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The heart’s regular electrical activity is initiated by specialized cardiac pacemaker cells
residing in the sinoatrial node. The rate and rhythm of spontaneous action potential firing
of sinoatrial node cells are regulated by stochastic mechanisms that determine the level of
coupling of chemical to electrical clocks within cardiac pacemaker cells. This coupled-clock
system is modulated by autonomic signaling from the brain via neurotransmitter release
from the vagus and sympathetic nerves. Abnormalities in brain-heart clock connections or
in any molecular clock activity within pacemaker cells lead to abnormalities in the beating
rate and rhythm of the pacemaker tissue that initiates the cardiac impulse. Dysfunction of
pacemaker tissue can lead to tachy-brady heart rate alternation or exit block that leads to
long atrial pauses and increases susceptibility to other cardiac arrhythmia. Here we review
evidence for the idea that disturbances in the intrinsic components of pacemaker cells
may be implemented in arrhythmia induction in the heart.
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INTRODUCTION
Normal cardiac impulse initiation and conduction are gener-
ated by specialized, self-excitable, pacemaker cells residing in
the sinoatrial node (SAN). Defects in these cell-intrinsic capac-
ities to elicit spontaneous action potentials (APs) can lead to
disturbances of the rate and rhythm of heart beats, and can
induce numerous clinical arrhythmia syndromes: (i) SAN dys-
function has been postulated to be a source of sinus nodal
re-entry (i.e., reciprocal beats between SAN and atrium) tach-
yarrhythmia (Birchfield et al., 1957) which accounts for 2–17%
of all arrhythmias (Cossu and Steinberg, 1998). While diagno-
sis of this arrhythmia is difficult, due to electrocardiographic
similarity of the P-wave to the normal sinus rhythm (Gomes
et al., 1995), microelectrode studies in isolated rabbit hearts (Han
et al., 1968) and later in humans (Childers et al., 1973) indeed
demonstrate that SAN is the source that induces re-entry. (ii)
Sick sinus syndrome, characterized by symptomatic dysfunction
of the SAN (reviewed in Dobrzynski et al., 2007), can be man-
ifested as sinus bradycardia, sinus arrest, or SAN block, and
in some cases supraventricular tachyarrhythmias (“tachy-brady”
syndrome), atrial flutter or atrial fibrillation. In mice with an
inducible phenotype that mimics sick sinus syndrome, heart beat-
ing intervals (BIs) were completely irregular both in vivo and in
the isolated Langendroff perfused model (no brain-heart signal-
ing) (Herrmann et al., 2007). Telemetric ECG recordings revealed
a variety of arrhythmias: sino-atrial arrhythmia, sino-atrial pause
and supraventricular or ventricular tachycardia. (iii) It has been
suggested that abnormal stretch of the rat atria that accompanies

many heart diseases (De Jong et al., 2013) and occurs even in
transplanted human hearts (Slovut et al., 1998) (no brain-heart
connection) induces respiratory sinus arrhythmia.

Here we review evidence for the idea that changes in the
membrane and sarcoplasmic reticulum (SR) components of pace-
maker cells may be implicated in arrhythmia induction in the
heart.

INTRINSIC COUPLED-CLOCK MECHANISMS TO PACEMAKER
CELLS CONTROL THE HEART RATE AND RHYTHM
To understand abnormal SAN function it is essential to first
understand the normal function of intrinsic properties of pace-
maker cells and their modulation by brain-heart signaling.
Experimental and theoretical data over the past two decades indi-
cate that pacemaker cells residing in the SAN entrain their AP
BI variability (BIV) by regulation of intracellular electric and
mechanical coupling (reviewed in Yaniv et al., 2013a).

The coupled-clock system (Yaniv et al., 2013b; Maltsev et al.,
2014) that controls the pacemaker cell beating rate and rhythm
consists of an intracellular “Ca2+ clock” and “M clock.” The
sarcoplasmic reticulum Ca2+ pump and ryanodine channels act
as a “Ca2+ clock,” discharging local Ca2+ releases (LCRs) close
to the cell surface membrane; LCRs activate membrane elec-
trogenic clock molecules (“M clock”), mainly the Na+/Ca2+
exchanger. Na+-Ca2+ exchange current, the f-channel cur-
rent, and K+ channel current, other components of the M
clock, concurrently drive the diastolic membrane depolariza-
tion to ignite the next AP. The Ca2+ and M clocks entrain each
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other through electrical and chemical signaling: Ca2+ activation
of calmodulin -adenylyl cyclase (AC)-dependent protein kinase
A (PKA) and Ca2+/calmodulin-dependent protein kinase II
(CaMKII). Both of these signaling pathways affect phosphoryla-
tion of proteins of both clocks [i.e., phospholamban (PLB) and
ryanodine receptors (Ca2+ clock) and L type and K+ channels (M
clock)]. Additionally, cAMP positively shifts the f-channel activa-
tion curve. Based on the coupled-clock theory, a change in the
activity or in the quantity of every molecule within the M or the
Ca2+ clock or a change in the chemical coupling signaling of both
clocks will perturb the function of the other clock, and thus alter
the degree of entrainment between them. For example, in rabbit
pacemaker cells, reduction in If activity or in Ca2+ clock proteins
leads to reduction in the coupled-clock phosphorylation activity
and LCR signal (Yaniv et al., 2014b). Thus, a reduction of internal
signaling within one clock can lead to a reduction in the degree of
clock coupling and changes in the function of the other clock that
change automaticity.

Even under normal conditions, spontaneous AP BIs of mam-
mals including human pacemaker cells are not constant, but
vary around the average AP BI, due to stochastic properties
of intrinsic mechanisms of the coupled-clock system (Verheijck
et al., 1998; Rocchetti et al., 2000; Zaza and Lombardi, 2001;
Monfredi et al., 2013; Papaioannou et al., 2013; Yaniv et al.,
2014b). The degree of AP BIV is related to variability in both
the timing of LCR occurrence during the diastolic depolariza-
tion, and to the ensemble LCR Ca2+ signal: an increase in LCR
variability is associated with a reduced ensemble LCR Ca2+ sig-
nal that occurs later in diastole (i.e., prolonging the next AP
ignition). Based on the coupled-clock theory, the stochasticity
of LCR periods (i.e., the times of LCR occurrences following
the prior AP) not only depends upon stochasticity of spon-
taneous RyR activation, but also upon stochastic sarcolemmal
ion channel openings and closings that regulate the cell Ca2+
balance. The amplitude and timing of LCR Ca2+ signals to M
clock proteins report the efficiency of clock coupling, i.e., a
weaker LCR signal to M clock proteins that occurs later in time
reports less-efficient clock coupling. Consequently, changes in
the steady-state AP BI and the BIV embody contributions of
both clocks. Reduction in the degree of synchronization between
the clocks disturbs the ability to maintain the basal average
AP BI, leading not only to a reduction in the average AP BI,
but also to an increase in variability around the prolonged
average AP BI.

Autonomic neural input can entrain the rate and rhythm of
electrical impulses that are generated by SAN tissue of mam-
mals (Difrancesco, 1993; Boyett et al., 2000; Monfredi et al.,
2014; Yaniv et al., 2014a). The balance between sympathetic
to parasympathetic stimulation has a role in synchronizing
intrinsic clock periods of individual pacemaker cells. β adren-
ergic receptor stimulation increases synchronization of intrinsic
clock mechanisms leading to a decrease of both BI and BIV of
pacemaker cells (Figures 1B,C). Moreover, β adrenergic recep-
tor stimulation of a single pacemaker cell increases the prob-
ability that the beating intervals exhibit fractal-like behavior.
Cholinergic receptor stimulation of pacemaker cells, on the other
hand, decreases synchronization of intrinsic clock mechanisms,

leading to an increase of both the average BI and BIV
(Figures 1B,C).

SYNCHRONIZATION OF ACTIVITY ACROSS THE POPULATION
OF CELLS CAN IMPACT ON THE HEART RATE AND
RHYTHM
Although we have focused here upon synchronization of mecha-
nisms intrinsic to pacemaker cells, cell-to-cell interactions (elec-
trotonic and mechanical) of pacemaker cells residing in SAN
tissue also entrain the rate and rhythm of electrical impulses that
emanate from the SAN (Jalife, 1984; Watanabe et al., 1995). These
interactions have a role in synchronizing the intrinsic clock peri-
ods of individual cells (Sheikh et al., 2013), because the average
range of basal AP BI and AP BIV of single isolated pacemaker
cells is well above their range when they reside in rabbit SAN
tissue (Yaniv et al., 2014a) (Figure 1A). When pacemaker cells
are embedded within SAN tissue, those with the shortest AP BI
create a primary pacemaker area within the SAN, leading to the
origin of an electrotonic force that spreads to other SAN cells,
resulting in the emanation of an electric impulse that excites the
rest of the heart (Anumonwo et al., 1991). This impulse controls
the heart rate and rhythm. When rabbit pacemaker cells are iso-
lated from SAN tissue, their beating interval entropy increases
dramatically compared to that when these cells reside in SAN
tissue (Figure 1B), and fractal-like behavior of AP BIs, a feature
that characterizes AP BI of SAN tissue, is absent in isolated single
pacemaker cells (Yaniv et al., 2014a).

CHANGES IN HEART RATE VARIABILITY INDEXES AND THE
PRESENCE OF ARRHYTHMIA
An increase in pacemaker cells AP BIV, or in mathematical terms
coupled-clock-system entropy, above a certain threshold leads
to abnormal impulse generation by the SAN that is defined as
arrhythmia. Two regimes of heart rate variability (HRV) are ana-
lyzed in patients with arrhythmogenic events: during the events
when the entropy of the system increases (Costa et al., 2008),
and before the occurrence of arrhythmia. The occurrence of
major arrhythmic events in patients with right ventricular car-
diomyopathy is associated with a reduced BIV (Battipaglia et al.,
2012). Interestingly, heart rate variability indexes decrease just
prior to an arrhythmogenic event (Postolache et al., 2011). As
we summarized here, the degree of synchronization of intrinsic
mechanisms to pacemaker cells and the degree of synchroniza-
tion among pacemaker cells within the SAN are determinants of
the heart rate and rhythm. Autonomic receptors on pacemaker
cells respond to the imbalances of autonomic impulses associated
with cardiac diseases. Specifically, autonomic receptor stimula-
tion of single pacemaker cells alters their beat-to-beat variability.
Thus, intrinsic pacemaker mechanisms may contribute to HRV
in vivo. Although mechanisms of HRV may vary from one patient
to another, documentation of the relationship between HRV and
different arrhythmias in human patients (Table 1) is an important
initial step to conceptually link intrinsic pacemaker mechanisms
to arrhythmogenic events. Note, that this sort of evidence, how-
ever, does not prove that altered synchronization of pacemaker
clock mechanisms residing within the SAN are the sole cause of
all patient arrhythmias that may be linked to changes in HRV.
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FIGURE 1 | (A) Poincaré plots of the beating interval at different levels of

integration from the heart in vivo to single isolated pacemaker cells. (B)

The relationship between beating intervals and coefficients of variation at
different levels of integration from the heart in vivo to single pacemaker cells
in isolation. (C) Poincaré plots of the beating interval variability in single SANC
under control (CON), β-adrenergic receptor stimulation (ISO) or cholinergic
receptor stimulation (CCh). Modified from Yaniv et al. (2014a). (D) Examples
of arrhythmias associated with changes in intrinsic clock mechanisms
recorded in vivo: (i) in patients carrying the HCN4-695X mutation (adapted

from Schweizer et al., 2010); (ii) (a–d) ECG recordings from an unaffected
person (a) and three individuals who are homozygous for the CACNA1D
mutation (b–d) (adapted from Baig et al., 2011); (iii) Cardiac arrhythmias in
freely moving NCX KO mice (adapted from Herrmann et al., 2013); (iv) A rapid
and presumably polymorphic ventricular tachycardia in patents with mutation
in RyR2 (adapted from Bhuiyan et al., 2007); (v) ECG recording demonstrate
the occurrence of arrhythmia in Shox2 KO mice (adapted from Liu et al.,
2011); (vi) ECG recording from ankyrin-B KO mice (adapted from Cunha et al.,
2011).
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Table 1 | Summary of primary studies assessing the changes of heart rate variability when arrhythmia occurs.

Type of arrhythmia Number of patients Findings Study

AF 27 Decreased pNN50 was an independent predictor of AF relapse Akyurek et al., 2003

AF 784 Impaired LF spectral component predicted new-onset AF Perkiomaki et al., 2014

AF 83 Time and frequency indices attenuated when the treatments
failed

Seaborn et al., 2014

PSVT 64 HR increased, HRV and HF power decreased after catheter
ablation for PSVT

Kocovic et al., 1993

Sick sinus syndrome 30 Poincare plot often showed random-like pattern;
Beta coefficient* of fractal increased toward 0 in sinoatrial node
dysfunction

Bergfeldt and Haga,
2003

Sick sinus syndrome 181 Decreased SDNN and rMSSD after pulmonary vein isolation Wang et al., 2013

VF 24 HRV indices consistently did not change before VF Vybiral et al., 1993

VF 15 VF patients had lower DFA alpha (0.64 vs. 1.05) and fractal beta
coefficient* (−1.63 vs. −1.31) than control

Makikallio et al., 1999

VT 40 All power spectra of HRV decreased before the onset of
sustained VT compared to before nonsustained VT

Huikuri et al., 1993

VF/AVB 25 V-shaped trough appeared in the curve of ln(LF/HF) and ln(HF)
prior to VF and AVB, respectively

Osaka et al., 2010

VF/AVB 292 Beta coefficient* < −1.5 was the most powerful predictor of VF Gang et al., 2011

VT/VF 312 after myocardial infraction Decreased SDNN, VLF, HF, DFA alpha1 predicted VT/VF Huikuri et al., 2009

VT/VF 28 Decreased scattering in Poincare plot before arrhythmic event Rozen et al., 2013

PSVT, Paroxysmal supraventricular tachycardia; VF, Ventricular fibrillation; VT, Ventricular tachycardia; AF, atrial fibrillation; AVB, atrioventricular block; DFA, Detrended

fluctuation analysis; pNN50, the number of pairs of successive beats that differ by more than 50 ms; SDNN, standard deviation of the average beating intervals;

rMSSD, root mean square of successive differences; HF, high frequency; LF, low frequency; VLF, very low frequency. *Beta coefficient is the slope between power

spectra and VLF in log-log scale.

DIRECT PHARMACOLOGICAL INHIBITION OF
COUPLED-CLOCK PROTEINS OF PACEMAKER CELLS CAUSES
CHANGES IN RATE AND RHYTHM
Direct pharmacological inhibition of coupled-clock proteins can
induce arrhythmias. For example: (i) caging of intracellular
Ca2+ by NP-EGTA in isolated rabbit pacemaker cells induces an
increase in LCR variability and AP BI bradycardia together with
arrhythmic events (Yaniv et al., 2011). (ii) A sudden increase in
stochastic ryanodine receptor open probability, elicited by caf-
feine spritz in isolated rabbit pacemaker cells, induces tachycardia,
together with arrhythmic events (Yaniv et al., 2013d). (iii) Specific
PKA inhibitors (Younes et al., 2008) or CaMKII inhibitors (Yaniv
et al., 2013c) superfused onto isolated rabbit pacemaker cells
induce AP BI bradycardia together with arrhythmic events. (iv)
Perturbing clock coupling in rabbit pacemaker cells by directly
inhibiting either the M (ivabradine, an If inhibitor) or Ca2+
clock (cyclopiazonic acid, a SR Ca2+ pump inhibitor) produces
increases in AP BI and AP BIV that are related to increases in
LCR period and LCR period variability (Yaniv et al., 2014b).
These results provide evidence that supports the coupled-clock
theory, demonstrating the ability of the LCR Ca2+ signal to report
the degree of synchronization between the two clocks, and how
changes in the degree of synchronization lead to changes in AP BI
and AP BIV.

REDUCED EFFICIENCY OF INTRINSIC COUPLED-CLOCK
PACEMAKER MECHANISMS AND ARRHYTHMIA
Similar to direct pharmacological inhibitors of coupled-clock
proteins, mutation and genetically induced gene deletion of

different components of the coupled-clock system are associated
with arrhythmias in vivo.

HCN GENE
The hyperpolarization-activated channel (If ) consists of three
HCN members (HCN1, HCN2, and HCN4) (Ludwig et al.,
1998). HCN4 comprises the major fraction (70–80%) of SAN
If. Various mutations of human HCN4 channels are asso-
ciated with arrhythmias, and with bradycardia in particular
(Yeh et al., 2009; Schweizer et al., 2010; Duhme et al., 2013).
Interestingly, the spontaneous cardiac beating rate of HCN4-
knockout embryos is significantly slower than that of wild-
type, but no arrhythmic events are observed. These results
are in contrast to the conditional deletion of HCN4 in adult
animals, where bradycardia is not evident but sinus pauses
are detected (Stieber et al., 2004; Herrmann et al., 2007; Yeh
et al., 2009) (Figure 1D). Other HCN transcripts that com-
pose funny current channel in the mouse are HCN2, and a
low level of HCN1. HCN2-deficient mice display mild car-
diac dysrhythmia, both in the presence and absence of auto-
nomic control of the heart rate (Stieber et al., 2004; Herrmann
et al., 2007). Similarly, HCN1-deficient mice exhibit sinus dys-
rhythmia in vivo and in single isolated cells (Fenske et al.,
2013). Interestingly, HCN1-deficient mice exhibit high beat-to-
beat dispersion (quantified by Poincaré plots) that is typically
observed in SAN dysfunction (Fenske et al., 2013). Therefore,
HCN4 apparently is required to protect the heart from severe
bradycardia and HCN2 and HCN1 are required to prevent
arrhythmias.
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Ivabradine is a specific If blocker that reduces the heart rate in
patients, specifically patients with inappropriate sinus tachycardia
to eliminate arrhythmia (Cappato et al., 2012). However, a recent
study in isolated rabbit pacemaker cells demonstrated that ivabra-
dine, even at a concentration that specifically inhibits If , but does
not directly suppress L-type current, SR Ca2+ cycling and other
surface membrane ion channels, indirectly suppresses intracel-
lular Ca2+ cycling (Yaniv et al., 2012, 2013b). The reduction in
arrhythmic events is therefore likely due to drug effect on syn-
chronization of functions within the coupled-clock system, and
not simply to If inhibition, per se (Yaniv and Lakatta, 2013).

Cav 1.3
Voltage-gated Cav1 channels (Cav1.2 and Cav1.3) mediate L-type
Ca2+ channels that play distinct roles in mediating Ca2+ bal-
ance in the pacemaker cell. Both Cav1.2 and Cav1.3 channels
are expressed in SAN, and Cav1.3 expression in the atria and
SAN cells is higher than in ventricular myocytes (Marger et al.,
2011). Cav1.3 current is activated faster and at more negative
voltages than Cav1.2 current and, therefore, in mice can con-
tribute earlier during the diastolic depolarization (Christel et al.,
2012). Bradycardia and arrhythmia are particularly prominent in
Cav1.3 knockout mouse pacemaker cells (Mangoni et al., 2003).
Loss of function of Cav1.3 both in mice and humans causes
sick sinus syndrome (see above) and is characterized by severe
bradycardia (Platzer et al., 2000; Baig et al., 2011). Moreover,
patients with a mutation in the CACNA1D gene, which encodes
the pore-forming α1 subunit of Cav1.3, experience pronounced
bradycardia in 12–24-h ECG recordings, and their HRV time-
domain indices are increased (Baig et al., 2011) (Figure 1D). Note
that functional significance of Cav1.3 in large mammals has yet to
be demonstrated.

NCX1
The Na+/Ca2+ exchanger has two important roles in pacemaker
cells: it not only maintains the cell Ca2+ balance by matching
Ca2+ efflux to Ca2+ influx through the L-type Ca2+ current, but
also contributes to diastolic depolarization (Maltsev et al., 2014).
Specific knockout of SAN Na+/Ca2+ exchanger mice induces
bradycardia and increases BIV in the proportion of mycoytes that
express arrhythmic AP BI compared to control mice (Herrmann
et al., 2013) (Figure 1D). Interestingly, numerical model simula-
tions predict that only a reduction in Na+/Ca2+ exchanger den-
sity to below a specific threshold is accompanied by arrhythmic
AP BI (Maltsev et al., 2013).

TRPM4
TRPM4 is a monovalent nonselective cation channel permeable
to Na+, K+, and Li+, but not to Ca2+ (Launay et al., 2002).
Activation of TRPM4 channels that exist in murine pacemaker
cells is achieved by both membrane depolarization and by a rise in
intracellular Ca2+ (Hof et al., 2013). Although TRPM4 KO mice
have heart rates similar to those of their controls, they exhibit a
higher incidence of sinus pauses (Hof et al., 2013).

RYANODINE CHANNELS
The stochasticity of spontaneous RyR activation determines
the diastolic LCR Ca2+ signal and therefore the degree of

synchronization of intracellular function of the coupled-clock
system. A mutation in RyR, exon-3, in patients with cate-
cholaminergic polymorphic ventricular tachycardia, is associated
with arrhythmias (Bhuiyan et al., 2007) (Figure 1D). Isolated
pacemaker cells from mice that express this mutation have a
prolonged average AP BI with pauses between AP BIs together
with an impaired chronotropic response to β adrenergic stimu-
lation (Neco et al., 2012). Similarly, in inducible, heart tissue-
specific RyR2 knockout mice, both in vivo ECG telemetry and
in vitro isolated perfused heart, demonstrated bradycardic BI and
arrhythmia (Bround et al., 2012).

Shox2 AND OTHER TRANSCRIPTION FACTORS
The Shox2 transcriptional factor has been identified as a key reg-
ulator in pacemaker formation and differentiation (Liu et al.,
2011). Shox2 gene KO mice have a significantly reduced heart beat
rate and increased number of arrhythmic events (Liu et al., 2011)
(Figure 1D). Moreover, deficient Shox2 transcription factor dur-
ing development may cause abnormal of mouse SAN develop-
ment associated with severe arrhythmias (Hoffmann et al., 2013).
Therefore, the Shox2 gene also appears to be critical for nor-
mal pacemaking function. Other transcription factors than Shox2
are involved in pacemaker function. In this regard, expression of
Tbx18 in guinea pig has been shown as an essential gene whose
expression can convert quiescent cardiomyocytes to pacemaker
cells (Kapoor et al., 2013), therefore, increasing the pacemaker-
induced spontaneous beating rate of the cells and decreasing their
BIV. Interestingly, Tbx18 transduction to the guinea pig embry-
onic cell lineage inhibits Cx43 expression, leading to significant
electrical uncoupling (Kapoor et al., 2011).

ANKYRIN-B
Ankyrins are adaptor proteins that are required for targeting
channels and transporters in pacemaker cells to the membranes
in which they function. Human patients with ankyrin-B-
deficiency have highly penetrant sinus node dysfunction cou-
pled with increased susceptibility to spontaneous and inducible
atrial fibrillation (Le Scouarnec et al., 2008). Interestingly,
ankyrin-B -deficient mice also have reduced expression of
Na+/Ca2+ exchanger and Na+/K+ ATPase (Le Scouarnec et al.,
2008). Finally, cells isolated from ankyrin-B-deficient mice have
increased BIV (Cunha et al., 2011) (Figure 1D). Thus, down reg-
ulation of ankyrin-B induces abnormal membrane organization
that is implicated in a reduced efficiency of pacemaker clock
coupling that causes abnormal electrical activity within SAN.

CELL-TO-CELL UNCOUPLING MECHANISMS
As described above, the BIs of pacemaker cells residing in the
SAN become entrained by electrotonic and mechanical cell-to-
cell interactions within the tissue (Jalife, 1984; Watanabe et al.,
1995). Numerical model simulations predict that cardiac arrhyth-
mias can occur when normal coupling between pacemaker cells in
SAN tissue is perturbed (Ostborn et al., 2001). Cardiac diseases,
and specifically sick sinus syndrome, are associated with reduc-
tion in cell-cell junctional proteins (Dobrzynski et al., 2007). ECG
of mice with a cardiac conduction-specific knockout of desmo-
plakin, a protein that affects mechanical cell-to-cell interaction in
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the cardiac conduction system, exhibits sinus arrhythmias charac-
terized by a strikingly increased number of sinus pauses compared
to wild-type mice (Sheikh et al., 2013).

PASSIVE MECHANISMS
Although connexin43 is absent in the center of the pacemaker
tissue, it is expressed in the peripheral area. A reduction in con-
nexin 43 in aged guinea pig SAN is associated with a reduction in
heart rate and an increase in arrhythmogenic events (Jones et al.,
2004). Moreover, pacemaker tissue contains functional gap junc-
tions and connecting cardiac fibroblasts (Camelliti et al., 2004).
Because an increase in fibroblasts expression can slow the gener-
ation of pacemaker excitability, it may be involved in bradycardia
and sick sinus syndrome (for review see Kohl et al., 2005). A
detailed review of the role of passive pacemaker tissue properties
on its electrical conductance is present in this issue (Unudurthi
et al., 2014).

REDUCED EFFICIENCY OF SYNCHRONIZATION OF ACTIVITY
ACROSS POPULATIONS OF CELLS AND ARRHYTHMIA
High-resolution optical mapping of SAN tissue has helped to
resolve how reduced synchronization of activity across popula-
tions of cells within the SAN can induce arrhythmia. In this
regard, different intrinsic mechanisms can be involved in tachy-
brady heart-rate alteration and exit block that leads to long sinus
pauses and increases susceptibility to cardiac arrhythmias: (i) an
increase in adenosine level in human SAN tissue, an endogenous
metabolite of the heart, through adenosine A1 receptor upregu-
lating, can lead to SAN dysfunction (Lou et al., 2013, 2014); (ii)
an increase in B-type and C-type natriuretic peptides increase the
mice SAN conduction velocity and shift the initial exit site (Azer
et al., 2014). (iii) Mutation in Ca2+-binding protein calsequestrin
2 is associated with different cardiac diseases. In calsequestrin
knockout mice the SAN exhibits bradycardia, conduction abnor-
malities and increase beat-to-beat variability (Glukhov et al.,
2013). (iv) Ganglion nerve plexi can stimulate the intrinsic car-
diac nervous system. In mice pulmonary vein ganglia stimulation
shifts the origin of SAN discharges and decreases the heart rate
(Zarzoso et al., 2013). (v) Impaired SR function in canine failing
hearts results in an impaired shift in the location of the pacemaker
site in response to β-AR stimulation (Shinohara et al., 2010).

SUMMARY
Changes in heart rate and rhythm are harbingers of the appear-
ance of arrhythmogenic events. Reduction in the degree of syn-
chronization of any intrinsic clock functions of pacemaker cells
or in the synchronization among pacemaker cells residing in the
SAN can be associated with arrhythmia occurrence. The extent to
which restoring normal synchronization of intrinsic clock periods
within pacemaker cells and among pacemaker cells can prevent
arrhythmogenic events awaits further elucidation. In our opinion,
future work requires a focus on the connection between dysfunc-
tion of inherent intrinsic mechanisms associated with different
cardiac diseases and cardiac arrhythmias. This connection can be
explored in genetically manipulated mouse models, in animals
like rabbit, dog and sheep with heart failure or atrial fibrilla-
tion, and in human-derived cardiomyocytes or human SAN. This

knowledge will contribute greatly to our understanding of cardiac
impulse initiation in health and in cardiac disease.
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