al., 2014a). BK channel activity
has also been linked functionally to changes in Ca2+ signaling
and detrusor contractility induced by cAMP (Xin et al., 2014) and
muscarinergic receptor activation (Parajuli et al., 2014b).

BK channel openers have been advanced to clinical studies for
bladder dysfunction, but have so far not reached the market. TA-
1702 (structure not disclosed) has been in Phase I by GSK under
license from Tanabe. Although no public announcements have
been made about withdrawal, it does not currently appear in the
company’s development pipeline. Nippon-Shinyaku discontin-
ued development of NS-8 for overactive bladder (Announced Jan
16, 2007) due to lack of efficacy in proof-of-concept study with
Apogepha. NS-8 reached Phase II in Europe and Phase I in Japan.
A number of new BK openers representing new chemical scaf-
folds and showing improved selectivity have been reported, and
may be promising leads for future development within bladder
dysfunction.

Taken together, there is strong support that positive modu-
lators of BK may have beneficial effect in instable or overac-
tive bladder, without compromising normal voiding functions.
Further studies using recently discovered BK openers, that possess
improved selectivity are needed to translate findings from animal
models to the human bladder, and to elucidate the potential for
BK modulators in bladder overactivity disorders of myogenic or
neurogenic origin.

BK CHANNELS IN THE CENTRAL NERVOUS SYSTEM
BK channels are abundantly expressed in the central nervous
system (CNS) with various functions being associated to these
channels in neurons. The channels are expressed in specific

neurons, with subcellular localizations in presynaptic terminals,
soma and dendrites (Knaus et al., 1996). As mentioned previ-
ously BK channels are distinctive among ion channels, being gated
by both voltage and intracellular Ca2+. This gating mechanism,
in combination with their close proximity or even physical cou-
pling to voltage-gated Ca2+ channels, makes BK channels poten-
tially important components in negative feed-back mechanisms
(Marrion and Tavalin, 1998; Grunnet and Kaufmann, 2004). In
a situation of excessive Ca2+ influx e.g., in pre-synaptic ter-
minals and corresponding disproportionate transmitter release,
activation of BK channels by incoming Ca2+ will counterbal-
ance this effect by hyperpolarizing the membrane, and thereby
shut off voltage-dependent Ca2+ influx. In other words, BK
channels can be seen as an “emergency break,” which prevents
transmitter related hyperexcitability and concomitant cell tox-
icity. An example of this is observed in Purkinje cells in the
cerebellum (Swensen and Bean, 2003; Womack and Khodakhah,
2004). From the somatic localization, BK channels are thought
to exert their function by shaping the repolarization and thereby
after-hyperpolarization (AHP) of action potentials. The after-
hyperpolarization is divided into three phases; a fast (fAHP), an
intermediate (mAHP) and a slow (sAHP) part. BK channels par-
ticipate in the fast phase and have been especially well studied in
the CA1 region of the hippocampus, where fAHP is inhibited by
addition of TEA and the more selective BK inhibitor iberiotoxin
(Storm, 1987). It should be mentioned that BK α-subunit knock-
out mice are viable, but have several phenotypes that include CNS
related functions. Among these are ataxia and high frequency
hearing loss (Salkoff et al., 2006).

The localization of BK channels in Purkinje cells from the
cerebellum points to the important role of BK in motor coordina-
tion, since Purkinje neurons are the sole output of the cerebellar
cortex. As a consequence KCNMA1 (−/−) knock-out mice have
impaired motor coordination and ataxia (Sausbier et al., 2004).
These results have later been consolidated in transgenic mice lack-
ing BK channels exclusively in the Purkinje cells of the cerebellum
(Chen et al., 2010). BK channel impact on locomotor impair-
ments may also rely on the channel expression in basal ganglia,
where prominent expression of BK channels has been demon-
strated in substantia nigra, pars reticulate, globus pallidus, and
entopeduncular nucleus. All these areas have a potential impact
on the pathophysiology of tremors and ataxia (Sausbier et al.,
2006).

An auditory phenotype of the BK knock-outs also points to a
function of the channels in hearing. When knocking out the BK
α-subunit, but not the β-subunit, a resulting progressive hearing
loss is observed. Hearing loss at high frequencies is evident, but
only after 8 weeks of age and onward. This point to irreversible
progressive loss of cochlear outer hair cells. A similar phenotype
can be observed by genetic deletion or pharmacological inhibition
of the voltage-dependent potassium channel KCNQ4 (Jentsch,
2000; Rüttiger et al., 2004).

BK channels have also been associated to circadian rhythms.
Circadian rhythms in mammals are driven by a central oscil-
lator in the hypothalamic suprachiasmatic nucleus (SCN). This
nucleus is constituted by relatively few (about 10,000) neurons
that are characterized to oscillate in a 24 h rhythms. These cells

Frontiers in Physiology | Membrane Physiology and Membrane Biophysics October 2014 | Volume 5 | Article 389 | 6

http://www.frontiersin.org/Membrane_Physiology_and_Membrane_Biophysics
http://www.frontiersin.org/Membrane_Physiology_and_Membrane_Biophysics
http://www.frontiersin.org/Membrane_Physiology_and_Membrane_Biophysics/archive


Bentzen et al. BK channels as therapeutic target

are unique in the sense that they can generate rhythms. The
SCN neurons are central in understanding the pathophysiology
of sleep and circadian diseases; these neurons are innervated from
the retina and this projection is essential in setting the clock
to the external light-dark regimen (entrainment). Entrainment
maintains the internal rhythms of exactly 24 h.

BK channels have been suggested as a novel and attractive
target for sleep and circadian diseases (Meredith et al., 2006).
BK channels are expressed in the SCN, and the expression of
KCNMA1 (BK α-subunit) mRNA is regulated in a diurnal man-
ner. Most interestingly, KCNMA1 deficient mice have a larger
amplitude in electrical activity of SCN neurons. The same mice
had a weak rhythm in locomotor behavior. Taken together, these
data suggest that BK modulators could influence the endogenous
rhythm structure, and perhaps be useful in patients with circadian
and sleep dysfunctions.

BK channels have also been associated to various epileptogenic
phenotypes but the picture is not straight forward. In its simplest
term, inhibition of BK channels should result in general depo-
larization and thereby hyperexcitability. Consequently it could be
expected that epilepsy could be treated with pharmacological acti-
vation of BK channels. There is evidence of BK loss-of-function
in relation to epilepsy, however to tamper the picture also BK
gain-of-function has been linked to the disease. In preclinical
models of inherited generalized tonic-clonic epilepsy and tempo-
ral lobe epilepsy (TLE) animals demonstrated a reduction in AHP.
This decrease was suggested to be due to a reduction in Ca2+-
dependent K+ conductance, that could be related to BK channels,
but the exact nature of the specific conductance was not addressed
by application of specific pharmacological tools (Verma-Ahuja
et al., 1995). Also in a pharmacological TLE model, application
of the muscarinic receptor agonist pilocarpine produced a down
regulation of BK channels, especially in the hippocampus and
cortex (Pacheco Otalora et al., 2008). The picture is blurred by
the fact that BK channel gain-of-function, at least as a conse-
quence of β4-subunit knock-out, that leads to an overall increase
in BK activity, can result in TLE (Brenner et al., 2005). Reports in
favor of increased BK activity as a cause for epilepsy, are observa-
tions that gain-of-function BK channels can result in generalized
tonic-clonic seizures (Shruti et al., 2008). Target engagement
in these findings was substantiated by application of paxilline
that could suppress the epileptogenic phenotype (Sheehan et al.,
2009).

When it comes to clinical evidence of BK channel functions,
CNS is actually one of the only areas where reports exist. The
first associations between BK activity and epilepsy in patients
were concomitant, with the general notion of loss of BK channel
activity as the underlying cause of hyperactivity and epilepsy. In
TLE patients a reduction in fAHP and a down-regulation of BK
channels was observed (N’Gouemo, 2011). Again the picture is
distorted by the fact that human absence epilepsy and idiopathic
generalized epilepsy are directly associated to a BK channel gain-
of-function mutation (Du et al., 2005). The gain-of-function is a
single amino acid substitution (D434G) in the BK α-subunit, that
among other things, increases Ca2+ sensitivity and mean open
time of the channel (Du et al., 2005). These observations are good
examples of how the prediction of the physiological outcome of

a certain ion channel mutation can be very difficult. The intu-
itive feeling will be that increasing a potassium conductance and
thereby hyperpolarizing a cell membrane should dampen cellu-
lar excitability. However, in intact cell system this logic rational is
challenged by the fact that hyperpolarization will result in more
efficient release of Na+ channels from inactivation, resulting in
a higher number of Na+ channels being available for activation
in a subsequent action potential. The exact phenotype of a given
ion channel mutation, will therefore always be the sum of the
orchestrated activity of a number of different ion channels, in
combination with other membrane proteins and the entire cel-
lular machinery. When considering CNS it should also be kept
in mind that the brain consists of both excitable and inhibitory
neurons, and the exact interplay between neuronal circuits and
cellular and subcellular positions of the mutated proteins will
impact the final phenotype of any given mutation.

CONCLUDING REMARKS
It is now two decades since the first small molecule BK channel
opener was reported. Over these years a wealth of BK channel
openers, including naturally occurring and synthetic compounds
have been discovered, and recently the first peptide opener of BK
channels was disclosed (Liu et al., 2013). The structural diver-
sity of these molecules is also reflected in their mode of action.
Some compounds display β-subunit dependency (Valverde et al.,
1999), whereas others are dependent upon intracellular calcium
concentrations (Bentzen et al., 2007).

The pharmaceutical interest in BK channel activators has been
spurred on by the last decade’s biological research, reporting
the important roles of BK channels in both health and disease.
By integrating changes in intracellular calcium and membrane
potential, the BK channel serves as an important negative feed-
back system, linking increases in intracellular calcium to outward
hyperpolarizing potassium current. Using BK channel openers,
evidence of the channels role and possible therapeutic potential
has been established with respect to a number of indications,
characterized by hyper excitability and smooth muscle dysfunc-
tion. Despite vast amounts of preclinical work and basic research,
clinical evidence for the usefulness of BK channel openers is still
missing and clinical development of BK channel activators has in
large been discontinued and is to our knowledge currently not
taking place except for Andolast. Translating preclinical findings
to the clinic is tough, with failure being caused by many factors.
However, the lack of potency and especially the poor selectivity of
compounds toward off-targets are troublesome, as it can obscure
preclinical proof-of-concept findings. Despite substantial amount
of in vitro based BK pharmacology literature, it is striking how
few in vivo evaluations have been published. Although only spec-
ulative, this could point to the challenges for in vivo applications
of many BK activators, thereby also adding to the lack of suc-
cessful clinical attempts to reveal the potential for BK activators.
Therefore, a need for more potent, selective and in vivo applicable
compounds is still warranted.
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