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Construction of quantitative models is a primary goal of quantitative biology, which
aims to understand cellular and organismal phenomena in a quantitative manner. In this
article, we introduce optimization procedures to search for parameters in a quantitative
model that can reproduce experimental data. The aim of optimization is to minimize
the sum of squared errors (SSE) in a prediction or to maximize likelihood. A (local)
maximum of likelihood or (local) minimum of the SSE can efficiently be identified
using gradient approaches. Addition of a stochastic process enables us to identify the
global maximum/minimum without becoming trapped in local maxima/minima. Sampling
approaches take advantage of increasing computational power to test numerous sets of
parameters in order to determine the optimum set. By combining Bayesian inference
with gradient or sampling approaches, we can estimate both the optimum parameters
and the form of the likelihood function related to the parameters. Finally, we introduce
four examples of research that utilize parameter optimization to obtain biological insights
from quantified data: transcriptional regulation, bacterial chemotaxis, morphogenesis,
and cell cycle regulation. With practical knowledge of parameter optimization, cell and
developmental biologists can develop realistic models that reproduce their observations
and thus, obtain mechanistic insights into phenomena of interest.

Keywords: quantitative modeling, parameter optimization, model selection, likelihood, probability density
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INTRODUCTION: REGRESSION ANALYSES FOR IDENTIFYING
PARAMETER VALUES BY APPLYING EXPERIMENTAL DATA
TO A QUANTITATIVE MODEL

The purpose of quantitative biology is to achieve biological
discovery through quantitative data analyses and modeling. A
quantitative model consists of a set of rules, often expressed by
mathematical formulas, which involve a set of parameters gov-
erning variables for the rules and initial/boundary conditions.
The simplest way to validate a given quantitative model is to
test whether an appropriate set of rules and parameters repro-
duces experimental observations. If it does this successfully, it
can be concluded that the model (i.e., the rules and parame-
ter values) is “sufficient” to explain the observations. However,
in many cases, we do not have information on the “appropri-
ate parameters.” In such cases, we may want to identify a set of
parameters that adequately explains the experimental observa-
tions under the stated rules. If the rules adequately represent the
true mechanisms underlying the biological process, the identified
parameters should reflect the quantitative properties of that
process. In this way, we can argue that the model (i.e., the rules

and the “estimated”parameter values) is sufficient to explain the
observations. The method for estimating parameters by fitting a
given quantitative model to the observed data is called regression,
and the overall workflow is comprehensively reviewed in Jagaman
and Danuser (2006). In this article, we focus on several prac-
tical procedures for identification of parameters and introduce
recent applications of regression for characterization of cellular
processes.

SUM OF SQUARED ERRORS (SSE) OF PREDICTION AND
LIKELIHOOD AS INDICES OF PARAMETER OPTIMIZATION
Minimization of the SSE and maximization of likelihood (abbre-
viated as “LS” and “ML,” respectively, in Jagaman and Danuser,
2006) are the two most common regression schemes. We first
review SSE and likelihood before explaining the methods for min-
imizing/maximizing these indices in Sections Minimization of
SSE and Maximization of Likelihood. Minimization of SSE has
been widely used as a simple and straightforward method to
obtain an optimum parameter set. However, SSE does not provide
further information, such as the uncertainty of the determined
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parameter values. In contrast, likelihood, which is a powerful
concept that covers the shortcomings of SSE, is capable of esti-
mating both an optimum parameter set and a probability density
function (PDF) related to the parameters, taking experimen-
tal error and the imperfections of the model into account. We
sometimes encounter a problem in selecting an optimum model
from among candidate models that contain different numbers
of parameters. In Section Model selection Using Likelihood, we
introduce information criteria, which enable us to solve this
problem when used in combination with likelihood.

MINIMIZATION OF SSE

Linear regression is the most familiar example of regression
(Bremer and Doerge, 2010). When an obvious linear correlation
is identified between two variables through a regression analysis
(e.g., X and Y in Figure 1A), we can assume a model, formu-
lated as Y = ag + a; X, that describes the relationship between
the variables. To identify the parameters of the model (i.e., ag
and a;) that reproduce the experimental observations, a least-
square method is frequently used (Bremer and Doerge, 2010).
In this method, we define an evaluation function that sums the
squared distance between the experimental data and the model
with a given set of parameters. The SSE, which is defined as
SSE = ;1" [yi~(ap + a1 x;)]?, where n is the number of data
points and (x;, y;)(i = 1, ..., n) are the data, is commonly used
as an index for the least-squares method. Parameters that mini-
mize the evaluation function are the optimum parameters, in the
sense that they minimize the discrepancy between the model and
the experimental results.

As a biological example of linear regression, we have demon-
strated that there is a correlation between the cell size and the
extent and speed of the elongation of the mitotic spindle in
Caenorhabditis elegans embryos (Hara and Kimura, 2009). In
this study, we further demonstrated that the elongation of the
mitotic spindle depends on cell size by showing that the elon-
gation of the mitotic spindle increased when we increased the
cell size.

As another example, let us consider the motion of a parti-
cle inside a cell (Figure 1B). If the motion is driven by random
Brownian forces, the mean square displacement (MSD) is linearly

proportional to the time lag (7) (i.e., MSD 1) (Berg, 1993).
The motion of a particle inside a cell is rarely random because
it is confined to a crowded space. The MSD decreases, and such
motion is called “sub-diffusion” (i.e., MSD  t%a < 1) (Saxton
and Jacobson, 1997). In other cases, the particle may be moved
by directional flow, and thus will be moved further than it would
by random diffusion (i.e., MSD o t%*,o¢ > 1). If we could esti-
mate the value of o in the MSD-vs.-t plot, we would be able
to determine whether the motion is better explained by random
Brownian diffusion, sub-diffusion, or directed flow. To estimate
a, a log-log plot is useful (Figure 1C). In the log-log plot, i.e.,
(log MSD) = a(log t) + (log C), « is the slope and (log C) is the
intercept of the line. Therefore, using the above-mentioned linear
regression analysis, we can identify the value of o that minimizes
SSE in the (log MSD)-vs.-(log t) plot.

Such linear regression analysis of a double logarithmic plot
is useful in characterizing how cellular parameters affect each
other. We quantified the shape of mitotic spindles in C. ele-
gans embryos and found a relationship described by SW = 1.5 x
P36 HLO>8, where SW and HL are the width and hypotenuse
length of the spindles and P is the ploidy of the embryos. Based
on this formulation, we were able to propose a physical model
that explains spindle shape (Hara and Kimura, 2013).

Minimization of SSE is applicable to both linear relationships
and a variety of estimations. Because SSE is defined as the sum
of the squared difference between the value estimated using the
model and the actual observations, the value can be defined for
any type of quantitative model. For example, in fluorescence
recovery after photobleaching (FRAP) experiments, the recov-
ery curve for the fluorescence intensity of the region where the
fluorescent molecules were bleached can be modeled as an expo-
nential curve, with its gradient reflecting the diffusion constant
of the molecule (Axelrod et al., 1976). By identifying the param-
eter that minimizes the SSE between exponential curves and the
experimental data for fluorescence intensity, one can estimate the
diffusion constant of the molecule.

MAXIMIZATION OF LIKELIHOOD
The simplicity of the SSE, which is a straightforward index for
the discrepancy between a given model and the observations,
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FIGURE 1 | Correlation analyses between parameters. (A) A linear lag for various modes of motion (see text for details). (C) The same plot as
correlation and linear regression. X and Y are two parameters of a dataset. shown in (B), except using logarithmic values. The three lines correspond to the
Plotting the values of Y against X shows a correlation between the parameters, different modes of motion in (B). For Brownian motion, the slope of the log—log
and the extent of that correlation can be calculated by regression analysis. (B) plot is one. For directional motion and sub-diffusion, the log-log plots yield a
The relationship between the mean square displacement (MSD) and the time linear relationship with a slope greater than one and less than one, respectively.
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sometimes causes difficulties in real data analyses. Suppose that,

for example, a phenomenon of interest is characterized by A Obtsje?’ed f pretglctlon del
parameters having different physical dimensions (e.g., length and e, TSI SIS HENS
weight). How can we compute the sum of errors in different \ A/

dimensions? In such a case, the observational data should be X l >
converted to dimensionless quantities through standardization of : '

each type of data. Likelihood is another important index to eval- : :

uate how well a given model agrees with experimental results. B : : -
Since the definition of likelihood naturally converts the obser- ( case 1 ) (Fi)lrsotggl?’ltllg)rg

vational data into dimensionless data, usage of likelihood can,

unlike SSE, avoid the difficulty mentioned above. One of the Ohihe medel

major advantages of likelihood over SSE is that we can obtain likelihood

both an optimum parameter set and a PDF related to the param- of the model > [ g :

eters. The obtained PDF provides valuable information not only : H

of an optimum value for each parameter but also of its uncer- X l >

tainty due to errors contained in the observational data and the :
imperfections of the given model. :
Let us consider a situation in which 1.1 is the experimen- c
tal value (x), while a given model predicts that x should be
1.0 (Figure 2A). How good is this model? (In other words, how (Case 2)
“likely” is this model to describe the experimental result?) A con-
ditional PDF related to an experimental value when results of
the model are given is required to calculate the likelihood; a sin-
gle value, such as a mean value, is insufficient. Suppose that we likelihood >
. : : : of the model
conduct simulations many times, and obtain results that follow a
normal distribution with a mean (@) of 1.0 (o) of 1.0. The likeli-
hood (L) indicates, roughly, the probability that the model yields
the experimental value. For our current example, the likelihood
is L = (2m02)72 exp[—(x — u)*/20%] = 0.4, where the exper-
imental value is 1.1 (Bishop, 2006; Kitagawa, 2010). If we had
independently observed multiple experimental data points {xi,
X2, .., X} for x, the likelihood of the dataset is given as a prod-
uct of the likelihood of each data point, i.e., L = IT;— " L;. Often,
we use log-likelihood, I = In L; thus, the total log-likelihood of Y
the model can be shown as [ = In (IT ;= ;"L;)= X;=1" ;. The
likelihood L, or the log-likelihood J, is originally an indicator of
how likely the obtained experimental data are, based on a model
with a given parameter set. The larger the likelihood or log-
likelihood, the better the model reproduces the observation. In
the example shown in Figure 2, even when the distance between
the observation and the mode of each likelihood function, i.e., °
the best observation that attains the likelihood function maxi-

fifth-order
polynomial

o / function
Yo

—

_. linear function

-/ ¥ cubic function

mum, is equal for candidate models, we can reasonably select a X
model that has a broad likelihood function as the better model
(Figures 2B,C). In turn, the parameter set that maximizes L or fitting with
I is considered to be optimum to explain the experimental data. linear cuibic gmﬁ%ﬁ?&
This method for estimating the optimum parameters is called the -
“ ot » residusl sum 370 67 61
maximum likelihood method. of squares
opti
|
MODEL SELECTION USING LIKELIHOOD
When we wish to evaluate the validity of a model, a straightfor- me 12t o b

ward approach is to test whether the model can predict unknown

data sets. Cross-validation and bootstrap methods are examples | FIGURE 2 | Likelihood: the distribution is important. (A) An example of

of such strategies (Hastie et al., 2009). As another strategy, we | the mean of predicted values and observed data points. (B) If the

can select gOOd models using likelihood as the index, just as we distribution of the predicted values of the model is broad, the likelihood of
. SERT the model is high because the probability of observing the data is high.

select good parameter values using likelihood. For example, sup-

. . (Continued)
pose that the growth rate of a cell is found to increase when
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FIGURE 2 | Continued

(C) In contrast, if the distribution of the predicted value is narrow, the
likelihood will be low. (D) An example of AIC calculation. Black dots
represent an imaginary set of observed data. For x =1,2,3,..., 20, the y
value was calculated according to y = 0.025 x (x - 3) (x-10) (x — 17) + 10,
and a Gaussian noise correction with a variance of four was added to each y
value. Next, we calculated the best-fit linear, cubic, and fifth-order
polynomial functions for the 20 data points. fmax = —(n/2) x In(2x62) -
(1/262) x 2i=1" [yi - Ymodel (X))12, where nis the number of data points
(n=20), 02 is the variance of the model, and y; and ymodel (X;) are observed
and model values, respectively, at x = x;. The sum of squared residuals is
i=1"lYi - Ymodel(X)12. AIC is calculated as AIC = 2k — 2/nax, Where k is the
number of free parameters in the model and is 3, 5, and 7 for linear, cubic,
and fifth-order functions, respectively. Note that the variance of each model
is also a free parameter to be optimized.

gene X is mutated, and that a theoretical framework that explains
the growth rate of wild-type cells exists. The model selection
procedure enables us to determine a better model among can-
didates: model 1, gene X affects one parameter (e.g., protein
production rate); or model 2, gene X affects two parameters (e.g.,
protein production rate and RNA production rate).

We often have to consider selecting the best model among
models that contain different numbers of parameters. In general,
a model that contains more parameters tends to attain larger like-
lihood since it easily fits to observed data. However, the use of too
many parameters leads to overfitting, in which the model loses
predictability despite fitting well to observations.

To select a model that fits well to observed data and mini-
mizes the number of parameters to avoid overfitting, the Akaike
information criterion (AIC) is widely accepted in various fields
of science (Akaike, 1974). The AIC is theoretically derived to be
AIC = —2lmax + 2k, where k is the number of free parameters in
the model and Iax is the maximum log-likelihood. The model
with the smallest AIC is selected as the best one. The Bayesian
information criterion (BIC) is another index used for model
selection. BIC is slightly different from the AIC in the additional
term, which penalizes the number of parameters more severely
than the AIC (Jagaman and Danuser, 2006). Example of the use
of both AIC and BIC can be found in modeling of a FRAP exper-
iment (Darzacq et al., 2007) and in identifying low-dimensional
models to reproduce cell cycle regulations (Kondo et al., 2013).

Figure 2D shows an example of model selection using the
AIC. The data are synthetically generated from a cubic func-
tion, y = 0.025 x (x — 3) (x—10) (x—17) 4+ 10 + &, where ¢
is the observational noise, which follows a normal distribution
with a mean of zero and a variance of four. We give candidate
models for comparison with the observed data as a linear func-
tion (y = 01 + 6x + ¢€1), a cubic function (y = 6; + 6,x+
03x2 + 04x> + &), or a fifth-order polynomial function (y= 6; +
02x + 03x% + 04> + O5x* + G6x° + £3), where €1, &2, and €3 are
Gaussian noises. Under this assumption, the optimum parameter
set (0;) determined based on the maximum likelihood method
coincides with the solution of the least-squares method (Bishop,
2006). The sum of squared residuals is the smallest in the case
of the fifth-order polynomial function, as expected, because the
function contains more free parameters than the other models
(Figure 2D). In contrast, the AIC is the smallest in the case of the

cubic function owing to the penalty term that inhibits a needless
increase in the number of parameters (Figure 2D). Therefore, the
AIC successfully selects the true cubic function as the best model
avoiding the over- or under-parameterized models.

PROCEDURES TO OPTIMIZE PARAMETERS

How can we optimize parameters, i.e., identify the set of param-
eters that maximizes the likelihood (or minimizes the SSE)?
Figure 3 shows a schematic of likelihood as a function of the
parameter value. For simplicity, the parameter is assumed to
change its value in one-dimensional space, although the param-
eter space is usually multi-dimensional in real cases. In the
following sections, we introduce some procedures that can be
used to identify the set of parameters that maximizes the like-
lihood. Minimization of SSE can be accomplished with similar
procedures.

Optimization procedures can roughly be classified into
two categories: gradient and sampling approaches. Gradient
approaches search for the (local) maximum of a likelihood
based on information from the local gradient, whereas sampling
approaches examine numerous sets of parameters and select the
sets that attain high likelihood. Gradient approaches can effi-
ciently reach a (local) maximum with small computational cost,
although they are inefficient for identifying the global maxi-
mum if there are multiple local maxima. In contrast, sampling
approaches can detect multiple local maxima, if they exist, but
require a massive computational cost.

GRADIENT APPROACH

The gradient approach is based on a deterministic method of
identifying maximum or minimum values of a given function.
When the likelihood, L, is a continuous function of the parame-
ters @ = {01, 0, ...}, the optimum parameters can be identified
by analytical calculation. The solution of the system of par-
tial differential equations dL/00;=0(i = 1,2,... ) is the set
of parameters that yields the local maximum of the likelihood
(Figure 3A). This procedure can also be used to minimize the SSE
in linear regression analyses.

When it is difficult to solve the system of partial differential
equations 0L/96; = 0 analytically, we must search for the solu-
tion numerically, based on the gradient approach, as follows: (1)
set an appropriate initial parameter value ® = @; (2) compute
the gradient of the likelihood for the initial value, i.e., dL/0©®
l@e=@,; (3) update ® in the direction of increase of the gra-
dient to increase the likelihood L; and (4) iterate (1) through
(3) until the gradient converges with zero. We can directly reach
one of the (local) maxima of L using this deterministic method
(Figure 3B). This procedure is used in several areas of biologi-
cal research, for estimation of values for bending elasticity during
cytokinesis (Koyama et al., 2012), transcriptional parameters, and
chemotaxis parameters (see later sections).

The gradient approach often leads not to the global maxi-
mum but to a local maximum when the likelihood is multimodal,
i.e., multiple local maxima exist. To overcome this disadvan-
tage, stochastic procedures are often adopted so that parameters
can exit a local maximum by permitting the current search-
ing point to move down the gradient with some probability

Frontiers in Physiology | Systems Biology

March 2015 | Volume 6 | Article 60 | 4


http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology/archive

Kimura et al.

Estimation methods for cellular parameters

A aL/oB =0 B (]
3 3 2
°

g g g

£ 2 £

2 < £

parameter value (6)

[en] D

s} o

3 3

G} =}

parameter value (0)
E F
A v A Y ¥

)y 3 L0 3|

o (2 Q ° 9 ° : CA)

o} : O o) A O o} . AD

o : y o o <] HE

£ : O A Q £ o O A Q = VLA Q

i LA 2R AR ghioiy

S S S Sy S SAEENGS o ener Sen S S SN 5 S5 ¢ wiae vie iy g

parameter value (6) parameter value (6) parameter value ()

FIGURE 3 | Various optimization strategies. (A-C) Gradient approaches. the global maximum (red arrow). (D-F) Sampling approaches. The red
(A) When the partial differential equations for likelihood can be solved as  arrow indicates the sampling point with the highest likelihood. (D) Grid
functions of parameters, the solutions yield local maxima or minima (red sampling, in which sampling occurs at regular intervals. (E) Simple
and gray arrows). The red arrow indicates maximum likelihood. (B) We random sampling, where parameters are chosen at random. (F)
can reach local maxima (red arrows) by iteratively following the gradient Importance sampling was added to (E). In the second round of sampling,
from a starting point. (C) If, in following the gradient, we add more realizations were set near the realization with high likelihood from
stochasticity, we may avoid being trapped in a local maximum and reach the initial round (gray crosses and circles).

(Figure 3C). As an example of a biological application of the gra-
dient approach, one of the stochastic methods, the Metropolis
algorithm, has been utilized in combination with a simulated
annealing method to predict the positions of nucleosomes on the
genome (NucPosSimulator, Schopflin et al., 2013).

SAMPLING APPROACH

In principle, if we examined all sets of possible parameters, we
could determine the entire form of a given likelihood and, thus,
the parameters that yield the maximum likelihood. However, this
strategy is not realistic in most cases. Instead, we sample a num-
ber of parameter sets and evaluate the likelihood for each set. As
the number of samples increases, the parameter set that yields the
largest likelihood approaches the optimum one. Roughly speak-
ing, there are two ways to sample parameter sets; one is “grid
sampling,” in which a sample is obtained at each parameter grid,
at regular intervals (Farhadifar et al., 2007) (Figure 3D), and
another is “random sampling,” in which samples are randomly
obtained (Bergstra and Bengio, 2012) (Figure 3E). A typical sam-
pling approach does not often work well due to “the curse of
dimensionality,” which means that the enormous number of
samples required for sufficient coverage of the high-dimensional
space are impossible to process. The following two strategies can
be used to overcome this problem. The first strategy is importance
sampling (Section Importance Sampling), in which parameter
space with higher likelihood will be searched recursively, to obtain
as many samples as possible from a key area. The second strat-
egy is to narrow the parameter space using prior information. We
can statistically incorporate our prior guess using Bayes’ theorem

(Section Obtaining Posterior PDFs Using a Sampling Approach).
In cell and developmental biology, we often have a priori infor-
mation on the order of magnitude of parameter values.

IMPORTANCE SAMPLING

Since parameters near the optimum parameters should have high
likelihood, we can efficiently search the optimum parameters by
focusing the investigation on parameter sets with high likelihood.
In “importance sampling” (Figure 3F), after an initial round of
grid or random sampling, we repeat the sampling, with greater
intensity, near the samples with high likelihood.

An example that utilizes the importance sampling tech-
nique is the particle filter (PF), which is often applied to esti-
mate a posterior distribution and/or parameters by means of
a number of realizations called “particles.” Genetic algorithms
(GAs) (Mitchell, 1998) are similar to PFs in that they both
select important samples in accordance with likelihood (or other
indices). However, GAs are not usually categorized as importance
sampling methods because the outcomes are not guaranteed to
converge to the target distribution function, due to stochastic
events (“mutation” or “crossover”) unrelated to the likelihood.

BAYESIAN INFERENCE OF PARAMETER DISTRIBUTION

The above-mentioned sampling approaches enable us to deter-
mine not only the parameter set that yields the maximum
likelihood but also the likelihood of all samples. Utilizing this
information, we can estimate, in principle, the entire form of the
likelihood function within the parameter space. Calculation of
the likelihood function provides important information on the
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FIGURE 4 | Bayesian inference of parameter distribution. (A) In the
sampling approach, the likelihood of observing experimental data for a
realization is calculated (a, b). Then, the non-normalized posterior PDF is
calculated by interpolating the likelihood values in the parameter space
between the realizations (c). (B) In the gradient approach, a realization (e.g.,
6p) is randomly shifted to a neighboring realization (61 or 6;'). If the product
of the likelihood and the prior probability of the new realization is greater
than that of the original, the old realization will be replaced by the new
realization and sampled. If the product for the new realization is smaller, the
realization will be replaced by the new set, and the probability of this new
set will be given as the ratio of the products of the new and the old
realizations (otherwise, the original realization will not be replaced), and the
realization will be sampled (a). After repeating the procedure multiple times
(b), the distribution of the sampled realizations is considered proportional to
the posterior PDF (c).

inevitable measurement noise in biological experiments and the
uncertainty of given stochastic models.

Unlike a straightforward approach to obtain the likelihood
function using all possible sets of parameters, which would be
unrealistic, a Bayesian approach provides a powerful and realistic
methodology to estimate target PDFs as posterior distributions.
In real data analyses or modeling, we often have prior information
about parameters, e.g., a realistic range of parameters obtained
through experimentation. Bayesian inference methods make use
of prior information in order to limit the parameter space to be
searched.

The outcome of the inference is a “posterior PDE” p(®|Y),
which indicates how probable a parameter set @ = {01, 6,, ...}
is when Y, usually an experimental observation, is given. In
contrast, the prior PDF p(®) indicates how probable ® is with-
out knowing Y. The prior PDF reflects our initial guess of the
parameter value. For example, if one supposes that a parameter
must be within the range from 1 to 100 but has no additional
information, a uniform distribution on the interval from 1 to 100

is the appropriate prior PDE. According to Bayes’ theorem, the
posterior PDF is proportional to the product of the prior PDF
and the likelihood, which is formulated as p(®|Y) = p(Y|®) x
p(®)/p(Y) (Lee, 2012). Here, p(Y|®) is the likelihood, which
expresses how probable Y is when the parameter @ is given, and
p(Y) is a PDF related to the observed data, Y, which is constant.
It should be noted that the likelihood is not a probability distri-
bution in the sense that its integral does not necessarily equal one
(Bishop, 2006). Combining Bayesian inference with the sampling
approach (Section Obtaining Posterior PDFs Using a Sampling
Approach) or the gradient approach (Section Obtaining Posterior
PDFs Using a Gradient Approach) enables us to obtain both
likelihood and posterior PDFs.

OBTAINING POSTERIOR PDFS USING A SAMPLING APPROACH

In this approach (Figure4A), we sample a number of sets of
parameter values, which are termed as “realizations,” according to
the prior PDF [Figure 4A(a)]. Then, we calculate the likelihood of
each realization by substituting it into our model [Figure 4A(b)].
According to Bayes’ theorem, the unnormalized posterior PDF,
which is proportional to the normalized one, is obtained as a
product of the likelihood and the prior PDF for each realiza-
tion. Since we sampled from the prior PDF, the unnormalized
posterior PDF is the likelihood at the sampling points whose devi-
ation already reflects prior effects [Figure 4A(c)]. The normalized
posterior PDF can be calculated by dividing the unnormalized
posterior PDF by p(Y), but this calculation requires a complex
numerical integration. Without such normalization, the form
of the function for the normalized and unnormalized poste-
rior PDFs are identical, and thus the optimum parameter set
can be obtained from the unnormalized one because p(Y) is
constant. Therefore, calculation of an unnormalized posterior
PDF is usually sufficient for our purposes. The parameter set at
the mode of the unnormalized posterior PDF, i.e., the param-
eter set that attains the posterior PDF maximum, is called the
maximum-a-posteriori (MAP) estimate.

PE, or sequential Monte Carlo, is a filtering method that is
used to sequentially estimate, using importance sampling, poste-
rior PDFs along with continuous input of observation data. Sets
of parameters (“particles”) with a high likelihood will prolifer-
ate (or will be “resampled,” allowing duplication) (Figure 3F).
Unlike GA, which focuses on finding the optimum set, PF enables
us to estimate the likelihood and the posterior PDE. To avoid the
problem of “degeneration,” which the plain PF often faces, some
advanced PF methods, such as merging PF (Nakano et al., 2007),
have been proposed. A real application of PF to estimation of
parameters can be found in studies on transcriptional regulation
of the circadian clock (Nakamura et al., 2009).

OBTAINING POSTERIOR PDFS USING A GRADIENT APPROACH

In this subsection, we explain the procedure of the Metropolis
algorithm (Figure 4B), which applies when the proposal den-
sity function that nominates the next candidate realization is
symmetric (Gilks et al., 1995; Robert and Casella, 2010). Unlike
the above-mentioned sampling approach, in which we calcu-
late the likelihood of multiple and independent realizations, this
method starts with a single realization. To obtain a posterior PDF
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as the target distribution, the sampling procedure is as follows.
First, we calculate the value of the posterior PDF related to the
initial realization (Pfysmer), which is given by the product of the
likelihood and the prior PDE. Next, the proposal density function
randomly generates a new candidate realization, and we calcu-
late the value of the posterior PDF (Pjaster). If Plaster > Pormers
the candidate realization is accepted as a new realization of the
posterior PDE. The key step in the Metropolis algorithm is that
even if Pfyrmer > Plaster> the candidate realization is accepted with
the probability of Ppster/Pformer [Figure 4B(a)]. When a candi-
date is rejected, the former realization remains as the current
realization. This sampling process is repeated until we obtain
a sufficient number of realizations [Figure 4B(b)]. The process
that allows a realization to move in the direction of decreasing
posterior PDF provides a way to exit local maxima of posterior
PDF. The distribution of the sampled realizations approximates
the unnormalized posterior PDF [Figure 4B(c)], from which we
can calculate the MAP, i.e., the optimum set of parameters that
maximizes the posterior PDE.

The procedures for obtaining a posterior PDF using sampling
methods based on the Markov process are generally referred to
as Markov chain Monte Carlo methods. In this class, in addition
to the Metropolis algorithm explained above, Gibbs sampling and
Hamiltonian Monte Carlo algorithms are popular (Bishop, 2006).
Approximate Bayesian computation (ABC) is another sampling
approach that can be used to obtain a posterior PDF (Beaumont
et al., 2002). The most remarkable feature of ABC is that instead
of likelihood, any index in data space, such as SSE, can be used
to determine acceptance/rejection of candidate realizations of
parameters. Although it does not employ likelihood, ABC enables
us to obtain samples from a target posterior PDF; the conver-
gence speed strongly depends on the definition of the index in
data space. This procedure has been used for estimation of the
parameters for microtubule dynamics in a plant cell (Nakaoka
et al., 2015). The estimated parameters were consistent with the
values measured in independent experiments.

EXAMPLES OF CELLULAR PARAMETER OPTIMIZATION
TRANSCRIPTIONAL REGULATION
The initiation and elongation of gene transcription consist of
multiple processes involving various regulatory proteins. Darzacq
et al. constructed a simple model of transcriptional regula-
tion consisting of three first-order ordinary differential equa-
tions describing promoter assembly, transcriptional initiation,
and elongation (Darzacq et al., 2007). The six parameters in this
model were optimized to fit the experimental results obtained
through FRAP analyses of RNA polymerase II in cultured cells by
minimizing the SSE. The optimization was conducted using the
software SAAM II (The Epsilon Group, Charlottesville, USA).
More recently, Stasevich et al. quantified the accumula-
tion of RNA polymerase II, discriminating between the initi-
ation form (phosphorylated at Ser5 at its C-terminal domain,
CTD) and the elongation form (phosphorylated at Ser2) using
FabLEM (antibody fragment-based live endogenous modifica-
tion labeling) technology (Stasevich et al., 2014). Combined
with the results of the FRAP assays, the authors were able
to narrow the optimum parameters for transcription kinetics.

Minimization of the SSE was performed using the software
Mathematica (Wolfram, Champaign, USA). Through these anal-
yses, the authors succeeded in quantitatively and precisely char-
acterizing the effect of histone acetylation on transcriptional
regulation.

BACTERIAL CHEMOTAXIS

The impulse response of bacteria has been estimated from bac-
terial chemotaxis trajectories, using inference methods (Masson
etal, 2012). The model organism Escherichia coli senses the envi-
ronmental concentration of chemicals and uses that information
to regulate the rotation of flagellar motors and thus orient its tra-
jectories of motion (Berg, 2004). Information on the chemical
concentration sensed by the receptors is relayed via the kinase
CheA, and the activity of this molecule is reduced by receptor
binding. The second messenger in the chemotaxis pathway is
the protein CheY. Its phosphorylated form, CheYp, binds to the
flagellar motors and increases their rate of switching from coun-
terclockwise rotation, corresponding to run phases, to clockwise
rotation, thereby destabilizing the flagellar bundles that induce
tumbling. Other important components of the pathway include
the scaffold protein CheW, the phosphatase CheZ, the methyl-
transferase CheR, and the methylesterase CheB; the latter two
are responsible for feedback from the receptors and the resulting
adaptation (see Figure 5 and Vladimirov and Sourjik, 2009 for a
recent review).

Is it possible to reconstruct the kinetics of biochemical inter-
actions from an analysis of bacterial trajectories? In other words,
can we infer the molecular pathways from paths in physical
space? The task was greatly simplified by the fact that the model
that describes the observations was known in advance, based on
previous independent experimental assays and modeling efforts
(reviewed in Celani et al., 2011). The goal was then reduced to the
identification of the appropriate parameters. Furthermore, for the
problem at hand, under physiological conditions, the response is
linear. This convenient property allowed bacterial movement to
be described as a two-state, inhomogeneous Poisson process, and
closed-form expressions for the likelihood of a trajectory can be
obtained. Additionally, in view of the compactness of the pathway,
only three parameters are relevant: the intensity of the response
(@), its duration («;), and the degree of adaptation (1), and
the impulse response can be described as a function of time ()
by K(t) = e M x (ag — Aat). These quantities are directly
related to various molecular parameters, such as receptor affini-
ties, protein copy numbers, and (de-)phosphorylation and (de-
)methylation rates. The small number of parameters then allows
for an exhaustive exploration of parameter space and a straight-
forward derivation of the best parameter set for the model.

Remarkably, when the trajectory of a single bacterium is
tracked for a sufficiently long time, it is possible to infer the
values of molecular parameters for that individual, allowing us
to probe variations within a given isogenic population (Masson
et al., 2012). To maximize the likelihood, optimization was per-
formed using two types of gradient methods, a variable metric
method and a simplex algorithm combined with a conjugate
gradient method, and the MAP solution was calculated. Both
methods yielded the same results, within acceptable statistical
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FIGURE 5 | Parameter estimation of bacterial behavior. The inference of
biochemical parameters in the bacterial chemotaxis pathway from
trajectories (Masson et al., 2012). (A) Bacteria swimming in a microfluidic
device in the presence of a stable, linear chemical gradient (here, Me-Asp)
are tracked. According to the current linear speed and angular velocity, a
state is associated with the bacterial motion, run (empty circles) or tumble
(red circles). The coordinate along the gradient is proportional to the
concentration experienced by the bacterium. The time-series of states and
concentrations are the input data for the inference process. (B) Starting
from the full biochemical network, an approximate description of moderate
gradient intensity yields an inhomogeneous Poisson model for bacterial
states, where the transition rates are related to the kinetic parameters of
the model (Celani et al., 2011). An exact expression for the log-likelihood
can then be written. (C) A 2D section of the likelihood landscape. The
abscissa indicates the time-scale of the response, which is governed by the
methylation process. The ordinate is the amplitude of the response, which
mainly depends on the receptor kinetics. The maximum likelihood estimate
indicates the optimum choice of parameters for the model.

uncertainty. Another notable advantage of this inference tech-
nique is its non-invasive nature; swimming bacteria are observed
under the microscope and are not disturbed by the observation.

MORPHOGENESIS OF TISSUES AND ORGANS

Mechanical forces are critical for the morphogenesis of tissues
and organs. However, such forces are difficult to measure. For
example, if an object is not moving, we cannot tell whether a
small force is acting on the object or strong forces are acting
on the object but are balanced out. One way to estimate such
forces is to ablate a part of a tissue/organ and measure the speed
and direction in which the lesion spreads. This method is inva-
sive and cannot be repeated for a given sample. Recent studies
developed methods to infer a stress or deformation map during
morphogenesis. To infer stress distribution in epithelial tissues
(Chiou et al., 2012; Ishihara and Sugimura, 2012), the authors
first constructed physical models assuming that the force bal-
ance involving tensions at cell contact surfaces and pressures of
cells determines shapes of epithelial cells. The methods search for
model parameters that reproduce the cell shapes in the tissues
quantified from microscope images. In the method proposed by

Chiou et al. (2012), the tension and pressure of constituent cells
were estimated analytically. In comparison, the method proposed
by Ishihara and Sugimura (2012) reduces the number of param-
eters to be optimized to two, i.e., the variance of tension and
the variance of observation/system errors. These parameters were
optimized analytically or numerically through a gradient method.
The authors were able to demonstrate the validity of the estima-
tion by experimentally measuring the tension using laser ablation
(Ishihara and Sugimura, 2012). The method was further uti-
lized to demonstrate the importance of extrinsic anisotropy in
mechanical forces for Drosophila wing development (Sugimura
and Ishihara, 2013). A similar method was developed to cre-
ate a deformation map of a whole organ during chick limb
development (Morishita and Suzuki, 2014). This map precisely
describes the type of deformation and its temporal regulation
during organ morphogenesis.

CELL CYCLE REGULATION

The molecules that drive cell cycle progression and their relation-
ships are well-studied. Detailed numerical models consisting of
a number of molecules accurately reflect current experimental
knowledge (Borisuk and Tyson, 1998; Tsai et al., 2008). Kondo
et al. attempted to simplify the detailed models to identify “low-
dimensional” models that sufficiently reproduce the observations
of the detailed models (Kondo et al., 2013). The authors first con-
structed models with two dimensions (considering only active
Cdc2 and cyclin) and various polynomial orders then optimized
the parameters using a PF method. By calculating the AIC and
BIC of the models, the authors concluded that the model with
a third-order polynomial sufficiently reproduces characteristic
behaviors of the cell cycle models.

PERSPECTIVE: FROM EXPLANATION TO PREDICTION

Data-driven science is gaining popularity in most scientific fields.
With the rapid development of information technology, scien-
tists can collect “big data” in their field and develop new methods
for analysis. Use of such methodologies in other fields will pro-
vide clues regarding biological data analysis. For example, data
assimilation (DA) is a fundamental computing technique used
to predict future states by an integration of numerical simula-
tion models and time-series data, using Bayesian statistics. DA
has been used in weather forecasting and in predicting the status
of the Earth’s interior that may trigger a large earthquake (Nagao
et al., 2013). It has been applied to dynamic biological systems
such as circadian rhythms (Nakamura et al., 2009). The method
is also important in control theory for estimating the internal
state of interest. Lillacci and Khammash applied an extended
Kalman filter for parameter estimation in non-linear biological
systems, including the heat shock response in E. coli (Lillacci
and Khammash, 2010). An accurate prediction of the (unknown)
future is not required in the field of experimental biology, which
focuses on the explanation of experimental results. Importantly,
the method enables us to conduct “on-line modeling,” in which
a model is improved simultaneously with data acquisition. Such
on-line modeling may be useful for the imaging of a moving
object by controlling the field of view of the microscope with
predictive information with respect to movement. In general, the
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concepts and techniques used in cutting-edge statistics should be
applicable to the field of experimental biology. With this in mind,
we anticipate that a collaborative, trans-disciplinary approach will
become more and more important in quantitative biology.
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