
GENERAL COMMENTARY
published: 23 January 2015

doi: 10.3389/fphys.2014.00527

Genome-scale modeling and human disease: an overview
Matthew A. Oberhardt1*† and Erwin P. Gianchandani2*† ‡

1 Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, School of Computer Sciences, and Sackler School of Medicine, Tel Aviv
University, Tel Aviv, Israel

2 Division of Computer and Network Systems, United States National Science Foundation, Arlington, VA, USA
*Correspondence: mattoby@gmail.com; egiancha@nsf.gov
†These authors have contributed equally to this work.
‡The views expressed in this article are strictly those of the author and not representative of those of the US National Science Foundation.

Edited by:

Guillermo A. Cecchi, IBM Watson Research Center, USA

Reviewed by:

Pablo Meyer, IBM Watson Research Center, USA

Keywords: genome-scale models, systems analysis, genome-scale metabolic reconstruction, human diseases, systems biology

A commentary on

Genome-scale modeling and human
disease
by Gianchandani, E. P., and Oberhardt,
M. A.

The last several decades have seen extraor-
dinary progress in the biomedical sciences.
The explosion of sequencing and high-
throughput data is both welcome and
daunting for the study of human disease:
while human disease is increasingly under-
stood to be multi-factorial and systemic,
the sheer complexity of the data being
generated makes unaided interpretation
nearly impossible. Meanwhile, genome-
scale modeling (GSM) has emerged as
a major scaffold and toolkit for contex-
tualizing rich data, and one especially
suited to the thousands-of-datapoints-
per-measurement reality of contemporary
disease research.

The archetypal genome-scale model
is the genome-scale metabolic recon-
struction (GENRE), a predictive net-
work model that contains up to several
thousand metabolic reactions, as well as
associated genes and enzymes (but not
kinetics, due to the scale) (Oberhardt
et al., 2009). Recently available GENREs
of human metabolism have opened up
enormous avenues in disease research
(Duarte et al., 2007; Ma et al., 2007;
Thiele et al., 2013), especially when inte-
grated with high-throughput data [for an
extensive review, see in this topic: (Blazier
and Papin, 2012)]. These models rely on

extensive manual curation, and annotat-
ing understudied or ambiguous parts of
metabolism is critical for improving their
predictive power. In an effort to address
one of the most difficult-to-annotate
areas of metabolism, researchers involved
in the human metabolic reconstruction
efforts have provided for this topic a
large analysis of membrane transporters
in human metabolism, including a dis-
cussion of how transport impacts multi-
ple human diseases (Sahoo et al., 2014).
GENREs are contributing to many areas
of disease research, as detailed below, and
their scope and influence will increase as a
result of such contributions.

Systemic metabolic disorders such as
obesity and diabetes exact a huge toll in
the US and worldwide, and GSMs are
increasingly being used for their study.
Large-scale models of mitochondria, for
example, have helped examine obesity-
associated aberrations in mitochondrial
fatty acid degradation (Van Eunen et al.,
2013) and many other aspects of energy
metabolism as reviewed in this topic:
(Sangar et al., 2012). Similarly, the human
GENRE has been used in a number
of studies relevant to metabolic dis-
eases [e.g., building a model of human
adipocyte—(Mardinoglu et al., 2013);
determining biomarkers for inborn errors
of metabolism—(Shlomi et al., 2009)], as
extensively reviewed here: (Varemo et al.,
2013). GENREs are obvious choices for
studying metabolically-based diseases, and
will likely be relied on more in the
future.

Another area of increasing interest
in human disease is the impact of the
microbial organisms that cohabitate our
bodies, collectively known as our “micro-
biome.” The gut microbiome, for example,
has been shown to alter the metabolism
of many drugs (Kang et al., 2013), and
to be a causative factor in maintaining
obese or healthy states (Turnbaugh et al.,
2006). GENREs have been used to examine
prominent members of the gut micro-
biota (Heinken et al., 2013), to under-
stand interactions between gut microbes
(Shoaie et al., 2013), and to explore inter-
actions between gut microbes and epithe-
lial cells (Sahoo and Thiele, 2013). GSMs
are still severely limited in this arena due to
challenges in community microbial mod-
eling. However, large-scale microbiome
modeling efforts will likely have increas-
ing impact as they mature in the com-
ing years, both by driving new knowledge
of complex community phenotypes (e.g.,
Freilich et al., 2011 and reviewed gener-
ally in Greenblum et al., 2013) and by
including so-far neglected areas such as the
oral microbiome, as reviewed in this topic:
(Dimitrov and Hoeng, 2013).

Cancer is a complex and multifaceted
disease, and a hallmark for huge data col-
lection efforts. As such, it is a natural
target for systems modeling [for a gen-
eral review of systems biology approaches,
see in this topic: (Hernandez Patino et al.,
2012)]. Metabolic deregulation in can-
cer has generated considerable interest
within the genome-scale metabolic mod-
eling community, resulting in a number of
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cancer-related metabolic reconstructions
being recently published [see a review
in this topic: (Lewis and Abdel-Haleem,
2013)]. Models of specific cancer subtypes
are now being built based on the generic
human GENRE (Jerby et al., 2010; Agren
et al., 2012), and in a few cases, they
have revealed insights with therapeutic
potentiality (Frezza et al., 2011; Agren
et al., 2014).

Due to their lack of kinetic parameters,
GENREs alone cannot predict dynamic
cell states, nor, surprisingly, can they inte-
grate metabolite concentration data into
basic kinetics or allosteric regulation. Since
kinetic parameters are difficult to measure
and can vary between conditions or cells,
ensemble modeling was recently used to
estimate kinetic models of human colorec-
tal adenocarcinoma cell lines, and to reveal
potential synthetic lethal interactions that
could yield new drug targets [see in this
topic: (Khazaei et al., 2012)]. Cancer is
also a disease marked by the evolutionary

process that the cancerous cells undergo.
Genomic data and increasingly sophisti-
cated population models are now enabling
elucidation of these processes, which are
critical for establishing the basis for cures
[see a review in this topic: (Stransky and
De Souza, 2012)]. These areas have gained
a lot of interest, and we expect many more
systems-level studies of cancer in the near
future.

By contrast, neurological disor-
ders constitute a set of diseases that
have not received as much atten-
tion in the GSM community, despite
the significant impacts illustrated in
Figure 1. Early attention focused on
genome-wide expression analyses and
gene-interaction networks, often using
yeast pathways conserved in humans and
implicated in neurodegenerative diseases
such as Parkinson’s, Alzheimer’s, and
Huntington’s (Petranovic and Nielsen,
2008; Noorbakhsh et al., 2009; Wall
et al., 2009). More recently, efforts have

begun to employ GSM with success. For
example, (Lewis et al., 2010) integrated
gene expression data, proteomics data,
and literature-based manual curation
to model brain energy metabolism and
recapitulate the metabolic interactions
between astrocytes and various neuron
types relevant to Alzheimer’s disease.
In addition, transcriptomic data from
Alzheimer’s patients were integrated with
a genome-scale computational human
metabolic model to characterize the
altered metabolism in the diseased state,
and metabolic modeling methods were
employed to predict metabolic biomarkers
and drug targets (Stempler et al., 2014).
We expect interest in neurological illnesses
to continue to rise.

While much of this short review focuses
on GENRE-based analyses, GENREs are by
no means the only genome-scale models
of note. Many alternative topology-based
methods for pathway analysis are avail-
able and have been reviewed here: (Mitrea

FIGURE 1 | Publications in different disease areas vs. morbidity rates. Age
standardized disability adjusted life years (DALY), a measure of years of life lost
due to disease, is reported as percent worldwide and in the US. Injury (11.3%)
and “other non-communicable disease” (7.4%) are not listed due to lack of
related search terms. The count of scientific studies found in Google Scholar
searches [normalized to 83% (=100% − 11.3% − 7.4%)] of disease-related
search terms (listed in parentheses, if different than the disease name) are

also shown, along with studies specifically related to genome-scale models or
to the human GENRE [the numbers of hits were averaged between hits
including the searchterm AND citing (Duarte et al., 2007), and hits including
the searchterm AND including the phrase “genome scale model,” before
normalization]. DALY data were taken from the World Health Organization
(WHO) report for the year 2002 (which is the most updated WHO source of
DALYs of which these authors are aware) (Mathers et al., 2005).
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et al., 2013). We also include in this topic
a promising new Boolean-based model for
somatic cell reprogramming: (Flottmann
et al., 2012). Somatic cell reprogramming
is a new and highly promising field—it
first emerged in 2006 with the landmark
paper (Takahashi and Yamanaka, 2006)—
that could lead to novel therapeutic
approaches, such as growing organs from
skin cells for self-transplant.

GSM-based analysis is now a key asset
in studying disease. The works in this
topic reflect trends in the biomedical sci-
ences at large, including areas of intense
interest (e.g., cancer) as well as those
that have been labeled as neglected dis-
eases (e.g., few models have been built
for studying parasitic tropical diseases or
HIV/AIDS). Although eukaryote recon-
structions are more challenging due to
genome sizes, knowledge coverage, and
the multitude of cellular compartments
(Thiele and Palsson, 2010), we expect
the successes described in this overview
to continue to mount—with a particular
focus in coming years on clinical prob-
lems with translatable outcomes, in which
models will help identify new drug targets
or alternate cures. This is already evident
from recent DREAM Challenges, which
have sought to foster collaboration and
build communities around fundamental
questions at the intersection of systems
biology and translational medicine [see,
for example, (Margolin et al., 2013)]. To
help guide and contextualize disease study,
we have included a chart of the most dev-
astating diseases, along with the amount
of focus in GSM studies as well as in
science at large toward addressing them
(Figure 1). Shifting focus toward neglected
areas is a worthy goal to which we hope
this mini-review will contribute.
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