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The presented chemo-electro-mechanical skeletal muscle model relies on a
continuum-mechanical formulation describing the muscle’s deformation and force
generation on the macroscopic muscle level. Unlike other three-dimensional models, the
description of the activation-induced behavior of the mechanical model is entirely based
on chemo-electro-mechanical principles on the microscopic sarcomere level. Yet, the
multiscale model reproduces key characteristics of skeletal muscles such as experimental
force-length and force-velocity data on the macroscopic whole muscle level. The paper
presents the methodological approaches required to obtain such a multiscale model,
and demonstrates the feasibility of using such a model to analyze differences in the
mechanical behavior of parallel-fibered muscles, in which the muscle fibers either span
the entire length of the fascicles or terminate intrafascicularly. The presented results
reveal that muscles, in which the fibers span the entire length of the fascicles, show
lower peak forces, more dispersed twitches and fusion of twitches at lower stimulation
frequencies. In detail, the model predicted twitch rise times of 38.2 and 17.2 ms for
a 12 cm long muscle, in which the fibers span the entire length of the fascicles and
with twelve fiber compartments in series, respectively. Further, the twelve-compartment
model predicted peak twitch forces that were 19 % higher than in the single-compartment
model. The analysis of sarcomere lengths during fixed-end single twitch contractions at
optimal length predicts rather small sarcomere length changes. The observed lengths
range from 75 to 111% of the optimal sarcomere length, which corresponds to a region
with maximum filament overlap. This result suggests that stability issues resulting from
activation-induced stretches of non-activated sarcomeres are unlikely in muscles with
passive forces appearing at short muscle length.

Keywords: spanning-fibered, series-fibered, sarcomere stretch, sarcomere instability, biophysical cell model,

non-isometric

1. INTRODUCTION
The fascicles in parallel-fibered muscle are aligned with the mus-
cle’s line of action and run almost the entire length of the
muscle (Loeb et al., 1987). The fascicles either consist of long
fibers spanning the entire length of the fascicles (in the follow-
ing termed “spanning-fibered muscle”), or they are composed of
several shorter in-series arranged fiber compartments (in the fol-
lowing termed “series-fibered muscle”) (Richmond et al., 1985;
Heron and Richmond, 1993; Young et al., 2000). The fiber com-
partments in series-fibered muscle can either be separated by
tendinous inscriptions, as, for example, in cat and human semi-
tendinosus muscle, or the muscle fibers are arranged in short
overlapping arrays (Loeb et al., 1987; Paul, 2001; Woodley and
Mercer, 2005).

The advantages and disadvantages of series-fibered and
spanning-fibered muscle arrangements on the force generation
have not yet been systematically analyzed. Experiments provide

only limited information on which effects are due to the fiber
arrangement, and which effects are due to other anatomical or
physiological properties, e. g., the muscle geometry. Mathematical
models instead can be used to investigate the influence of a spe-
cific property on the overall behavior. Previous modeling works
focused on the influences of the muscle geometry and the fiber
direction on the force generation (Zuurbier and Huijing, 1992;
Sánchez et al., 2014). To investigate the effect of different fiber
arrangements, one requires a model that unifies the following
features: (i) The dynamics of the active force generation are
determined at discrete locations (“sarcomeres”) along a muscle
fiber. (ii) The model takes into account the subsequent activa-
tion of adjacent “sarcomeres” through the propagation of action
potentials (APs) along the fibers. This is required since the AP
propagation speed is rather slow, and hence, sarcomere activation
is non-synchronized along a muscle fiber, and the asynchronism
increases with increasing fiber length. (iii) The model accounts
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for the muscle tissue, in which the muscle fibers are embedded,
and which shows resistance to applied loads. The tissue represen-
tation is required due to the fact that isolated muscle fibers or
myofibrils do not behave like fibers within a muscle (Prado et al.,
2005).

There exists no muscle model that can incorporate all of
these requirements. Hill-type muscle models are typically used
to describe whole muscle behavior (Zajac, 1989), although they
have also been used to model single sarcomeres, and, by in-series
arranging multiple Hill-type models, myofibrils and muscle fiber
segments have been modeled (Morgan et al., 1982; Stoecker et al.,
2009; Günther et al., 2012). While these approaches can describe
local changes in sarcomere length, they cannot capture the behav-
ior of a fiber within the three-dimensional (3D) muscle tissue.
This is due to the fact that the passive forces in isolated myofib-
rils and single muscle fibers are mainly attributed to the titin
filament (Horowits, 1992; Denoth et al., 2002), unlike in mus-
cle tissue, where the extracellular matrix contributes additional
passive forces (Prado et al., 2005). Further, in isolated myofib-
rils and single muscle fibers, force transmission can only take
place along their length. In whole muscle, however, force trans-
mission also occurs in lateral direction (Huijing, 1999). For an
adequate representation of fibers within the muscle tissue and
its mechanical implications on the behavior of the whole mus-
cle, a 3D model based on continuum-mechanical principles is
required.

Previous continuum-mechanical skeletal muscle models
(Blemker et al., 2005; Röhrle and Pullan, 2007) include the active
force-length (F-�) and/or the active force-velocity (F-v) relations
on the macroscale, which implies the assumption of an averaged
sarcomere length and an averaged sarcomere shortening veloc-
ity. Therefore, these modeling approaches cannot represent local
changes in sarcomere length and shortening velocity, which are
required for above motivated cases. Furthermore, both the F-�
and the F-v relations should be modeled on the microscale, since
they can be attributed to properties on the sarcomere level. The
length dependence of the active force is due to changes in the over-
lap of the thick and thin filaments within the sarcomeres (Gordon
et al., 1966), while the velocity dependence is attributed to (i) a
lower tension of the cross bridges (XBs) that reattach in a short-
ened state, and (ii) an increased XB-detachment rate (Piazzesi
et al., 2007; Telley and Denoth, 2007).

To overcome the limiting modeling assumption of homoge-
nized sarcomere lengths and shortening velocities, and to analyze
the effects of different fiber arrangements, in this contribution,
the multiscale chemo-electro-mechanical skeletal muscle model
of Heidlauf and Röhrle (2013) is extended to include the F-� and
F-v relations on the microscale.

2. MATERIALS AND METHODS
To model the active F-� and F-v relations on the microscale,
the biophysical half-sarcomere model of Shorten et al. (2007)
is extended to non-isometric conditions. The extended half-
sarcomere model is coupled to (i) bioelectrical field equations
describing the propagation of APs along muscle fibers, and
(ii) a 3D continuum-mechanical description of the muscle tis-
sue (Heidlauf and Röhrle, 2013).

2.1. DETAILED OVERVIEW OF THE MULTISCALE MODEL
Depolarization of the membrane potential of the biophysical half-
sarcomere model located at the innervation zone is induced by
a current injection of short duration. The timing of the cur-
rent injections is given by the stimulation frequency, which is
prescribed in this study (e. g., 50 Hz or 100 Hz). The constant
firing frequency can also be replaced by discrete motor unit dis-
charge times resulting, for example, from the decomposition of
an EMG signal (De Luca and Hostage, 2010) or from a phe-
nomenological (Fuglevand et al., 1993) or biophysical (Heidlauf
and Röhrle, 2013) model of the α motor neurons. Based on the
respective stimulation, the biophysical half-sarcomere model pro-
vides, among many others, two quantities that are essential for the
multiscale framework—the locally generated active stresses and
the changes in membrane potential due to ionic and capacitive
currents. To simulate the propagation of APs, the bioelectrical
field equations are used to describe the diffusion of the mem-
brane potential along the fibers. This results in a bi-directional
coupling between the half-sarcomere model and the bioelectrical
field equations through the membrane potential. The locally-
generated, sarcomere-based active stresses are included in the
formulation of the continuum-mechanical constitutive relation
(relation between local deformation and resulting local stresses).
The continuum-mechanical model predicts the deformation of
the muscle geometry, the internal stress and strain distributions,
and the forces that can be passed to adjacent structures such as
tendon. The local strain is used to determine the new sarcom-
ere length and the sarcomere shortening velocity, which are in
turn inputs to the biophysical half-sarcomere model. Hence at
a point in space, the half-sarcomere model and the continuum-
mechanical model are bi-directionally coupled. Furthermore,
since deformation changes geometrical properties of the fibres,
the AP propagation along a muscle fiber is solved on the deformed
geometry.

Due to the complexity of the model, Table 1 lists the model’s
variables including their dependencies, while Table 2 summarizes
the parameters of the model.

2.2. THE CONTINUUM-MECHANICAL MUSCLE MODEL
Since the physiological working range of many muscles involves
changes in length of 50 % and more (Burkholder and Lieber,
2001), a continuum-mechanical analysis must be based on the
finite elasticity theory (Holzapfel, 2000; Bonet and Wood, 2008).
In continuum mechanics, the placement function χ assigns a
material point with position X in the reference (undeformed)
configuration at time t0 to a position in the actual (deformed)
configuration x at time t, i. e., x = χ(X, t). The material deforma-
tion gradient tensor F is defined as the derivative of the placement

function with respect to the material coordinates, i. e., F = ∂χ
∂X =

∂x
∂X . Local deformations and strains are conveniently described

by the right Cauchy-Green deformation tensor C = FT F and the
Green’s strain tensor E = 1

2 (C − I), respectively, where I is the
second-order identity tensor.

Considering the stress equilibrium in the actual configuration
and neglecting inertia and body forces, the momentum bal-
ance equation reduces to div T = 0, where T denotes the Cauchy
stress tensor. To characterize the material behavior, a constitutive
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Table 1 | Model variables.

Symbol Description

t time

X position of a material point in the reference
configuration

χ (X, t) placement function

x(X, t) position of the material point in the actual
configuration

F(X, t) material deformation gradient tensor

C(X, t) right Cauchy-Green deformation tensor

E(X, t) Green’s strain tensor

T(x, a0, fs) Cauchy stress tensor

S(C, a0, fs) second Piola-Kirchhoff stress tensor

a0(X) referential unit vector in fiber direction

I1(C) first principal invariant of C

I4(C, a0) fourth (mixed) invariant of C

λf (C, a0) fiber stretch

�S (λf ) sarcomere length

�̇S (λ̇f ) sarcomere contraction velocity

B(fs, �̇S ) sarcomere-based active stress

γ (fs, �S , �̇S ) normalized sarcomere-based active stress

�(�S ) active force-length relation

x1(fs, �̇S , t) average distortion of XBs in the A1 state

x2(fs, �̇S , t) average distortion of XBs in the A2 state

[D2](fs, t) concentration of XBs in the detached state

[A1](fs, t) concentration of XBs in the attached pre-power
stroke state

[A2](fs, t) concentration of XBs in the attached
post-power stroke state

f0([A1], [A2], x1, x2) XB-attachment rate

g0(x2) XB-detachment rate (from A2)

Vm(fs, t) membrane voltage

y(fs, t) state variables of the biophysical
half-sarcomere model

Iion(t, Vm, y) ionic currents crossing the cell membrane

equation is required that relates the local deformations or strains
to the resulting local stresses. This is conveniently done in the ref-
erence configuration. The Cauchy stress tensor of the actual con-
figuration is related to the second Piola-Kirchhoff stress tensor,
S, of the reference configuration via a scaled covariant push for-
ward operation: T = (det F)−1 F S FT . Muscle tissue can actively
generate tension and in the passive state, it exhibits transversal
isotropic material behavior. This is reflected in S, which consists
of an isotropic part based on the Mooney-Rivlin material, Siso, a
term appealing to stretches in the fiber direction, Sani (cf. Markert
et al., 2005), which together with Siso characterizes the transversal
isotropic passive behavior of muscle tissue, and a term repre-
senting the muscle’s ability to actively generate tension, Sact .
The form of S is derived in Heidlauf and Röhrle (2013), and is
given by

S = Siso + Sani + Sact − p C−1 ,

Siso = 2 c10I + 2 c01
(
I1 I − C

)
,

Table 2 | Model parameters.

Symbol Description Value (slow/fast) References

c10 1st Mooney-Rivlin parameter
(fitted)

6.352e−10 kPa [A]

c01 2nd Mooney-Rivlin parameter
(fitted)

3.627 kPa [A]

b1 1st anisotropy parameter
(fitted)

2.756e−5 kPa [B]

d1 2nd anisotropy parameter
(fitted)

43.373 [–] [B]

Pmax max. isometric stress 73.0 kPa [B]

fs stimulation frequency single twitch, 50 Hz,
100 Hz

[C]

x0 average distortion induced
through the power stroke

0.05 μm [C]

f ′ XB-detachment rate (from A1) 5/15 ms−1 [C]

h0 power stroke forward rate 0.08/0.24 ms−1 [C]

h′ power stroke backward rate 0.06/0.18 ms−1 [C]

f̄ XB-attachment rate of an
isometric contraction

0.5/1.5 ms−1 [C]

ḡ XB-detachment rate if no
neighbor is in the A2 state

0.04/0.12 ms−1 [C]

Ttot number of possible XB
connections at �S

140 μM [C]

ν influence of cooperative
effects (fitted)

3.0/3.4 [–] [D]

ϑ level of distortion
dependence (fitted)

1700/1000 [–] [D]

�0
S resting sarcomere length 2.0 μm [E]

�
opt
S optimal sarcomere length 2.4 μm [F ]

Cm membrane capacitance 0.58/1.0 μF/cm2 [C]

Am surface-area-to-volume ratio 500 cm−1 [G]

σ conductivity 3.828 mS/cm [G]

References, [A] – Zheng et al. (1999); [B] – Hawkins and Bey (1994); [C] – Shorten

et al. (2007); [D] – Ranatunga (1984); [E] – Edman (1979); [F] – Burkholder

and Lieber (2001); [G] – Röhrle et al. (2012). The table also indicates which

parameters were obtained through fitting.

Sani = b1
(
λ

d1−2
f − λ−2

f

)
a0 ⊗ a0 , (1)

Sact = λ−1
f Pact a0 ⊗ a0 ,

where p is the hydrostatic pressure, I1 = tr C is the first prin-
cipal invariant of C, and a0 is a unit vector in fiber direction
defined in the reference configuration. Further, λf = √

I4 denotes
the fiber stretch with I4 = a0 · C a0 being the fourth (mixed)
invariant of C.

While the fiber stretch is a (spatially varying) macroscopic
quantity, it can be related to the corresponding quantity on the
sarcomere level, i. e., the sarcomere length, �S, by λf = �S/�

0
S with

�0
S = 2.0 μm being the sarcomere resting length. Finally, Pact rep-

resents a scalar-valued active nominal stress, which is the product
of the maximum active stress at optimal fiber length and under
isometric conditions, Pmax, and the normalized active stress γ̄ :

Pact = Pmax γ̄ (fs, λf , λ̇f ) . (2)
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Therein, γ̄ depends on the stimulation frequency fs, the fiber
length (represented through the fiber stretch λf ), and the con-
traction velocity, λ̇f . Note that previous models (Johansson et al.,
2000; Röhrle et al., 2008; Heidlauf and Röhrle, 2013) employ the
F-� and/or F-v relations on the macroscopic continuum level in
the form Pact = Pmaxf1(α) f2(λf ) f3(λ̇f ) with α ∈ [0, 1] being an
internal activation parameter. In contrast to these models, the
present work provides novel contributions to the field of multi-
scale skeletal muscle modeling by determining γ̄ as part of the
biophysical model on the microscale (see next section).

The macroscopic material parameters c10 and c01 in
Equation (2) have been fitted in a least-squares sense to the uni-
axial compression experiments of Zheng et al. (1999). Further, b1

and d1 have been determined similarly from the passive exper-
imental data of Hawkins and Bey (1994), from which also the
value of Pmax in Equation (2) is adopted. The parameters are
summarized in Table 2.

2.3. THE BIOPHYSICAL HALF-SARCOMERE MODEL
The basis for modeling the subcellular level in this contribu-
tion is the model of Shorten et al. (2007), which describes the
complex, nonlinear, biophysical processes leading from electri-
cal excitation to contraction and force generation. To model the
excitation-contraction coupling, Shorten et al. (2007) combined
several component models describing (a) membrane electrophys-
iology, (b) calcium release from the sarcoplasmic reticulum and
(c) calcium dynamics, (d) cross-bridge (XB) dynamics, and (e)
fatigue. The model of Shorten et al. (2007) can be freely accessed
and downloaded from the CellML website (http://www.cellml.
org/).

The modifications of this contribution to the model of Shorten
et al. (2007) are restricted to the eight-state XB-dynamics compo-
nent model (d), which is based on the four-state XB-dynamics
model of Razumova et al. (1999, 2000) and Campbell et al.
(2001a,b). A schematic representation of the eight-state model
is shown in Figure 1. In six of the eight states, the XBs are
in a detached state with zero, one or two Ca2+ ions bound
to troponin (denoted by indices 0, 1, and 2, respectively) and
with tropomyosin in either a blocking (B) or non-blocking (D)

FIGURE 1 | The cross-bridge dynamics model. The reader is referred to
the text for explanations.

position. Only in the case when two Ca2+ ions are bound to tro-
ponin and the tropomyosin block is in a non-blocking position
(the D2 state), the detached XB can move to a state where the
myosin head is attached. Two attached states are distinguished—
the pre-power stroke state A1 and the post-power stroke state
A2. The transition from the A1 to the A2 state represents the
power stroke, i. e., the force producing step, for which the for-
ward and backward reaction rates, h0 and h′, respectively, apply.
The forward and backward reaction rates changing the D2 to
the A1 state and vice versa (XB attachment and detachment) are
denoted by f0 and f ′, respectively. Finally, the detachment of XBs
from state A2 to state D2 is described by reaction rate g0, see
Figure 1. Shorten et al. (2007) provide a slow-twitch (type-I) and
a fast-twitch (type-II) parametrization of the model to simulate
isometric contractions of mouse soleus and EDL muscle, respec-
tively. These parameter sets are adopted in the present work, i. e.,
no reparametrization is required.

In the present contribution, the model of Shorten et al. (2007)
is extended to non-isometric conditions. This is done, first, by
incorporating changes in the myofilament overlap, and further,
by adding a distortion dependence and cooperative effects to
the XB dynamics component model. These extensions are based
on the works of Razumova et al. (1999) and Campbell et al.
(2001b).

The force that can be exerted by a sarcomere depends on the
number of XB connections between the actin and myosin fila-
ments (Huxley, 1957). The number of possible XB connections
depends on the filament overlap, and hence, on the sarcomere
length (Gordon et al., 1966). Based on analytical considerations
of the filament overlap, Campbell et al. (2001b) proposed a piece-
wise linear relation between the sarcomere half-length and the
number of possible XB connections. The relation is depicted in
Figure 2 (green dashed line) assuming a direct relation between
the number of possible XB connections and the isometric active
force at full activation. Experiments on single sarcomeres, how-
ever, suggest a steeper decline of the force on the ascending limb of
the active force-length curve at sarcomere lengths below 1.7 μm,

FIGURE 2 | The relation between the normalized maximum isometric

active stress and the sarcomere length. Plotted is the experimentally
determined force-sarcomere length relation for cat skeletal muscle (Rassier
et al., 1999) (red solid line), the piecewise linear relation of Campbell et al.
(2001b) (dashed green line), and the fourth-order polynomial of this work
(dot-dashed blue line).
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and no active force production at lengths below 1.27 μm (Gordon
et al., 1966). This is attributed to an interaction of the myosin
filament with the Z-disks at low sarcomere lengths. The red solid
line in Figure 2 shows the experimentally determined relation
between the sarcomere length and the isometric active stress at
full activation. In the present work, a fourth-order polynomial is
used, cf. Figure 2 (dot-dashed blue line):

�(�S) = max [−1.2 �S
4 + 11.5 �S

3 − 41.7 �S
2 + 67.6 �S

− 40.3; 0] , (3)

where � is the normalized isometric active force at full activa-
tion, and �S denotes the sarcomere length. The polynomial in (3)
is symmetric with respect to the optimal sarcomere length �

opt
S =

2.4 μm (Burkholder and Lieber, 2001), and can be seen as an
approximation to the experimentally determined force-sarcomere
length relation, where the largest deviations occur at very long
sarcomere lengths. In this contribution, the behavior at very long
sarcomere lengths, however, is dominated by the passive stiffness
of the muscle tissue, and therefore, the implications of the devia-
tions will be limited. Note that the fourth-order polynomial in (3)
is a generic description of a muscle’s F-� behavior (cf. Zuurbier
et al., 1995). This approximation can be easily replaced by a
different F-� curve that was fitted to experimental data of a spe-
cific muscle. Furthermore, the optimal sarcomere length, which is
invariant for all presented simulations, can be changed to simulate
a specific muscle.

To account for length changes during contraction, average
distortions (or elastic deformations) of XBs in a sarcomere are
introduced into the XB-dynamics component model according
to Campbell et al. (2001b). The average distortion induced by the
power stroke during an isometric contraction of a half-sarcomere
is denoted by x0. The average elastic deformations among XBs
in the pre-power stroke state A1 and post-power stroke state A2

induced through filament sliding during non-isometric contrac-
tions are denoted by x1 and x2, respectively. Note that the term
average refers in this context to the spatial average over all XBs
of that sarcomere in the respective state. Figure 3 illustrates the
different distortions. While x0 is assumed to be constant, x1 and
x2 account for distortions entering and leaving due to XB cycling
and for distortions imposed by shearing between thick and thin
filaments. From the distortional balances, Campbell et al. (2001b)
derived the following ODEs, which are included in the present
model:

∂x1

∂t
= −

(
f0

[D2]
[A1] + h′ [A2]

[A1]
)

x1 + h′ [A2]
[A1] (x2 − x0) + �̇S

2
,

∂x2

∂t
= −h0

[A1]
[A2] (x2 − (x1 + x0)) + �̇S

2
.

(4)

Therein, �̇S denotes the sarcomere contraction velocity. Further,
quantities in square brackets denote concentrations of XBs in the
respective state. The differential equations describing the concen-
trations of XBs in the different states are part of the biophysical
half-sarcomere model of Shorten et al. (2007).

FIGURE 3 | (A) The average distortion x0 induced through the power stroke
in an isometric contraction. In the pre-power stroke state A1 the
cross-bridge is attached to the myosin binding site (small filled circle) and
does not experience an elastic distortion. The power stroke converts the A1

to the A2 state by transducing chemically stored energy into mechanical
energy, which is stored in the elastically distorted cross-bridges. (B)

Average distortion x1 induced through filament sliding during non-isometric
contractions on the cross-bridges in the A1 state. (C) Average distortion x2

induced through filament sliding during non-isometric contractions on the
cross-bridges in the A2 state.

The force exerted by a half-sarcomere is proportional to the
product of the stiffness of all parallel XBs and their average
distortions (Razumova et al., 1999), i. e.,

B(fs, �̇S) = [A1] x1 + [A2] x2 . (5)

The normalized sarcomere-based active stress γ is defined to be
the product of the force-length relation and the ratio between
B and the value of B at maximum stimulation f max

s and under
isometric conditions �̇S = 0, corrected for the value of B at zero
activation:

γ = �(�S)
B(fs, �̇S) − B(0, 0)

B(f max
s , 0) − B(0, 0)

. (6)

Before, however, including γ in the macroscopic continuum-
mechanical constitutive equation (2), the normalized sarcomere-
based active stress values are homogenized, cf. Section 2.5 and
Heidlauf and Röhrle (2013) for details.

To reproduce the hyperbolic F-v relation (Hill, 1938),
Razumova et al. (1999) proposed two modifications to their
four-state XB-dynamics model: (i) The forward rate of XB attach-
ment f0 contains now nearest-neighbor cooperative effects, i. e.,
increased XB-attachment probabilities due to neighboring XBs
in the force-bearing state. (ii) A distortion dependence is now
incorporated in the XB-detachment rate g0 accounting for an
increasing probability of XB detachment with an increasing XB
distortion:

f0 = f̄

(
1 + [A1]

Ttot

[
exp

(
x1

x0
(ν − 1)

)
− 1

]
(7)

+ [A2]
Ttot

[
exp

(
x2

x0
(ν − 1)

)
− 1

])
,

g0 = ḡ exp
(
ϑ(x2 − x0)2) , (8)
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where ḡ is the XB-detachment rate of an isometric contraction,
ϑ controls the distortion dependence, f̄ denotes the forward rate
of XB attachment if no neighbor is in the force-bearing state, and
ν controls the influence of the cooperative effects. Further, Ttot is
the total number of possible XB connections at optimal filament
overlap. Equations (7) and (8) are added to the XB-dynamics
component model within the model of Shorten et al. (2007). Note
that in the method of Campbell et al. (2001b), Ttot depends on the
sarcomere length. This approach, however, bears some problems,
for example, in the case when sarcomeres are stretched to beyond
myofilament overlap (Ttot → 0). Therefore, the present approach
includes the F-� relation in Equation (6) in a form that is inspired
by Hill-type models (Siebert et al., 2008). However, in contrast to
Hill-type models that include the F-� relation at the macroscopic
whole muscle level, the present approach contains this relation at
the microscopic sarcomere level.

2.4. ACTION POTENTIAL PROPAGATION
Previous electro-mechanical muscle models (Fernandez et al.,
2005; Böl et al., 2011) describe the AP propagation as a contin-
uous 3D wave front moving through the entire muscle domain.
However, the macroscopic electrical conductivity of skeletal mus-
cle tissue perpendicular to the fiber direction is up to one
magnitude lower than the conductivity along the fiber direc-
tion (Epstein and Foster, 1983; Gielen et al., 1984), and electrical
stimulation from one fiber to adjacent ones is not observed.
Therefore, the propagation of an AP along a skeletal muscle fiber
is modeled as a one-dimensional (1D) problem (cf. Röhrle et al.,
2008; Heidlauf and Röhrle, 2013). The AP propagation can be
described by the monodomain equation, which is in 1D identi-
cal to the cable equation, see e. g., Hodgkin and Huxley (1952);
Pullan et al. (2005):

∂

∂s

(
σ

∂Vm

∂s

) = Am
(
Cm

∂Vm

∂t
+ Iion

)
. (9)

Therein, s is the spatial variable describing the position along the
path of the fiber, σ denotes the conductivity, Vm represents the
membrane voltage, Am reflects the surface-area-to-volume ratio
of the cell, and Cm is the capacitance of the cell membrane per
unit area. The monodomain equation links through the ionic
currents crossing the cell membrane, Iion, to the half-sarcomere
model described in the previous section, i. e., Iion = Iion(t, Vm, y)
with y denoting the state variables of the half-sarcomere model.
The term on the left-hand side of Equation (9) describes the dif-
fusion of membrane potential along a muscle fiber. For details,
the reader is referred to Heidlauf and Röhrle (2013).

2.5. COMPUTATIONAL FRAMEWORK
Due to interactions between the half-sarcomere model, the
AP propagation model, and the continuum-mechanical model,
a fully coupled system needs to be solved in an integrated
fashion. In this contribution, a staggered solution scheme is
employed (Heidlauf and Röhrle, 2013), which allows usage of
different solution methods and different time step sizes for the
solution of the individual subsystems. Moreover, due to compu-
tational efficiency, an approach that uses different finite element

discretizations for the 1D bioelectrical and the 3D continuum-
mechanical subsystems is adopted. Since different meshes are
used for different subsystems, transfer operations for sharing
variables between different meshes are required. For example,
the normalized active stress γ determined in the half-sarcomere
models, cf. Equation (6), needs to be homogenized to the coarser
3D continuum-mechanical mesh (� : γ → γ̄ ) to be included
in the evaluation of the stress tensor in Equations (1) and (2).
Without loss of generality, a geometrically based homogeniza-
tion is used in this contribution. The convergence behavior of this
approach is investigated in Röhrle et al. (2008), and shows good
results. Further details on the computational framework can be
found in Heidlauf and Röhrle (2013) and Bradley et al. (2011).

3. RESULTS
Before comparing series-fibered and spanning-fibered muscles,
the behavior of the extended half-sarcomere model and the new
fully coupled chemo-electro-mechanical skeletal muscle model is
investigated.

3.1. HALF-SARCOMERE MODEL
To show that the extended half-sarcomere model (Shorten et al.,
2007) exhibits a F-v relation as muscle fibers do, the sensitiv-
ity of the model to the newly introduced parameters ν and ϑ is
analyzed first. To do so, experiments are carried out using a sin-
gle extended half-sarcomere model at a stimulation frequency of
fs = 100 Hz. For different prescribed constant velocities, the cor-
responding normalized active stresses γ are computed at optimal
sarcomere length.

The model predicts a linear F-v relation for constant rate
coefficients f0 and g0 (ϑ = 0, ν = 1), cf. Figure 4. When consid-
ering nearest-neighbor cooperative effects in f0 (ϑ = 0, ν = 3.4),
the model is able to predict a hyperbolic relation for shortening
contractions, but unreasonable high forces occur for lengthen-
ing contractions. The distortion dependence in g0 (ν = 3.4, ϑ =

FIGURE 4 | F -v relation of an isolated half-sarcomere model. Shown
is the relation for constant rate coefficients (red dash-dotted line), for
variability in f0 only (blue dotted line), and for additional variability in g0

(blue dashed line and turquoise solid line). To depict the Hill relation in its
typical form, the x-axis is inverted to show shortening contractions on
the right.
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1000, 2000) mainly influences lengthening contractions. Note
that Figure 4 only depicts results for the type-II parametriza-
tion (Shorten et al., 2007). Similar results are obtained for type-I
fibers as demonstrated in Section 3.2.

Further, three shortening contractions are simulated to
demonstrate the influence of the F-� and the F-v relations on the
active stress profiles. To this end, a single half-sarcomere model
is stimulated at a frequency of 100 Hz. After 500 ms of isometric
contraction at optimal sarcomere length, the sarcomere short-
ens at a constant prescribed velocity. Three different velocities are
considered: 5, 10, and 15 % of the maximum shortening velocity
vmax.

Figure 5 shows the evolution of the normalized sarcomere-
based active stresses (top) and the sarcomere length (�S, bottom).
The profiles show, first, an increase in the active stress due to the
stimulation, which is identical for all three traces. After 500 ms,
when the active stress approximately saturates and the shorten-
ing starts, the model shows an instantaneous stress drop which
is due to the shortening velocity. As expected, the magnitude of
the stress drop increases with the shortening velocity, cf. Figure 4.
The model further predicts a decrease in the stress, which is due
to the F-� relation, i. e., as the sarcomere shortens, it moves along
the ascending limb of the F-� relation (Figure 2) from the optimal
length toward smaller sarcomere lengths.

3.2. THE CHEMO-ELECTRO-MECHANICAL MODEL COMPARED TO
EXPERIMENTAL DATA

The chemo-electro-mechanical model is first compared to exper-
imental F-� data to demonstrate that the multiscale muscle model

FIGURE 5 | Evolution of the normalized sarcomere-based active stress

of an isolated half-sarcomere model for three different shortening

velocities at a stimulation frequency of 100 Hz (top). The shortening
contraction is preceded by an isometric contraction at optimal length of
500 ms duration. Additionally, the actual sarcomere length (�S ) is shown for
each of the stress profiles (bottom).

that includes the entire active behavior on the microscale can
reproduce typical mechanical behavior of whole muscle on the
macroscale. For the comparison, the experimental F-� data of
Hawkins and Bey (1994) are used.

Hawkins and Bey (1994) analyzed the rat tibialis anterior (TA)
muscle, which consists of about 97.5 % type-II fibers (Staron
et al., 1999). Therefore, in the model all fibers are assumed to be of
type II. The numerical specimen used for the comparison is cho-
sen as a rectangular cuboid with dimensions 4 cm × 2 cm × 2 cm.
The fibers are aligned with the long edge of the cuboid. Starting
from the stress-free reference configuration, the muscle specimen
is passively stretched along the fiber direction to the desired mus-
cle length. After passively stretching, displacement in the direction
of the fibers is constrained at both ends of the specimen in order
to simulate fixed-end contractions. Moreover, displacement at
two further non-parallel faces of the specimen is constrained
in the direction perpendicular to the respective face (symmetry
boundary conditions). Note that the lengths of the individual
half-sarcomeres are not constrained but only the total length of
the muscle. A stimulation frequency of fs = 100 Hz is applied to
the central half-sarcomere model of each muscle fiber model. The
simulation output is the nominal stress, which is defined as the
ratio of the resulting reaction forces in fiber direction and the ini-
tial cross-sectional area of the specimen. The peak nominal stress
of the chemo-electro-mechanical model induced through the pas-
sive stretch and the applied stimulation provides the value of the
total model. The determined passive and total nominal stresses
at different muscle stretches are shown in Figure 6, together with
the experimental stress-stretch data of Hawkins and Bey (1994).
Note that Hawkins and Bey (1994) used an unrealistic high
stimulation frequency of 250 Hz. The biophysical half-sarcomere
model can not account for such high frequencies. However,
in the model force saturation occurs at a stimulation fre-
quency of about 100 Hz. For this stimulation frequency complete
fusion of twitches occurs, which was also reported for the
experiment.

After establishing realistic mechanical behavior under isomet-
ric conditions, the coupled chemo-electro-mechanical model is
now tested for its capacity to reproduce experimental F-v data of

FIGURE 6 | Muscle stress-stretch relation. Shown are the passive and
total stresses computed using the coupled chemo-electro-mechanical
model, and the experimental data of rat TA muscle (Hawkins and Bey,
1994). Simulations are carried out at stretches varying from 0.8 to 1.4 in
steps of size 0.1, and at λf = 0.75, 0.76, 1.35, and 1.375.
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whole muscle. The hyperbolic F-v relation of Hill (1938) can be
expressed by

v

vmax
= 1 − F/Fiso

1 + F/(κFiso)
, (10)

where κ is a dimensionless parameter, Fiso denotes the maximum
isometric force, and vmax is the maximum shortening velocity at
F = 0.

In the literature, κ ranges from 0.15 to 0.25 (McMahon, 1984).
For example, Ranatunga (1984) reports a mean value of κ = 0.24
for rat soleus muscle. Rat soleus muscle consists mainly of type-I
fibers (Soukup et al., 2002), and hence, all half-sarcomere mod-
els in the chemo-electro-mechanical model use now the type-I
parametrization of Shorten et al. (2007). The parameters quan-
tifying the cooperative effects and the distortion dependence are
set to ν = 3.0 and ϑ = 1700, respectively.

Within the numerical experiments, the model specimen is
first passively stretched to the optimal length. Then, the length
of the specimen is kept fixed, and all fibers are fully activated
(fs = 100 Hz). For a prescribed velocity, the corresponding reac-
tion force is computed. The resulting F-v data are depicted in
Figure 7, where the force values have been normalized to the value
at isometric conditions and the velocity has been normalized to
the maximum shortening velocity.

Fitting the parameter κ in Equation (10) to the simulation
results obtained for shortening contractions in a least-squares
sense yields κ = 0.241, cf. Figure 7. For lengthening contractions,
the chemo-electro-mechanical model predicts a maximum force
of 1.77 times the isometric force, cf. Figure 7.

3.3. COMPARTMENTALIZATION
After verifying that the multiscale model is capable of pre-
dicting experimental F-� and F-v data of whole muscle, the
chemo-electro-mechanical skeletal muscle model is used to com-
pare series-fibered and spanning-fibered muscles. The aim of this
comparison is to reveal differences in the mechanical behavior of
the different muscle fiber arrangements.

FIGURE 7 | F -v data computed using the multiscale chemo-electro-

mechanical model. Shown are the F -v data of the model (black crosses),
the corresponding fit of Hill’s hyperbolic relation (κ = 0.241, blue line), and
the region of typical muscle F -v curves (0.15 ≤ κ ≤ 0.25, light-blue shaded
area).

In all of the following numerical experiments, a rectangular
cuboid with dimensions 12 cm × 2 cm × 2 cm is considered. The
fascicle direction is assumed to be aligned with the cuboid’s long
edge. To mimic series-fibered skeletal muscle arrangements, the
long side of the muscle specimen is subdivided into compart-
ments of equal length. The fibers in adjacent compartments are
aligned end-to-end, and do not interdigitate with each other. As
in real muscle, electrical activation from one fiber to adjacent ones
does not occur, neither between adjacent compartments, nor in
lateral direction within a compartment. The neuromuscular junc-
tion of each fiber is assumed to be located in the middle of the
respective fiber. All half-sarcomeres are assumed to be of type II.
The mechanical behavior of the chemo-electro-mechanical mus-
cle model is investigated for simultaneously stimulating all fibers.
Before stimulating the muscle specimen, it is passively stretched
to the optimal length (λ

opt
f = 1.2, �

opt
S = 2.4 μm).

First, fixed-end contractions and shortening contractions at
10 % of the maximum shortening velocity at fs = 50 and 100 Hz
are considered. A muscle model with fibers that span the entire
length of the fascicles (referred to as SPA) and a model consist-
ing of four fiber compartments in series (referred to as SER·4)
are compared to each other. The resulting nominal stresses are
depicted in Figure 8. Fixed-end contractions predict differences
of almost up to 80 % between the different muscle fiber arrange-
ments. The largest differences occur at the beginning of the
contraction, i. e., during the first twitch, but decline rapidly to
approximately 10 % and less. Moreover, the results show that the
initial differences are less pronounced in shortening contractions
independent of the stimulation frequency. At fs = 50 Hz, twitches
tend to be more fused for model SPA than for model SER·4.
This applies to both fixed-end and shortening contractions.
Completely fused twitches are observed for both models for fs =
100 Hz.

Independent of the stimulation frequency, model SER·4 shows
higher peak forces than model SPA in fixed-end and shortening
contractions. At fs = 100 Hz, the maximum force of model SER·4
is 3.29 % and 6.61 % higher than the maximum force of model
SPA, in fixed-end and shortening contractions, respectively. The
observed decrease after reaching the maximal value in all simula-
tions with fs = 100 Hz is due to fatigue, which is contained in the
half-sarcomere model of Shorten et al. (2007).

The results reveal that the largest differences between
spanning-fibered and series-fibered muscle models occur during
the first twitch in fixed-end contractions. Hence, fixed-end single
twitch experiments are further investigated in the following. The
aim is to reveal a potential relation between the twitch shape and
the fiber length.

In addition to the model with spanning fibers (termed SPA),
muscle specimens consisting of two, four, six, and twelve fiber
compartments of equal length are considered. The series-fibered
models are termed SER·2, SER·4, SER·6, and SER·12 indicating
the respective number of compartments. Furthermore, two dif-
ferent scenarios are considered. In the first scenario, all fibers in
all compartments receive a stimulus at the same time to simu-
late a coordinated single twitch contraction. The second scenario
appeals to the model with six in-series arranged compartments, in
which only the fibers within the first compartment are stimulated.
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FIGURE 8 | Comparison of a spanning-fibered muscle model (SPA) and a

series-fibered muscle model consisting of four in-series arranged fiber

compartments (SER·4) stimulated with fs = 100 Hz (top row) and

fs = 50 Hz (bottom row) in fixed-end (left column) and shortening

contractions at v = 0.1 vmax (right column), and their differences in

percent.

(Note that the choice which of the compartments is stimulated
does not influence the resulting reaction forces.) This model is
referred to as SER·6a.

Figure 9 shows the distribution of the membrane potential
and the contraction-induced resulting deformation of the muscle
in the different models of the first scenario.

Figure 10 demonstrates that the twitch rise time of a mus-
cle depends on the length of its fibers, i. e., the twitch rise time
increases with increasing fiber length. Thus, model SER·12 has the
lowest twitch rise time of 17.2 ms, while the maximum twitch rise
time occurs in model SPA, where the peak stress occurs 38.2 ms
after stimulation. The computed AP propagation speed of the
models is 2.186 m/s. In model SPA, where the AP propagates
6 cm from the motor end-plates to each end of the fibers, this
propagation speed yields an AP propagation time of 27.45 ms.
In comparison, a half-sarcomere model considered in isolation
shows a twitch rise time of 16.1 ms. Hence, the AP propagation
time in model SPA exceeds the twitch rise time of a single half-
sarcomere. In other words, the sarcomeres located at the motor
end-plates reach their peak twitch force before the sarcomeres
located at the ends of the fibers are activated.

While the twitch rise time increases, the peak twitch stress of
the muscle model decreases with increasing fiber length. In detail,
the peak twitch stresses are 0.82 and 0.98 N/cm2 in models SPA
and SER·12, respectively, which corresponds to an increase of
19.4 %. Integrating the area below the stress curve over 200 ms,
i. e., to a point where the active stress has declined and only pas-
sive stress components remain, yields 84.95 N·ms/cm2 for model
SPA, and 83.25 N·ms/cm2 for model SER·12.

Deducting from the total stresses the respective passive
stresses, which are due to the initial stretch to optimal length, the
peak twitch force obtained in model SER·6a is 6.5 times smaller
than the peak twitch force of model SER·6.

Further, changes in local sarcomere length during fixed-end
single twitch contractions are analyzed. The aim is to inves-
tigate if activation-induced stretches of passive sarcomeres to
beyond myofilament overlap occur. The resulting maximum and
minimum sarcomere lengths are reported in Table 3.

Considering the first scenario, the shortest and largest sarcom-
ere lengths of 1.81 and 2.66 μm, respectively, occur for model
SPA. Changes in sarcomere length decrease with an increasing
number of in-series fiber compartments. In the second scenario,
a minimum sarcomere length of 1.74 μm is observed for model
SER·6a.

4. DISCUSSION
A multiscale skeletal muscle model was presented that includes
the description of the active behavior entirely on the microscopic
sarcomere level. Yet, the model proved to be able to repro-
duce experimentally determined data of whole muscle on the
macroscale. The multiscale model was used to investigate differ-
ences in the muscle contraction and force generation caused by
different muscle fiber arrangements.

4.1. FROM ISOMETRIC HALF-SARCOMERE MODEL TO NON-ISOMETRIC
WHOLE MUSCLE SIMULATIONS

The F-� and F-v relationships of skeletal muscle originate from
properties on the microscopic filament level (Gordon et al., 1966;
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FIGURE 9 | Distribution of membrane potential, Vm in [mV], and contraction-induced deformation during single twitch contractions of models SPA

(t = 22 ms after stimulation), SER·2 (t = 10 ms), SER·6 (t = 5 ms), and SER·12 (t = 2 ms) (from top to bottom).

FIGURE 10 | Comparison of single twitch contractions in a

spanning-fibered model and in series-fibered models with different

fiber lengths and number of compartments. The reader is referred to the
text for model definitions.

Piazzesi et al., 2007). For example, Winters et al. (2011) point out
that the active F-� relation of a whole muscle is very similar to the
F-� relation of a single sarcomere. Likewise, the F-v relation shows
very similar characteristics on the cell level (Edman, 1988) and on
the whole muscle level in situ (Devrome and MacIntosh, 2007).
Based on these findings, the proposed model has the advantage
to contain the active F-� and F-v relations on the microscopic
half-sarcomere level.

Extending the half-sarcomere model of Shorten et al. (2007)
to non-isometric contractions introduces two more parameters
to the model. The additional uncertainty due to the introduction
of these parameters is minor, since both of them can easily be
determined by comparing computational results to experimen-
tal F-v data. The extended half-sarcomere model can reproduce

Table 3 | Minimum and maximum sarcomere lengths in fixed-end

single twitch contractions absolute and in percent of their length

prior to stimulation, �
opt

S
= 2.4 μm.

Minimum sarcomere Maximum sarcomere

length length

SER·12 2.39 μm 99.59 % 2.41 μm 100.41 %

SER·6 2.26 μm 93.96 % 2.54 μm 105.95 %

SER·4 2.16 μm 90.05 % 2.63 μm 109.68 %

SER·2 2.03 μm 84.52 % 2.64 μm 109.84 %

SPA 1.81 μm 75.49 % 2.66 μm 111.02 %

SER·6a 1.74 μm 72.51 % 2.58 μm 107.38 %

the hyperbolic F-v relation of shortening contractions and the
bounded force increase in lengthening contractions known from
experiments (Hill, 1938; Zajac, 1989). Similar results are reported
by Razumova et al. (1999) using a different approach. Razumova
et al. (1999) assumed quasi-static conditions and rearranged
their XB-dynamics model such that they could compute the
corresponding velocity for a prescribed force.

It is noteworthy that, in contrast to previous macroscopic
models (Zajac, 1989), the hyperbolic F-v relation is not explic-
itly prescribed in the model but results from the XB-dynamics
component model formulation. Thus, the model can be used to
reveal the underlying mechanisms leading to the characteristic
F-v behavior (Hernández-Gascón et al., 2013).

The active behavior on the macroscopic whole muscle level
is modeled to be entirely determined by the extended half-
sarcomere model. The presented results demonstrate that the
multiscale model is capable of reproducing microscopic proper-
ties of the sarcomere level on the macroscopic whole muscle level.
This applies likewise to the F-� and the F-v relationships.
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In the literature, different behaviors are reported for length-
ening contractions of skeletal muscles (cf. Morgan, 1990). Zajac
(1989) report a bounded increase up to 1.8 times the isomet-
ric force, which is adopted in this contribution. Since the model
behavior for lengthening contractions proved to be sensitive to a
single parameter, the presented model can easily be adapted to a
different shape. However, the fact that experimental F-v relations
show a non-continuously differentiable behavior at the transition
from shortening to lengthening contractions (Katz, 1939) is not
predicted by the model. Once the origin of this unique feature
is completely understood, it could potentially be included in the
XB-dynamics component model.

4.2. COMPARTMENTALIZATION
First the computational results obtained for the different muscle
fiber arrangements are discussed, before using this data to analyze
its implications on stability.

The presented model predicts the largest differences between
series-fibered and spanning-fibered muscles in the rise time,
shape and peak force of single twitches. During sustained con-
tractions, twitches tended to fuse at lower stimulation frequencies
in spanning-fibered muscles, while series-fibered muscles showed
higher peak forces. Since the basic descriptions of passive and
active material behavior are identical in the different models, the
observed differences in the force responses must result from the
differences in the muscle fiber arrangement. Although the same
half-sarcomere model is used in all simulations, single twitches
are more dispersed in muscle models with longer fibers, which
can be explained by longer AP propagation times. Experimentally
observed differences in the twitch shape in different fibers of the
same twitch type might therefore be largely governed by the fiber
length. This might explain the different twitch shapes observed
in different species. For example, the twitch rise time in mouse
soleus muscle consisting purely of type-I fibers is approximately
35 ms (Shorten et al., 2007), while 90 ms are observed in human
type-I motor units (Fuglevand et al., 1993). Further, the sim-
ulations demonstrated that a fascicle consisting of end-to-end
terminating fibers does functionally not perform like a single
muscle fiber of equivalent length, as hypothesized by Lieber and
Fridén (2000).

According to Harris et al. (2005), long fibers are less efficient
than short fibers since sarcomere shortening cannot be well syn-
chronized along the length of a fiber. Harris et al. (2005) speculate
that a twitch in a long fiber will produce much less force than a
more synchronous contraction of the sarcomeres. The presented
results confirm that the peak twitch force in spanning-fibered
muscle is lower than in series-fibered muscle of the same length,
however, it is also more dispersed, such that the stress induced
through a single twitch integrated over time is similar in series-
fibered and spanning-fibered muscles. This can be attributed to
the fact that the number of sarcomeres contributing to the active
force is identical in both models. The non-activated parts of the
fibers behave as series elastic elements, i. e., they store contrac-
tile energy. It is believed that the minor differences observed in
the integrated stress values stem from local changes in sarcomere
length due to the F-� relation and from different sarcomere con-
traction velocities due to the F-v relation. At this point, however,

one has to bear in mind that the modeling assumption of hyper-
elastic passive material behavior neglects viscous effects, which
exist in passive muscle (Hoyt et al., 2008; Van Loocke et al., 2008).

The model further predicts that the peak force exerted by a
synchronous activation of all in-series arranged compartments
exceeds the product of the number of in-series arranged com-
partments and the peak force produced when stimulating only
the fibers in one compartment. This might be explained by the
fact that an additional series compliance is introduced through
inactive compartments against which the activated fibers con-
tract (Botterman et al., 1983). It is hypothesized that the effect will
be more pronounced at shorter muscle lengths than at the opti-
mal length (at which the numerical experiments are carried out)
(cf. Mutungi and Ranatunga, 2000), or in muscles with passive
forces appearing only at long muscle length (see further below).

Changes in sarcomere length due to the contraction of acti-
vated parts of the fibers against non-activated parts are reported
for spanning-fibered and series-fibered muscle models. Fixed-end
single twitch contractions, in which the fibers of all compartments
are simultaneously activated, show that changes in sarcomere
length increase with increasing fiber length. Shorter sarcomere
lengths are only observed if one out of six compartments is
activated (model SER·6a). This is not surprising as the five non-
activated compartments act as series elastic elements. Comparing
the extreme values of the sarcomere length with Figure 2 reveals
that the range of sarcomere lengths of the numerical experiments
is limited to a rather narrow region with considerable filament
overlap. Mutungi and Ranatunga (2000) report experimental sar-
comere length changes in fixed-end single twitch contractions
that are considerably smaller than those found in the present
numerical investigations. The difference can be explained based
on the fact that Mutungi and Ranatunga (2000) simultaneously
stimulated the entire fiber bundle using plate electrodes, and
hence, almost all sarcomeres shortened concurrently against a
small region at the fiber ends.

The fact that the model predicts rather small changes in sar-
comere length during fixed-end single twitch contractions might
be explained by the following considerations. A resting sarcomere
length of 2.0 μm (Edman, 1979) is assigned to the model’s stress-
free reference configuration (λf = 1). Thus, the longest observed
sarcomere length of 2.66 μm corresponds to a local fiber stretch of
λf = 1.33. Comparing this value with the F-� relation in Figure 6,
one observes that considerable passive forces start to appear at this
fiber stretch. This can be explained by the fact that at every instant
in time, the contractile forces in the activated parts of the muscle
need to be matched by the stretch-induced passive forces in the
non-activated parts, since they are in-series arranged. Sarcomere
length changes will therefore be more pronounced in muscles
with passive forces appearing at long whole muscle length.

A description of tendon was not included in the model.
Since tendinous tissue is much stiffer than passive muscle tissue
(Hawkins and Bey, 1997), the series compliance added to the sys-
tem by including tendon is small. Therefore, the effect of neglect-
ing tendon in this study is expected to have a minor effect on the
force generation and the sarcomere length changes. It should be
noted, however, that this only applies to parallel-fibered muscles.
In general, tendons and aponeuroses are crucial to muscle-joint
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dynamics. Therefore, future models should incorporate tendon
and aponeurosis compliance to better link sarcomere dynamics
to joint dynamics during movement.

The study of compartmentalization is particularly interesting
with regard to stability issues. The model results demonstrate that
activated parts of a muscle can contract against non-activated
parts. It has been hypothesized that in long spanning-fibered
muscle, in which the AP propagation time exceeds the twitch
rise time, activation-induced stresses might stretch non-activated
sarcomeres to beyond myofilament overlap potentially leading
to instabilities (Loeb et al., 1987). Loeb et al. (1987) therefore
speculate that the twitch rise time might impose a limit on the
length of the fibers. The presented results, however, demonstrate
that a muscle model, in which the AP propagation time exceeds
the twitch rise time of a single sarcomere, does not necessarily
show any instabilities. In series-fibered muscle, a similar stabil-
ity problem is believed to exist when activation of series-arranged
compartments is unbalanced or asynchronous, i. e., if fibers in
an activated compartment shorten against fibers in non-activated
compartments (Richmond et al., 1985; Loeb et al., 1987). This
instability was not observed either in the numerical experiments
(model SER·6a) using the presented model settings.

The fact that instabilities are observed neither in the spanning-
fibered model nor in the series-fibered model might be due to
the fact that in the present model passive forces appear already at
short muscle length. According to Hawkins and Bey (1994), this
corresponds to the behavior of rat TA muscle, which shows even
at full activation a monotonically increasing isometric F-� rela-
tion, cf. Figure 6. The passive stiffness of the muscle tissue might
therefore prevent an overextension of non-activated sarcomeres.
However, in muscles with passive forces appearing at long mus-
cle length, sarcomere extensions to beyond myofilament overlap
might be possible, and this might lead to stability problems and
damage (Loeb et al., 1987).

In the future, the proposed multiscale model can be used, for
example, to study sarcomere length changes in muscles, in which
passive forces appear at long muscle length and the associated
potential instabilities. Furthermore, the presented framework can
be used to study the implications of the task-specific activation
of sub-volumes of a muscle on the muscle contraction and force
generation.

4.3. SUMMARY
A chemo-electro-mechanical skeletal muscle model has been
developed to reveal differences between parallel-fibered mus-
cles, in which the muscle fibers either span the entire length of
the fascicles or terminate intrafascicularly. The multiscale model
proved to be able to reveal differences in the muscle contrac-
tion and force generation that result from the muscle fiber
arrangement. The largest differences in the mechanical behav-
iors due to the different arrangements have been found during
fixed-end single twitch contractions. Spanning-fibered muscles
showed lower but more dispersed twitch forces than series-
fibered muscles of the same length. Similarly, series-fibered mus-
cles showed significantly higher peak forces during sustained
contractions. Further, sarcomere length changes during fixed-
end single twitch contractions of the multiscale muscle model

at optimal sarcomere length have been analyzed. It was found
that the sarcomere length changes were limited to a rather nar-
row region with considerable filament overlap. Stability issues
resulting from activation-induced stretches of non-activated sar-
comeres to beyond myofilament overlap were not observed. It is
concluded that in muscles with passive forces appearing at short
muscle length these stability problems do not exist.
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