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In most tissues, the function of Ca2+- and voltage-gated K+ (BK) channels is modified in
response to ethanol concentrations reached in human blood during alcohol intoxication. In
general, modification of BK current from ethanol-naïve preparations in response to brief
ethanol exposure results from changes in channel open probability without modification
of unitary conductance or change in BK protein levels in the membrane. Protracted and/or
repeated ethanol exposure, however, may evoke changes in BK expression. The final
ethanol effect on BK open probability leading to either BK current potentiation or BK
current reduction is determined by an orchestration of molecular factors, including levels of
activating ligand (Ca2 ),i

+ BK subunit composition and post-translational modifications, and
the channel’s lipid microenvironment. These factors seem to allosterically regulate a direct
interaction between ethanol and a recognition pocket of discrete dimensions recently
mapped to the channel-forming (slo1) subunit. Type of ethanol exposure also plays a role in
the final BK response to the drug: in several central nervous system regions (e.g., striatum,
primary sensory neurons, and supraoptic nucleus), acute exposure to ethanol reduces
neuronal excitability by enhancing BK activity. In contrast, protracted or repetitive ethanol
administration may alter BK subunit composition and membrane expression, rendering the
BK complex insensitive to further ethanol exposure. In neurohypophyseal axon terminals,
ethanol potentiation of BK channel activity leads to a reduction in neuropeptide release. In
vascular smooth muscle, however, ethanol inhibition of BK current leads to cell contraction
and vascular constriction.

Keywords: slo1 proteins, BK beta subunits, membrane lipids, ethanol-recognition site, n-alkanols, alcohol

tolerance, ion channels

INTRODUCTION
Ca2+-activated K+ channels are defined by their high selectiv-
ity for K+ over other monovalents and enhanced activity upon
increases in intracellular Ca2+ (Ca2+

i ). Based on unitary con-
ductance (γ), Ca2+-activated K+ channels have been classified
into large (BK), intermediate (IK) and small conductance (SK)
channels. These phenotypes also present differential sensitivity to
Ca2+

i , membrane voltage and distinct peptide blockers (Latorre

Abbreviations: AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid;
AP, action potential; BK, Ca2+ and voltage-gated, large conductance K+; cAMP,
cyclic adenosine monophosphate; Ca2+

i , cytosolic Ca2+; Ca2+-activated K+;

CaMKII, Ca2+ /calmodulin-dependent protein kinase II; CNS, central nervous
system; CTD, cytosolic tail domain; DRG, dorsal root ganglia; ECmax, maximal
effective concentration; EC50, half-maximal effective concentration; EPSP, excita-
tory post-synaptic potential; GH3, GH4/C1, rat pituitary epithelial-like tumor cell
lines; HEK, human embryonic kidney (cell line); IP3, Inositol trisphosphate; MSN,
medium spiny neurons; MthK, potassium channel from Methanobacterium ther-
moautotrophicum; NMDA, N-methyl-D-aspartate; PKA, protein kinase A; PKC,
protein kinase C; Po, single channel open probability; PP, phosphatase; RCK,
regulator of conductance for K+; RyR, ryanodine receptor; S, transmembrane seg-
ment in ion channel core; SK, potassium channels of small conductance; TM,
transmembrane domain.

et al., 1989; Stocker, 2004; Salkoff et al., 2006). The term BK chan-
nel, however, more properly applies to not only Ca2+-activated
K+ channels of large conductance, i.e., BK α subunits or slo1
channels, which are products of the Slo1, KCNMA1 gene or
its orthologs (see Table 1 for nomenclature), but also to the
channel-forming protein products of Slo2 and Slo3, which are
primarily gated not by Ca2+

i but by Na+/Cl− and H+, respec-
tively (Schreiber et al., 1998; Dryer, 2003; Xia et al., 2004; Salkoff
et al., 2006). In this mini-review, however, we will use “BK chan-
nel” to designate a functional channel that results from tetrameric
association of slo1 proteins and may include additional regulatory
subunits that contribute to the current phenotype (see below).

In most neurons, K+ efflux due to Ca2+-activated K+ chan-
nel activity effectively drives the membrane potential toward
more negative values leading to reduced excitability (Wong and
Prince, 1981; MacDermott and Weight, 1982; Brown et al., 1983;
Sah, 1996). This led to the early speculation that Ca2+-activated
K+ “conductances” could be modified by alcohols and other
sedative/hypnotic agents in central nervous system (CNS) neu-
rons (Krnjevic, 1972; Nicoll and Madison, 1982). Early studies
on modulation of Ca2+-activated K+ currents by ethanol were
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Table 1 | Nomenclature of large-conductance K+ channel proteins and genes used in this review.

BK Protein complex forming an ion channel with a phenotype that combines high-conductance for K+ with voltage- and Ca2+-gating,
disregarding subunit composition. Also cited in literature as BKCa or MaxiK channels.

KCNMA1 Mammalian gene that encodes the BK channel-forming slo1 protein, so called BK α subunit.

KCNMB1-4 Genes that encode the regulatory BK β subunits, these subunits being unable to form functional channels by themselves. Four β

subunits have been identified (β1-4), each of the four types resulting from its corresponding gene (KCNMB1-4).

Slo1 Same as KCNMA1.

Slo General term to define any non-mammalian ortholog of Slo1.

xslo1 BK channel-forming α subunit, where “x” denotes the species of origin (e.g., hslo1 from human, mslo1 from mouse, etc.) For
consistency with previously published work, an exception was made for cbv1, which denotes slo1 proteins cloned from rat cerebral
blood vessel (artery) myocytes.

slo2 High-conductance K+ channel protein gated by Na+
i or Cl−i .

slo3 High-conductance for K+ channel protein gated by H+
i /OH−

i .

conducted on non-neuronal preparations and/or using alcohol
concentrations well above circulating ethanol levels that are usu-
ally lethal in alcohol-naïve mammals (>100 mM), as reviewed
elsewhere (Dopico et al., 1999a). A few early studies, however,
did show that 5–20 mM ethanol (legal intoxication in the US is
defined by 10–17.4 mM ethanol in blood) applied to hippocam-
pal CA1 or CA3 neurons and granule cells, and cerebellar Purkinje
cells enhanced a Ca2+-dependent after-hyperpolarization while
increasing overall K+ conductance (Carlen et al., 1982, 1985;
Niesen et al., 1988). Likewise, ethanol concentrations as low as
5 mM activate a Ca2+-activated K+ conductance in Helix aspersa
right parietal ganglion (Madsen and Edeson, 1990). From these
early studies, however, it was not possible to discern the Ca2+-
activated K+ channel type affected by ethanol. In addition, these
and later studies conducted in intact cells could not address
whether ethanol effect on Ca2+-activated K+ current resulted
from drug action on the Ca2+-activated K+ current itself or,
rather, was secondary to ethanol modulation of Ca2+-sources that
controlled Ca2+

i -activated K+ channel activity.
BK channels received particular attention as functional tar-

gets of ethanol in the CNS as they are usually expressed and
play major roles in all three neuronal compartments: somata,
axon terminals and dendrites. Moreover, the channel’s sensitivity
to both voltage and Ca2+

i places it at the nexus of many cel-
lular pathways associated with neuronal plasticity. BK channel
pluripotency is further underscored by a recent study show-
ing its presence in the neuronal nuclear membrane where it
controls Ca2+ flux and gene expression (Li et al., 2014). At
the presynaptic membrane, BK channels control the release of
neurotransmitters by dampening the depolarization evoked by
incoming action potentials (APs) (Raffaelli et al., 2004; Wang,
2008). On the post-synaptic side, BK channels contribute to
AP shaping (Faber and Sah, 2002, 2003) and patterning (Jin
et al., 2000; Zhang et al., 2003; Brenner et al., 2005; Meredith
et al., 2006), and modulate α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA)- and N-methyl-D-aspartic acid
(NMDA)-mediated excitatory post-synaptic potentials (EPSPs)
(Isaacson and Murphy, 2001; Liu et al., 2011). The BK channel
also controls dendritic excitability (Golding et al., 1999; Wessel
et al., 1999; Rancz and Häusser, 2006; Benhassine and Berger,
2009), as well as retrograde propagation of somatic APs to the
dendrites (Wessel et al., 1999; Ji and Martin, 2012).

By the mid to late nineties, using isolated neurohypophyseal
axon terminals and pituitary epithelial-like tumor cell lines (GH3
cells) from the rat, two groups communicated the selective acti-
vation of BK channels by acute exposure to clinically relevant
ethanol concentrations: half-maximal effective concentration
(EC50) ≈ 22 mM; maximal effective concentration (ECmax) ≤
100 mM (Dopico et al., 1996; Jakab et al., 1997). Experimental
conditions from these two studies demonstrated that ethanol
action was due to drug targeting of the BK channel complex
itself and/or its immediate proteolipid environment. Since then,
activation of native BK channels by brief exposure to clinically
relevant ethanol levels has been extended to both excitable and
non-excitable tissues (Brodie et al., 2007; Martin et al., 2008;
Pietrzykowski et al., 2008; Bukiya et al., 2009; Wynne et al.,
2009; Velázquez-Marrero et al., 2011; Bettinger et al., 2012;
Handlechner et al., 2013; Liu et al., 2013; Davis et al., 2014;
Malysz et al., 2014). In parallel, several groups have documented
ethanol-SK channel functional interactions and their relevance to
alcohol-induced modified behaviors. Literature on ethanol and
SK channels has been reviewed elsewhere (Brodie et al., 2007;
Mulholland et al., 2009) and is not dealt with in this review, which
focuses on modulation of BK channels from mammalian systems
in response to acute ethanol administration. In particular, we
concentrate on the many molecular entities and mechanisms that
determine the final BK current response to brief (acute) ethanol
exposure, and the consequences of such modulation on the phys-
iology of excitable tissues. Neuronal and behavioral adaptations
involving BK channels or neuronally-expressed genes coding for
BK channel subunits to repetitive or protracted ethanol exposure
have been well documented in both mammals and non-mammals
(Mulholland et al., 2009; Treistman and Martin, 2009; McIntire,
2010; Ghezzi and Atkinson, 2011) and comprehensively treated in
this volume by Bettinger and Davies (2014).

ETHANOL EFFECT ON BK CURRENTS IN ALCOHOL-NAïVE
SYSTEMS: PHENOMENOLOGY AND MODIFICATIONS IN
CHANNEL GATING
Following brief exposure (<5 min) of native BK channels to clin-
ically relevant ethanol concentrations (10–100 mM), steady-state
ionic current potentiation, refractoriness and reduction have all
been observed, this heterogeneity being reported even between
different compartments of a same neuronal type (Dopico et al.,
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1999b; Martin et al., 2004; Wynne et al., 2009). The variety of
molecular factors that contribute to such heterogeneity are exten-
sively discussed in a separate section below. However, some gener-
alizations from studies of acute ethanol action on native channels
and recombinant BK proteins expressed in natural membranes
or following channel reconstitution into artificial planar bilay-
ers can be made. In the vast majority of cases, provided that the
channel consists of homomeric slo1 or heteromeric slo1 + β4
subunits and is evaluated at Ca2+

i within nM to low μM, a few
min exposure to ethanol potentiates steady-state current (Brodie
et al., 2007; Mulholland et al., 2009). This potentiation occurs in
absence of changes in K+ permeability (Dopico et al., 1996, 1998;
Jakab et al., 1997; Gruß et al., 2001; Martin et al., 2004) or selec-
tivity over Na+ (Dopico et al., 1996, 1998) and BK membrane
expression (Dopico et al., 1998) but results from ethanol-induced
increase in channel open probability (Po). In neurohypophyseal
terminals, this increase is consistently observed provided that
alcohol-naïve preparations are briefly exposed to the drug (a few
min) (Dopico et al., 1996) and totally disappears after 12 min
of constant ethanol exposure (Pietrzykowski et al., 2004). The
mechanisms leading to this rapid desensitization to ethanol expo-
sure remain to be fully addressed (see next Sections on Molecular
Targets). However, when neurohypophyseal explants are subject
to 24 h-long ethanol exposure, decreased BK current density has
been linked to a reduction in BK channel clustering in the cell
membrane and internalization of the channel α (slo1) subunit
(Pietrzykowski et al., 2004).

Following brief exposure to alcohol-naïve systems, ethanol-
induced maximal increase in BK is reached at 75–100 mM, with
an EC50 = 20–25 mM (reviewed in Brodie et al., 2007), the latter
being close to blood alcohol levels considered legal intoxication in
most US states (0.08g/dl = 17.4 mM) (Diamond, 1992; Thombs
et al., 2003). While these ethanol concentrations are significantly
higher than those of other BK channel modulators (Weiger et al.,
2002), different studies ruled out that an osmotic load to the
membrane and/or channel complex was a major contributor
to ethanol action on BK currents (Dopico et al., 1996, 1998;
Jakab et al., 1997). Because ethanol acute action on BK chan-
nels studied in cell-free systems like isolated membrane patches or
following reconstitution into planar lipid bilayers of simple com-
position mimics drug action in intact cells (reviewed in Brodie
et al., 2007; Mulholland et al., 2009), it is possible to conclude
that acute ethanol modulation of BK current in alcohol-naïve
systems is largely independent of the continuous presence of
cytosolic signals, internal organelles, complex membrane cytoar-
chitecture, and ethanol metabolism. It should be noted, however,
that acetaldehyde applied to the intracellular surface of GH3 cell
membrane patches was able to reduce ethanol-induced activation
of BK channels (Handlechner et al., 2013), raising the hypothesis
that an ethanol metabolite in excitable tissues contributes to the
overall effect of ethanol on native BK currents.

Increased BK Po by ethanol itself results from several modifi-
cations in both open and closed-times distributions that lead to
minor increase in mean open time and major decrease in mean
closed time, the latter primarily due to drug-induced destabi-
lization of channel long-closed states (Dopico et al., 1996, 1998;
Chu et al., 1998; Crowley et al., 2003). A 10-state model of

slo1 (mslo1, from mouse brain; mbr5 variant) channel gating
reveals that ethanol modifies Ca2+-dependent parameters, such
as the channel open conformation-Ca2+ dissociation (KO) and
closed conformation-Ca2+ dissociation (KC) constants. In con-
trast, Ca2+-independent parameters, such the equivalent gating
charge associated with the open-to-closed equilibrium (Q) and
the open-to-closed equilibrium constant in absence of Ca2+
and transmembrane voltage (L0 or “intrinsic gating”) remain
unchanged. Moreover, slo1 becomes ethanol-resistant when gated
by voltage/Mg2+

i in absence of activating Ca2+
i , with fully effective

activatory concentrations of ethanol (100 mM) failing to modify
mslo1 Po. Consistently, combination of amino acid substitutions
(5D5N) in the Ca2+-bowl and in the high affinity regulator of
conductance for K+ (RCK) 1 domain (D362A, D367A), which
render both high affinity Ca2+

i -recognition sites non-functional,
results in a channel that is ethanol-resistant. However, substitu-
tions that hamper each site result in slo1 channels that retain
ethanol sensitivity. These data indicate that ethanol action on BK
channels requires activating Ca2+

i . Moreover, as far as Ca2+
i is able

to interact with one of its physiological recognition sites, the BK
channel is activated by ethanol (Liu et al., 2008). The structural
basis of ethanol activation of slo1 channels and its relation to
Ca2+

i is provided in a separate section.

The Ca2+
i -dependence of ethanol action, however, further

conditions drug action on slo1 channels: ethanol potentiation
of Po and macroscopic current progressively diminishes as Ca2+

i
increases until ethanol becomes an inhibitor of BK activity; for
homomeric slo1 channels, whether mslo mbr5 or cbv1 (from rat
cerebral artery myocytes), the “cross-over” from ethanol-induced
activation to ethanol-induced inhibition occurs at ∼20 μM Ca2+

i
(Liu et al., 2008; Bukiya et al., 2009). Remarkably, this cross-
over can be shifted by modulators that fine-tune the overall Ca2+

i
sensitivity of the native BK channel, accessory β1 subunits in
particular (see separate section). An empirically-derived single
channel kinetic model reveals that ethanol-induced inhibition
of slo1 Po is related to the drug-induced facilitation of channel
dwelling into Ca2+

i -driven low Po modes (Liu et al., 2008), an
action that can be conceptualized into ethanol-induced facilita-
tion of Ca2+

i -driven BK channel “desensitization” (Dopico and
Lovinger, 2009).

In synthesis, exposure of BK channels to clinically-relevant
ethanol concentrations in alcohol naïve, excitable cells under
physiological, resting conditions usually results in BK current
potentiation, yet refractoriness or inhibition may occur. This
heterogeneous response is determined by several molecular enti-
ties, which are individually discussed in separate sections below.
Ethanol action on BK ionic current results from modification
of Po, this action being dependent on the ion that activates the
channel under physiological conditions, that is, Ca2+

i .

CHANGES IN PHYSIOLOGY OR BEHAVIOR RELATED TO
MODIFICATION OF BK CURRENTS BY ACUTE ETHANOL
EXPOSURE
Regulation of BK Po and thus, steady-state ionic current by
ethanol exposure has been implicated in alcohol-induced mod-
ification of physiology and behavior (reviewed in Brodie et al.,
2007; Mulholland et al., 2009; Treistman and Martin, 2009;
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McIntire, 2010; Ghezzi and Atkinson, 2011). Early studies con-
centrated in neurosecretory cells given the central role of BK
channels in controlling AP firing and hormone/neurotransmitter
release (see above). In rats, ethanol-induced potentiation of
BK currents, together with drug-induced inhibition of voltage-
dependent Ca2+ channels (Wang et al., 1994) has been recog-
nized as a central mechanism in ethanol-induced inhibition of
vasopressin and oxytocin release by supraoptic axon terminals
(Dopico et al., 1995; Knott et al., 2002). Likewise, ethanol-
induced BK channel activation in GH3 and GH4/C1 rat pituitary
tumor cells would likely lead to inhibition of hormone release by
alcohol (Jakab et al., 1997, 2006). In spite of BK current poten-
tiation, ethanol actually increases growth hormone secretion by
GH3-GH4/C1 cells, which has been attributed to increased Ca2+

i
(Stojilkovic et al., 2005; Jakab et al., 2006; Brodie et al., 2007)
and to cell swelling itself being able to evoke hormone release
(Strbak, 2006). Indeed, ethanol has been proven to increase Ca2+

i
and cause cell swelling in GH3-GH4/C1 cells (Jakab et al., 2006).

In the rat and mouse striatum, ethanol potentiation of BK
currents has been demonstrated to reduce nucleus accumbens
medium spiny neurons (MSN) AP firing rate and thus, decrease
neuronal excitability (Martin et al., 2004, 2008), the consequences
of this ethanol action being linked to ethanol-induced perturba-
tion of motor behavior and alcohol preference (see below and
also review by Treistman and Martin, 2009). A decrease in AP
frequency in response to 40 mM ethanol has been reported in
dorsal root ganglia (DRG) neurons that show positive staining for
isolectin B4, a marker for nociceptive neurons. Ethanol also short-
ens AP duration and increases AP mean threshold, these ethanol
actions being blunted by selective blockade of BK channels by
iberiotoxin (Gruß et al., 2001). Thus, authors of this study pro-
posed that ethanol actions leading to reduced firing activity and
decreased excitability of distinct DRG neurons might contribute
to ethanol’s analgesic effect in the peripheral nervous system.

In Caenorhabditis elegans, ethanol activates BK channels
in vivo. Notably, the behavioral phenotype of slo1 gain-of-
function mutants resembles that of ethanol-intoxicated worms
(Davies et al., 2003; Bettinger and Davies, 2014). In Drosophila
melanogaster, BK channels have been shown to play a central role
in the development of drug tolerance to ethanol-induced seda-
tion and dependence (Ghezzi et al., 2004, 2010; Cowmeadow
et al., 2005, 2006). The literature on the role of slo channels in
alcohol-altered behavior is discussed by Bettinger and Davies in
this volume (2014). In conclusion, neuronal BK channels are con-
sidered as one of the central players in behavioral responses to
ethanol observed across non-vertebrate and vertebrate species.

Ethanol-induced BK channel activation has been proposed as
a mechanism for the neuroprotective effect of ethanol precon-
ditioning against post-ischemic neuronal injury in mice (Wang
et al., 2010). In contrast to BK channel activation, ethanol-
induced BK channel inhibition in both rats and mice has been
demonstrated to play a central role in ethanol-induced cere-
bral artery constriction (Liu et al., 2004; Bukiya et al., 2009).
Likewise, this drug action has been hypothesized to also con-
tribute to ethanol-induced aortic constriction (Walters et al.,
2000). Exposure of human endothelial umbilical vein cells to
10–50 mM ethanol, however, leads to BK current potentiation,

an ethanol action that leads to increased NO production and
cell proliferation with eventual bolstering of endothelial function
(Kuhlmann et al., 2004). Finally, a recent study shows that BK
channel activation plays a critical role in alcohol-induced relax-
ation of guinea pig urinary bladder smooth muscle (Malysz et al.,
2014).

In synthesis, in most neuronal tissues from mammals ethanol-
induced activation of BK channels leads to decreased cell
excitability whereas in vascular smooth muscle, ethanol-induced
inhibition of BK channels leads to arterial constriction.

MOLECULAR TARGETS AND MECHANISMS THAT
DETERMINE THE FINAL RESPONSE IN BK CHANNEL
ACTIVITY TO ACUTE ETHANOL
Ethanol modulation of BK channel activity has been consistently
reported in membrane patches that expressed either native
or recombinant channel proteins and after reconstitution of
channel subunits into artificial planar lipid bilayers of simple
composition (Chu et al., 1998; Crowley et al., 2003, 2005; Yuan
et al., 2008, 2011; Bukiya et al., 2011). Thus, functional targets
of ethanol action are limited to the channel subunit themselves,
their surrounding lipids and any possible interface. In a most
reductionist approach, ethanol potentiation of hslo1 channels
(from human brain) was observed with homomeric recombinant
channel reconstituted into a single species phosphoglyceride,
i.e., 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine
(POPE) (Crowley et al., 2003) indicating that this extremely
simple proteolipid system must include an ethanol sensor(s).
A summary of the different molecular factors and mechanisms
that determine the Bk channel response to acute ethanol in
alcohol-naïve systems in given in Figure 1.

a) Identification of a Protein Pocket of Discrete Dimensions in
the Slo1 Protein that Interacts with Ethanol thus Leading to
Increased Channel Activity
Slo1 channel proteins are conceptualized as “modular proteins,”
i.e., with rather defined motifs each serving a defined channel
function. Thus, slo1 proteins share with other members of the
six transmembrane (TM6) voltage-gated superfamily of ion chan-
nels a TM “core,” which includes the voltage-sensing domain
and the ion permeation pore-gate domain (Toro et al., 1998;
Wang and Sigworth, 2009; Lee and Cui, 2010). In addition, BK
channels include an additional segment (S) termed “0” leading
to an exofacial N-end (Toro et al., 1998) and a long cytosolic
tail domain (CTD), which includes two RCK domains largely
responsible for sensing changes in physiological levels of Ca2+

i
(Latorre and Brauchi, 2006; Lee and Cui, 2010; Hoshi et al.,
2013). Remarkably, purely voltage-gated TM6 K+ (KV) chan-
nels are resistant to potentiation by ≤100 mM ethanol, these
channels lacking the Ca2+

i -sensing CTD that is found in slo1 pro-
teins. As mentioned above, ethanol activation of slo1 channels
has been linked to modulation of Ca2+-driven gating. Moreover,
when studied in the same expression system, Ca2+

i -sensitive
slo1 is activated by ethanol while Na+-gated slo2 and H+-
gated slo3, no matter the concentration of activating ion, remain
ethanol-resistant. In addition, the S0-lacking but Ca2+

i -sensitive
TM2 K+ channel from Methanobacterium thermoautotrophicum
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FIGURE 1 | Molecular determinants of ethanol final effect on BK

channel activity following brief (up to several minutes) ethanol

delivery to alcohol-naïve systems. Functional BK channels are shown
as tetramers. For clarity, however, the cytosolic tail domain (CTD) of
only one α subunit within each tetrameric complex is displayed.
Molecular components that favor ethanol-induced BK channel activation

are shown in green whereas factors that counteract ethanol-induced
BK channel activation are in orange. Insert depicts a recently identified
ethanol-sensing site in the slo1 CTD. Ethanol molecule is depicted in
pink; hydrogen bond between ethanol and K361 is highlighted by a
light-blue dash line. Oxygen atoms are shown in red, nitrogen atoms
are in blue.

(MthK) retains ethanol-sensitivity (Liu et al., 2013). Thus, it has
been hypothesized that Ca2+

i -sensing domains within the CTD,
whether attached to a TM2 or TM6 core, are responsible for
ethanol-sensing. Next, amino acid sequences of Ca2+

i -sensing
(e.g., cytosolic) regions of mslo1 and MthK were aligned to ren-
der regions that share sequence similarity (Bukiya et al., 2014).
Computational modeling, point-mutagenesis and patch-clamp
studies on mslo1 expressed in Xenopus oocytes revealed details
of the ethanol-sensing site. The latter consists of several key ele-
ments (Figure 1): (1) K361 forms hydrogen-bond with ethanol
molecule; (2) R514 provides net positive charge in the vicinity
of the ethanol-K361 interaction point; (3) E354, S357, and N358
are located in close vicinity to ethanol, allowing access of ethanol
to its K361 bonding partner. In a more recent work substitu-
tion of T352 with Ile resulted in elimination of ethanol-induced
potentiation of BK current (Davis et al., 2014). T352 is located in
the vicinity of the site recently described by Bukiya et al. (2014).
Computational modeling shows that T352 points away from the
ethanol-sensing pocket. Thus, T352I is unlikely to provide steric
hindrance for hydrogen-bonding between ethanol and K361, the
latter being critical for channel activation by ethanol. This hydro-
gen bonding, however, is hampered as the ethanol molecule
cannot be positioned within the ethanol-sensing pocket when
T352 is substituted by Ile (Bukiya and Dopico, unpublished). The

critical role of T352 in ethanol sensing could be explained by
the strategic position of this amino acid at the N-terminus of
an α-helix within the slo1 CTD; polar/charged amino acids at
the N- or C-terminus may neutralize the dipole moment asso-
ciated with α-helix back-bone. Thus, in the T352I-substituted
CTD, a neutral Ile could potentially disrupt the electrostatic inter-
action that likely exists between the polar Thr and the α-helix
dipole. Eventually, the ethanol molecule cannot be positioned
inside the ethanol-sensing pocket possibly due to repulsive elec-
trostatic force(s) introduced by modification in the α-helix dipole
moment. This explanation is in line with earlier speculation on
the critical role of electrostatic interactions in the binding of polar
molecules (including ethanol) to α-helical structures (Dwyer and
Bradley, 2000).

Identification of ethanol-sensing site allows us to explain why
BK channels fail to respond to ethanol in virtual absence of Ca2+

i .
Crystallographic data demonstrate that CTD conformation in
Ca2+

i -free environment (Wu et al., 2010) differs from that in

presence of Ca2+
i (Yuan et al., 2010). As a result, in Ca2+

i -free
environment ethanol is no longer able to establish a hydrogen
bond with K361 due to steric hindrance and repositioning of
R514 away from the ethanol-sensing site (Bukiya et al., 2014). In
addition to explaining the Ca2+

i -dependence of ethanol action on
BK channels, the identification of the ethanol-sensing site allows
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us to explain the “cut-off” phenomenon reported for 1-alkanol
effects of BK channels originally described over a decade ago.
This phenomenon shows BK current potentiation by propanol,
butanol, pentanol, hexanol and heptanol, but refractoriness
to octanol and nonanol (Chu and Treistman, 1997). Indeed,
recent data show that the ethanol-sensing site in the slo1 CTS
can accommodate 1-alkanols (propanol-heptanol) that activate
BK channels but is unable to fit 1-alkanols that are ineffective
(octanol and nonanol) (Bukiya et al., 2014). Thus, 20 years
after the first report on the ethanol sensitivity of BK channels
(Dopico et al., 1994), an ethanol-recognition site of discrete
dimensions and drug-receptor interacting bonds responsible for
ethanol activation of this channel have been identified in the
channel-forming slo1 protein CTD (Bukiya et al., 2014). This
ethanol-recognition pocket is close but does not significantly
overlap with the slo1 protein CTD sites that sense Ca2+

i . Thus,

ethanol and Ca2+
i constitute heterotropic ligands of the BK

channel.

b) Slo Isoforms and their Regulation by Epigenetic Mechanisms
following Protracted Ethanol Exposure
Studies on recombinant homomeric slo1 channels cloned from
a wide variety of mammalian species (human, rat and mouse
brain) consistently document increased Po upon brief exposure to
ethanol in alcohol-naïve systems (reviewed in Brodie et al., 2007;
Mulholland et al., 2009). A notable exception is the bslo1 chan-
nel (cloned from bovine aortic smooth muscle (Dopico, 2003;
Liu et al., 2003), this difference most likely being determined by
Ca2+/Calmodulin-dependent protein kinase II (CamKII) phos-
phorylation of bslo1 at a residue that is not found in most slo1
isoforms (see separate section below).

Although slo1 proteins are products of a single gene (see
above), pre-mRNA alternative splicing is a major source for
diversity of BK channel proteins (Johnson et al., 2011; Kyle
and Braun, 2014). In particular, BK-STREX is a stress-induced
splice variant of BK channels that presents a phenotype associ-
ated with enhanced repetitive firing in neurosecretory cells (Xie
and McCobb, 1998). The pituitary hormone-releasing cell lines
GH3, GH4/C1, and GH4/C1-STREX have been used as models to
address ethanol action on three BK channel subtypes that differ
in slo1 subunits. In outside-out patches, however, 30 mM ethanol
added to bath solution increases the steady-state activity of all
three BK channel variants (Brodie et al., 2007).

In contrast to the rather homogeneous ethanol responses
described in the previous paragraph, ethanol responses of BK
channels vary greatly following “chronic” (hours) ethanol expo-
sure, which involves “adaptation” of slo1 isoforms at a variety
of levels. In two mammalian brain regions important in alcohol
abuse and addiction, the supraoptic nucleus and the striatum,
BK currents develop “tolerance” to ethanol (Knott et al., 2002;
Pietrzykowski et al., 2004). A detailed study in the neurohypophy-
seal system shows that BK channel tolerance to ethanol exposure
initially manifests itself as a slow-developing de-clustering within
groups of channels and their subsequent internalization from the
plasma membrane. After 24-h ethanol exposure, BK channels
in the membrane are less clustered and less dense within those
clusters (Pietrzykowski et al., 2004). Importantly, remaining BK

channels display an almost complete lack of sensitivity to ethanol
when acutely challenged again following withdrawal of the drug.
The time-course of the acute ethanol response of native BK chan-
nels has been replicated in a study using hslo1 channels reconsti-
tuted into artificial lipid bilayers (Yuan et al., 2008). Collectively,
these results indicate that, as interpreted for the immediate drug
response of the naïve system, the time-dependent component of
the channel response to acute ethanol is mainly determined by the
channel-forming subunit itself and/or its immediate proteolipid
environment.

To understand how the BK channels that were not internalized
following several hrs-long ethanol exposure lost their ethanol
sensitivity, analysis of BK channel properties in primary striatal
cultured and HEK293 cells reveals that slo1 subunit expression
is drastically altered by ethanol exposure. While the slo1 subunit
is mostly the product of mRNAs coding for an ethanol-sensitive
isoform in alcohol-naïve neurons, following chronic exposure it
rapidly switches to an alcohol-insensitive variant called STREX
(Pietrzykowski et al., 2008; Velázquez-Marrero et al., 2011). Of
eight slo1 variants identified in primary striatal cultures, chronic
ethanol led to elimination of variants more sensitive to ethanol
while sparing those exhibiting much lower sensitivity to the
drug (Pietrzykowski et al., 2008). This loss of ethanol-sensitive
isoforms occurs because chronic ethanol exposure up-regulates
a particular microRNA (miR9), which is a key factor controlling
the expression of mRNA splice variants of slo1 channels. To
further understand this phenomenon, authors focused on the
slo1 channel mRNA 3′ untranslated region (UTR), which is
known for its regulation of mRNA stability and being a target of
miRNAs. The slo1 channel contains 3 distinct 3′ UTRs regions,
each exhibiting different miRNA-binding patterns. Furthermore,
the 3′ UTR containing a miR9-binding site is “stitched” to mRNA
transcripts encoding slo1 isoforms with a high sensitivity to
ethanol. Thus, it seems that chronic ethanol increases the proba-
bility of interaction between miR9 and its binding site located on
specific 3′ UTRs by upregulating miR9. As a consequence of this
interaction, mRNAs associated with these 3’ UTRs are degraded,
eventually shifting the ratio of ethanol-sensitive/ethanol-tolerant
variants leading to alcohol-resistance. Collectively, these data
point to a central role for miR9 in ethanol action on striatal neu-
rons and strongly suggest that increase in miR9 might contribute
to development of tolerance to protracted ethanol challenge.

c) BK β Subunits
In most mammalian tissues, slo1 channels are associated with
a variety of regulatory proteins, including the so called BK
β subunits (types 1–4, encoded by KCNMB1-4, respectively).
Remarkably, BK β types present a rather selective expression, with
β1 and β4 being primarily abundant in smooth muscle cells and
central neurons, respectively (Orio et al., 2002). These subunits
substantially alter the ethanol effect on BK channels. For instance,
the presence of β1 or β4 subunits may reduce acute ethanol poten-
tiation of hslo1 after co-expression in human embryonic kidney
(HEK) cells via an unknown mechanism that seems to be Ca2+

i -
independent (Feinberg-Zadek and Treistman, 2007). At physi-
ological Ca2+

i , however, the apparent Ca2+
i -sensitivity of slo1

channels is drastically increased by β1 subunits with β4 failing
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to do so (Brenner et al., 2000). After cloning slo1 (cbv1) and β1
subunits from rat cerebrovascular myocytes, Dopico et al., found
that β1 subunits shift the “crossover” for ethanol-induced channel
activation to inhibition toward lower Ca2+

i (≤3 μM) (Bukiya
et al., 2009). In contrast, β4 fails to modify such crossover when
co-expressed with slo1 (Liu et al., 2008). BK β1 tuning of ethanol
action results in ethanol inhibition of recombinant BK channels
at low micromolar Ca2+

i (Bukiya et al., 2009), as found with the
native cerebrovascular channel (Liu et al., 2004). Consistently
with a key role for β1 in blunting slo1 channel activation by
ethanol and favoring drug-induced inhibition, ethanol fails to
activate native cerebral artery BK channels in KCNMB1 knock-
out mice (Bukiya et al., 2009). Whether using native BK channels
in freshly isolated mouse cerebral artery myocytes or recombi-
nant BK proteins cloned from rat cerebral artery myocytes, β1
subunits inhibit BK channels at physiological Ca2+

i provided that
critical levels of cholesterol are kept in the plasmalemma (Bukiya
et al., 2009, 2011) (see Section on Membrane Lipids below).
These studies led to the idea that Ca2+

i , membrane cholesterol
and BK β1 subunits conform a functional triad that determines
the slo1 channel response to brief ethanol exposure (Bukiya et al.,
2011).

When considering rat supraoptic magnocellular neurons,
ethanol causes robust and mild activation of BK channels in
nerve terminals and somata, respectively (Dopico et al., 1999b;
Wynne et al., 2009). Likewise, in rat nucleus accumbens MSN,
ethanol evokes robust and mild channel activation in somata
and dendrites, respectively (Martin et al., 2004). Thus, in both
supraoptic magnocellular and nucleus accumbens MSN neurons,
BK isochannels from two domains within a same neuronal type
display phenotypes consistent with differential expression of
accessory channel β subunits within each domain. Moreover,
single-channel recordings of BK activity in the MSN somatic
region reveal biophysical properties consistent with co-expression
of slo1 and β4 subunits. In contrast, similar electrophysiological
recordings in the dendritic region, unveil a phenotype that is
consistent with slo1 and β1 co-expression. Remarkably, while
MSN somatic BK Po is significantly enhanced by 10–50 mM
ethanol, their dendritic counterparts are ethanol-resistant. These
data underscore the role of BK β1 in blunting ethanol-induced
potentiation of BK channels (Martin et al., 2008). This study doc-
uments that homomeric slo1 and heteromeric hslo1 + β4 show
similar ethanol sensitivity, as communicated by Liu et al. (2008)
with mslo ± β4, yet in contrast to data from Feinberg-Zadek and
Treistman (2007). Homomeric slo1 channels, however, rapidly
develop tolerance to ethanol. In contrast, the ethanol-induced
potentiation of hslo1 +β4 heteromers persists during the whole
exposure to the drug, whether evaluated in heterologous expres-
sion systems or in freshly dissociated nucleus accumbens MSNs
(Martin et al., 2008). Collectively, the studies described in this
section indicate that BK β subunits can drastically influence both
the BK channel’s response to acute ethanol exposure in alcohol-
naïve systems and the channel’s response to ethanol following
protracted drug administration. A summary of molecular entities
and mechanisms participating in the BK channel response to
protracted ethanol exposure is given in Figure 2.

d) Phosphorylation of BK Channels and/or Channel-associated
Proteins
Ethanol-induced slo1 channel activation is also controlled
by phosphorylation/dephosphorylation processes. This
phenomenon was first reported in GH3 cells where poten-
tiation of BK channel activity by 30 mM ethanol was blocked by
protein kinase C (PKC) inhibition and favored by phosphatase
(PP) inhibitors (Jakab et al., 1997). In GH4/C1 and GH4/C1-
STREX cells, BK steady-state activity is increased only in some of
the membrane patches under investigation, this variability being
attributed to post-translational modification of slo1 proteins.
PKC blockers diminish ethanol potentiation of BK channel
activity in GH4/C1 cells but have no effect on GH4/C1-STREX
cells. BK-STREX channel activation by ethanol, however, is
protein kinase A (PKA)-dependent (reviewed in Brodie et al.,
2007).

As mentioned in a previous section, bovine aortic BK chan-
nels (Walters et al., 2000) are inhibited by ethanol. It is highly
likely that part of this drug effect is explained by the abundant
expression of β1 subunits in vascular smooth muscle, as these
subunits are responsible for blunting ethanol-induced potentia-
tion and favoring inhibition of BK channel activity (see above).
However, in contrast to other slo1 channels cloned from mam-
malian tissues, bslo1 (cloned from bovine aorta) is also inhibited
by 10–100 mM ethanol (Dopico, 2003; Liu et al., 2003). This
slo1 isoform distinctly includes a T107 in the S0-S1 intracellular
loop. Incremental CaMKII-mediated phosphorylation of chan-
nel subunits at position 107 in the BK tetramer progressively
increases channel Po and gradually switches the channel’s ethanol
responses from robust activation to inhibition. Thus, CaMKII
phosphorylation of bslo1 T107 works as a “molecular dimmer
switch,” this mechanism being able to override ethanol allosteric
coupling to channel activation by physiological levels of Ca2+

i .
Notably, T107 is a region that is missing in KV channels other
than BK. Moreover, T107 equivalent position in mslo1, hslo1
and cbv1 is occupied by non-phosphorylatable residues, all these
proteins forming homotetramers that are ethanol-sensitive (see
above).

In a very recent study, Velàzquez-Marrero et al. (2014)
examined the influence of protein kinase A (PKA), CaMKII, and
PP on ethanol actions on slo1 ± β4 channels in HEK 293 cells
and nucleus accumbens MSNs. Data show that the presence of
β4 drastically alters the effects of PKA, CaMKII, and PP, echoing
a study in HEK293 cells showing that this auxiliary subunit
alters cAMP-mediated activation of BK channels (Petrik and
Brenner, 2007). Interestingly, slo1 channel’s rapid tolerance
to ethanol is reversed following PP inhibition. In addition,
slo1 + β4 channels develop ethanol tolerance in presence of
CaMKIIN, a specific CaMKII inhibitor (Velàzquez-Marrero
et al., 2014). Thus, while early studies focused on addressing
the modulation of acute ethanol action on BK channel-forming
proteins by kinases and phosphatases in alcohol-naïve sys-
tems, more recent studies are beginning to unveil a complex
interplay between phosphorylation/dephosphorylation pro-
cesses, slo1 proteins and the different types of accessory β

subunits.
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FIGURE 2 | Molecular factors that contribute to BK channel

resistance to ethanol action following protracted (hours-long)

alcohol exposure. BK channel α isoforms and β4 subunits, which

sustain ethanol-induced channel activation, are shown in green. BK
channel α isoforms and mechanisms leading to ethanol “tolerance” are
shown in orange.

e) Membrane Lipids
Several studies documented a critical role for membrane lipids in
tuning ethanol’s final effect on BK Po. A consistent finding is a
role for lipid “effective shape,” independently of lipid head net
charge: for instance, ethanol-induced activation of hslo1 chan-
nels incorporated into planar lipid bilayers is favored by type
I lipids, that is, those with a polar head cross sectional area
larger than the tail area (e.g., phosphatidylserine), which intro-
duce “positive monolayer curvature.” Conversely such ethanol
action is blunted by type II lipids, that is, those with a polar
head cross sectional area smaller than the hydrophobic tails/rings
(e.g., phosphatidyglycerol, cholesterol) (Crowley et al., 2005).
Considering that ethanol can be likened to a type I molecule,
authors speculated that the reduced modulation of ethanol action
by cholesterol in a POPE bilayer was due to a reduced action of a
type II lipid (cholesterol) in a type II lipid environment (POPE).
Cholesterol antagonism of slo1 channel activation by ethanol,
however, has been attributed to a variety of factors. For exam-
ple, cholesterol insertion in a bilayer favors liquid-order phase
formation, which might facilitate ethanol partition in the bilayer
and access to the channel target (discussed in Crowley et al.,
2003). However, cholesterol is likely to modify ethanol action on
dwell-times distribution and thus Po. Two non-mutually exclu-
sive explanations for this antagonism on Po include opposite
modification of physical bilayer properties by each modulator
and direct protein-ligand interactions between modulator and
the slo1 protein (reviewed in Dopico et al., 2012). Heteromeric
BK channels composed of pore-forming cbv1 and β1 subunits
cloned from rat cerebral artery myocytes are resistant to 50 mM
ethanol when evaluated in cholesterol-free bilayers. Inclusion of
23 mol% cholesterol into the lipid mixture results in ethanol-
induced BK channel inhibition (Bukiya et al., 2011). Although
the molecular underpinnings of ethanol-cholesterol interactions

in β1 subunit-containing BK channels remain unknown, there
is a common theme from studies in artificial bilayers: choles-
terol presence shifts the ethanol-exposed system toward lower
Po, whether turning refractoriness into channel inhibition in
the case of β1 subunit-containing BK channels or by dimin-
ishing ethanol-induced activation of homomeric slo1 channels.
Remarkably, ethanol-cholesterol antagonism on slo1 channels
could not be observed when cholesterol was substituted by ent-
cholesterol, that is, its “mirror image” enantiomer (Yuan et al.,
2011), suggesting that cholesterol tuning of the ethanol effect
involves specific cholesterol-protein interactions. Indeed, both
ethanol-recognition (see above) and cholesterol-recognition sites
have been mapped to the slo1 CTD. The latter seem to include
seven CRAC domains, with CRAC4 (the domain adjacent to the
inner membrane leaflet where cholesterol is abundant) playing a
major role (Singh et al., 2012). While cholesterol-recognition and
ethanol-recognition sites on slo1 are nearby, they do not share key
residues that are involved in recognition of each ligand.

Data on cholesterol-ethanol interactions on BK channels
acquire particular relevance because these channels cluster
in cholesterol-enriched rafts, and changes in cholesterol lev-
els and distribution have been reported in cell membranes
following chronic ethanol exposure (discussed in Crowley
et al., 2003; Yuan et al., 2008). Indeed, work with lipid bilayer
provides clear evidence that the membrane lipid composition
influences tolerance to ethanol exposure. Thus, acute ethanol
tolerance is observed in stable (20:1) phosphatidylcholine–
dioleoylphosphatidylethanolamine (PC–DOPE) but not in
sphingomyelin–DOPE bilayers (Yuan et al., 2008). It has been
hypothesized that changes in the channel’s lipid environment
selectively alter ethanol access to sites in the channel protein that
mediate opposing effects (potentiation vs. inhibition) on BK
steady-state activity (Yuan et al., 2008).
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An intriguing finding is that the ethanol response and
adaptation of BK channels is sensitive to the bilayer thickness
(Yuan et al., 2008), which can have particular importance in light
of evidence for the presence of lipid rafts and location of BK
channels within these domains (Weaver et al., 2007). Altering
the thickness of the bilayer by adjusting the acyl chain length
of the component lipids affects the time course of the acute
response to alcohol and can turn ethanol-induced potentiation
into inhibition. Hslo1 channels embedded in a thin bilayer are
strongly potentiated by the drug whereas channels placed in a
thicker bilayer are inhibited (Yuan et al., 2008). Insights into the
mechanisms by which bilayer thickness affects BK function and
pharmacology are becoming more accessible from our growing
understanding of channel protein structure. In BK, the linker
that connects the S6 gate to the RCK domains forms a passive
spring with the gating ring and is involved in Ca2+

i -dependent
activation (Niu et al., 2004), the latter being required for ethanol
potentiation of slo1 channels (Liu et al., 2008, 2013). A simple
mechanical model to explain modulation of channel function by
bilayer thickness has been hypothesized, in which lateral stress
within the lipid bilayer in combination with forces generated by
local hydrophobic mismatch between membrane lipids and the
slo1 protein play a major role (Yuan et al., 2007). In synthesis,
membrane lipid modulation of ethanol action on BK channel
proteins may potentially result from lipid-induced modification
of ethanol partition into the bilayer and access to ethanol’s
channel target site(s), modulation of bilayer physical properties
by ethanol and lipid resulting in modification of channel gating,
binding of ethanol and lipid species to distinct BK channel com-
plex protein sites, which also would lead to gating modification,
or any combination of these possibilities. Recognition sites in
BK proteins have been only identified for a few lipid species
(Dopico and Bukiya, 2014), and their role in ethanol modulation
of channel function remains to be determined.

f) Coupling to Nearby Ion Channels
As mentioned above, BK channels cluster in membrane rafts that
co-segregate signaling molecules and ion channels in addition
to BK themselves. Thus, in most excitable tissues, BK channels
constitute functional complexes, as first reported for BK and
voltage-dependent Ca2+ channels (Marrion and Tavalin, 1998).
Ethanol modulation of other ion channels may impact on the lev-
els of Ca2+

i faced in the vicinity of the BK channels, activating

Ca2+
i representing a key factor for ethanol to modulate BK cur-

rents (see above). In GH4/C1 cells, ethanol increases overall Ca2+
i

in absence of extracellular Ca2+, an ethanol action that may con-
tribute to drug modulation of BK channels (Jakab et al., 2006).
Cross-talking between BK channels and nearby ion channels
has been well studied in cerebrovascular smooth muscle where
BK channel activity negatively feeds back on contraction driven
by voltage-dependent Ca2+ influx. Contraction is also favored
by IP3-sensitive, internal Ca2+-release channels that generate
“Ca2+-waves.” In contrast, Ca2+-release via ryanodine-sensitive
receptors (RyR) generates localized, “Ca2+-sparks,” which are
located in close vicinity of and activate the BK channel, favoring
vascular smooth muscle dilation (Jaggar et al., 1998; Narayanan
et al., 2012). In cerebral artery smooth muscle cells, 50 mM

ethanol fails to significantly modify Ca2+-waves and voltage-
dependent Ca2+ currents. In sharp contrast, 50 mM blunts Ca2+
spark frequency and amplitude, a major mechanism thought
to contribute to ethanol inhibition of BK currents, this ethanol
action being responsible for cerebrovascular constriction (Liu
et al., 2004). A recent study documents that both Ca2+ sparks
and recombinant RyR2 (the type prevalent in rat cerebral artery
myocytes; Vaithianathan et al., 2010) are inhibited by ethanol with
an IC50 ∼ 10 mM (Ye et al., 2014).

Conversely, ethanol modulation of BK currents may alter func-
tion of nearby ion channel proteins. In neurons, BK activation
could also alter the refractory period of nearby voltage-dependent
channels, leading to an actual increase in neuronal excitability
(Warbington et al., 1996; Van Goor et al., 2001). This mech-
anism has been advanced to explain slo-mediated tolerance to
the sedative/hypnotic effect of alcohol in drosophila (Ghezzi and
Atkinson, 2011). Studies of ethanol action on the fly have been
comprehensively reviewed in this volume by Bettinger and Davies
(2014). In synthesis, ethanol actions on BK currents are usually
a composite that results from drug action on BK channel com-
plex themselves and on other ion channel proteins that modulate
BK channel activity, making it extremely difficult to extrapolate
ethanol effects on BK channels reported in specific cells or cell
domains to another.

CONCLUDING REMARKS AND FUTURE CHALLENGES
Data summarized and discussed in this review make evident
that a multiplicity of molecular target and mechanisms condi-
tions the final response of BK currents to acute ethanol exposure
in alcohol-naïve systems, with current potentiation, refractori-
ness and inhibition all being reported, including within different
domains of a given neuronal type. In addition, functional associ-
ation between BK channels with other ion channels within a cell
domain may determine that a given ethanol action on BK chan-
nels results in opposite effects. Ethanol activation of BK channels
clearly reduces excitability in nucleus accumbens MSN, yet such
drug action may actually increase excitability in Drosophila neu-
rons as the refractory period of other voltage-gated conductances
may be affected. Along the same lines, BK current potentiation
and voltage-gated Ca2+-channel inhibition contribute to decrease
neuropeptide release from neurohypophyseal axon terminals, yet
BK channel activation in growth-hormone release cells cannot
overcome drug action on intracellular channels and signaling,
resulting in increased hormone release by alcohol. Thus, ethanol
actions on BK channels in one system cannot be simply extrapo-
lated to another. Molecular multiplicity leads to different ethanol
responses even within different domains within a given neuronal
type, as reported for supraoptic neurons and nucleus accumbens
MSN. On a practical note, identification of the molecular enti-
ties and mechanisms that determine ethanol final effect on BK
currents is critical for any therapeutic intervention to prevent or
revert modification of BK channel-regulated physiology by acute
ethanol exposure.

In light of the BK channel’s sensitivity to ethanol intoxicat-
ing concentrations and the channel expression in regions central
to the development of dependence to drugs of abuse (including
ethanol itself), a number of studies have probed BK channel’s role
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in behavioral tolerance. Moreover, several of the key elements that
determine the final ethanol response of BK channels in alcohol-
naïve systems (e.g., slo1 channel isoforms, BK β subunits, mem-
brane lipids) also play a key role in a modified system response
to protracted ethanol exposure. Plastic changes at the molecular,
cellular and neurocircuitry levels very likely result in behavioral
manifestations of ethanol misuse and consumption. Indeed, in a
2-bottle choice drinking paradigm, BK β1 and β4 subunits have
opposite effects on voluntary alcohol intake of dependent rodents,
with the former and the latter respectively accelerating and atten-
uating the escalation (Kreifeldt et al., 2013). Finally, it has been
advanced that presence of enhanced acute behavioral tolerance
to alcohol in humans can serve as a marker for the likelihood
of future development of alcoholism (Schuckit, 1985a,b, 1994;
Heath et al., 1999). Therefore, understanding the adaptations in
neuronal BK currents and the underlying molecular mechanisms
that sustain ethanol tolerance and dependence is of fundamental
significance to gain insights on the bases of alcohol vulnerabil-
ity, and even develop a molecular target identification-designed
therapy for treating alcohol misuse.
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