
ORIGINAL RESEARCH
published: 13 March 2015

doi: 10.3389/fphys.2015.00074

Frontiers in Physiology | www.frontiersin.org 1 March 2015 | Volume 6 | Article 74

Edited by:

Zbigniew R. Struzik,

The University of Tokyo, Japan

Reviewed by:

Paul F. M. J. Verschure,

Center for Neuro-Robotics and

Autonomous Systems, Spain

Tomislav Stankovski,

Lancaster University, UK

Maria G. Signorini,

Politecnico di Milano, Italy

*Correspondence:

Riccardo Barbieri,

Department of Anesthesia, Critical

Care Massachusetts General Hospital,

55 Fruit Street, Jackson 4, Boston,

MA 02114, USA

barbieri@neurostat.mit.edu

Specialty section:

This article was submitted to

Computational Physiology and

Medicine, a section of the journal

Frontiers in Physiology

Received: 11 November 2014

Accepted: 23 February 2015

Published: 13 March 2015

Citation:

Valenza G, Garcia RG, Citi L, Scilingo

EP, Tomaz CA and Barbieri R (2015)

Nonlinear digital signal processing in

mental health: characterization of

major depression using instantaneous

entropy measures of heartbeat

dynamics. Front. Physiol. 6:74.

doi: 10.3389/fphys.2015.00074

Nonlinear digital signal processing in
mental health: characterization of
major depression using
instantaneous entropy measures of
heartbeat dynamics
Gaetano Valenza 1, 2, 3, Ronald G. Garcia 4, 5, Luca Citi 6, Enzo P. Scilingo 3, Carlos A Tomaz 7

and Riccardo Barbieri 1*

1Department of Anesthesia, Critical Care & Pain Medicine, Massachusetts General Hospital, Harvard Medical School,

Boston, MA, USA, 2Massachusetts Institute of Technology, Cambridge, MA, USA, 3Department of Information Engineering,

Research Center E. Piaggio, University of Pisa, Pisa, Italy, 4Martinos Center for Biomedical Imaging, Department of Radiology,

Massachusetts General Hospital, Charlestown, MA, USA, 5Department of Psychiatry, Masira Research Institute, Medical

School, Universidad de Santander, Bucaramanga, Colombia, 6 School of Computer Science and Electronic Engineering,

University of Essex, Colchester, UK, 7 Laboratory of Neuroscience and Behavior, Universidade de Brasilia, Brasilia, Brazil

Nonlinear digital signal processing methods that address system complexity have

provided useful computational tools for helping in the diagnosis and treatment of a

wide range of pathologies. More specifically, nonlinear measures have been successful

in characterizing patients with mental disorders such as Major Depression (MD). In

this study, we propose the use of instantaneous measures of entropy, namely the

inhomogeneous point-process approximate entropy (ipApEn) and the inhomogeneous

point-process sample entropy (ipSampEn), to describe a novel characterization of

MD patients undergoing affective elicitation. Because these measures are built within

a nonlinear point-process model, they allow for the assessment of complexity

in cardiovascular dynamics at each moment in time. Heartbeat dynamics were

characterized from 48 healthy controls and 48 patients with MD while emotionally

elicited through either neutral or arousing audiovisual stimuli. Experimental results coming

from the arousing tasks show that ipApEn measures are able to instantaneously track

heartbeat complexity as well as discern between healthy subjects and MD patients.

Conversely, standard heart rate variability (HRV) analysis performed in both time and

frequency domains did not show any statistical significance. We conclude that measures

of entropy based on nonlinear point-process models might contribute to devising useful

computational tools for care in mental health.

Keywords: nonlinear, heart rate variability, instantaneous entropy, point process, Wiener-Volterra series, Laguerre

expansion

Introduction

Rapid developments in healthcare technology render digital signal processing crucial in revealing
manifold information regarding human physiological functioning and pathological condition.
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To date, most of the proposed digital processing techniques con-
sider noninvasive biomedical signals such as the electrocardio-
gram (ECG), respiration activity, and body movement activity, in
order to extract physiological parameters [e.g., mean heart rate
(HR) and respiratory frequency] and demonstrate that they can
provide clinically relevant information (He et al., 2013).

Over the last two decades, ubiquitous and pervasive comput-
ing has permeated healthcare (Korhonen and Bardram, 2004) in
helping to gather health-related information from wearable or
embedded sensors, even in settings outside the hospital. Success-
ful examples have proven to be those systems that monitor the
activity and function of the Autonomic Nervous System (ANS)
in mental healthcare (see e.g., Agelink et al., 2002; Korhonen and
Bardram, 2004; Wittchen and Jacobi, 2005; Lemoult et al., 2012;
Yang and Tsai, 2013).

Mathematical modeling and digital signal processing tech-
niques play an important role in the study of cardiovascular con-
trol physiology and heartbeat dynamics (Acharya et al., 2006).
The cardiovascular system is often investigated through anal-
ysis of event series obtained by computing the time intervals
between two consecutive R-waves as detected from the ECG, i.e.,
the RR intervals. Because the heartbeat is controlled by the ANS,
the RR interval series shows preferred oscillations around the
mean value, defined as Heart Rate Variability (HRV) (Acharya
et al., 2006). A recently proposed exemplary case having at its
core the digital signal processing of heartbeat dynamics is pro-
vided by a multiparametric wearable platform for the physiologi-
cal/behavioral monitoring ofmood fluctuation in bipolar patients
(Valenza et al., 2014a,b).

The signal processing methodology behind these ANS/ECG-
based healthcare systems is based on linear analysis (performed
in both time and frequency domains) aimed at identifying a lim-
ited number of oscillatory components to characterize heartbeat
dynamics. Nevertheless, the complexity of the cardiovascular
control system calls for processing tools able to transcend a sim-
plistic identification. Several nonlinear measures of HRV, in fact,
such as Lyapunov exponents, 1/f slope, approximate entropy, and
detrended fluctuation analysis, have been widely used to uncover
nonlinear fluctuations in HR that are not otherwise apparent
(Sunagawa et al., 1998; Mathews and MacLeod, 2005; Nieren-
berg, 2008; Voss et al., 2009; Leistedt et al., 2011; Soleimani et al.,
2011; Rakofsky et al., 2013; Cornforth et al., 2014). Consequently,
such measures have provided important quantifiers of cardiovas-
cular control dynamics, mediated by the ANS, and have been
found to have prognostic value in aging and disease. Although the
detailed physiology behind cardiovascular complex dynamics has
not been completely clarified, nonlinear HRV dynamics may be
partly explained by the various nonlinear neural interactions and
integrations occurring at the neuron and receptor levels, which
underlie the complex output of the sinoatrial node in response
to changing levels of efferent autonomic inputs (Sunagawa et al.,
1998). It is also commonly thought that the complexity of healthy
dynamics can be interpreted as an essential part of their ability to
adapt to a varying environment.

Depression is a global public health problem of very
high prevalence (Nierenberg, 2008) characterized by persistent
feelings of sadness and loss of interest or pleasure in daily

activities for at least a 2 week period, with other symptoms
including psychomotor retardation, fatigue, feelings of worth-
lessness, and recurrent thoughts of death (Soleimani et al.,
2011). Clinical features related to autonomic dysfunction such
as decreased appetite, gastrointestinal parestesias, imsomnia, and
increased sweating are also frequently reported (Rakofsky et al.,
2013). All these alterations seem to be reinforced by a mood-
congruent cognitive bias in whichMD patients give preference to
the processing of negative vs. positive emotional content mate-
rial (Leistedt et al., 2011). The exposure to negative emotional
stimuli easily activates other negative thoughts and memories
in MD patients, thus contributing to maintaining and enhanc-
ing depressive symptomatology (Mathews and MacLeod, 2005).
The proposed analysis has been inspired by several works that
relate ANS markers to depression (Mathews and MacLeod, 2005;
Nierenberg, 2008; Leistedt et al., 2011; Soleimani et al., 2011;
Rakofsky et al., 2013). In particular, it has been shown that linear-
derived parameters are quite unreliable in effectively discerning
healthy subjects and patients with major depressive disorder, as
they have a high inter-subject variability. On the contrary, non-
linear measures such as MultiScale Entropy (MSE) allowed for
the discrimination of depressive patients and healthy subjects in
always showing a significant decrease of the complexity in the
pathological group (Leistedt et al., 2011; Yang and Tsai, 2013;
Valenza et al., 2014c).

Nonlinear analysis of HRV data might also be successful
in the individual assessment of psychiatric disorders. Most of
the known mental disorders, in fact, are currently diagnosed
by simply relying on the clinician’s experience, possibly sup-
ported by verbal interviews and scores from specific question-
naires (Wittchen and Jacobi, 2005). Therefore, a more auto-
mated mental assessment through non-invasive, easy-to-record,
and robust physiological time series such as HRV could open
dramatic clinical perspectives in objectively managing the ill-
ness, thereby helping patients, facilitating the interaction between
patient and physician, as well as alerting professionals in case of
critical pathological episodes.

In this study, we attempt to characterize major depression
(MD) by using a recently introduced computational method of
nonlinear digital signal processing. Accordingly, we hypothesize
that instantaneous nonlinear analysis based on entropy measures
can provide useful information about the clinical state of patients
with MD while tracking the related complex cardiovascular
dynamics. To this extent, we propose the application of point-
process nonlinear models of heartbeat dynamics to derive instan-
taneous indices of complexity. In fact, we recently improved the
point-process framework, where the RR interval series is seen as
a binary stochastic series characterized by inter-event probability
functions (Leistedt et al., 2011), by embedding nonlinear autore-
gressive models with the Laguerre expansion of the Wiener–
Volterra autoregressive terms. In doing so, we both achieved a
more effective system identification (Valenza et al., 2014d), and
derived novel instantaneous indices of complexity, i.e., the inho-
mogeneous point-process approximate entropy (ipApEn) and
the inhomogeneous point-process sample entropy (ipSampEn)
indices (Valenza et al., 2014d). In this work, after describing the
experimental procedures and the basicmathematical formulation
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related to the point-process nonlinear modeling, we test the effec-
tiveness of the instantaneous entropy measures in distinguishing
patients with MD from healthy subjects.

Materials and Methods

Recruitment of Eligible Subjects
A number of 48 Hispanic outpatients with MD were included
in the study. All subjects were screened in local universities
by applying the Zung-self-rating depression scale (Zung, 1965).
This scale is a 20-item questionnaire that measures the pres-
ence and severity of depressive symptomatology in the preceding
2 weeks. A score of 50/100 was considered compatible with a
diagnosis of depression according to previous data in our pop-
ulation (Campo-Arias et al., 2006). A Spanish Structured Clini-
cal Interview for DSM-IV Axis 1 disorders, Clinical version, was
applied by qualified psychiatrists to confirm the diagnosis of MD.
All patients were experiencing their first MD episode and had
not received psychotherapeutic or pharmacological treatment. A
control group consisting of 48 age- and gender-matched healthy
subjects was also included. Exclusion criteria for both MD and
healthy subjects were: cardio-, cerebro-, or peripheral vascular
diseases, the presence of neoplasm, diabetes mellitus, kidney or
liver failure, infectious or systemic inflammatory disease, and
current neurological illnesses. All subjects received information
about the study procedures and gave written informed consent
approved by the local Institutional Review Board. Data coming
from this study was recently published to investigate sex differ-
ences in cardiac autonomic function and plasma nitrate levels
and endothelial function in MD (García et al., 2011, 2012).

Experimental Protocol and Data Acquisition
The stimulus used in the study consisted of a set of 11 slides
accompanied by an audio recording with two different narrative
versions: an emotionally neutral recording (N) and an emotion-
ally arousing one (E). These stories had been previously adapted
and validated in a sample from the same Hispanic background
(Botelho de Oliveira et al., 2012) and were kept as close as pos-
sible to the originals (Cahill and McGaugh, 1995). Both sets of
slides showed a mother taking her young son to see his father at
a nearby hospital where he works. The slides were identical, but
the narrative differed in the N and E versions. In the N version
of the story, the mother and son witness a minor car accident,
which attracts the attention of the child, whereas in the E ver-
sion, the child himself is critically injured and requires a surgical
intervention at the hospital. The story content can be divided into
three phases, with the second phase (slides 5–8) containing the
emotionally arousing elements.

All recording sessions took place between 8 a.m. and 10 a.m.
All tests were performed in a quiet, dimly lit room at a comfort-
able temperature (20–22◦C). Participants abstained from smok-
ing or consuming beverages containing caffeine, xanthines, or
alcohol the day before evaluation. Subjects from each group (MD,
HC) were randomly assigned to either undergo the N or E stimu-
lus version, resulting in four different experimental groups (MD-
N, MD-E, HC-N, HC-E). All subjects were told that the aim of
the study was to evaluate how people pay attention to stories. It

was explained that the slide presentation would be shown accom-
panied by a short narration. They were instructed to concentrate
on each slide for the duration of its presentation and to watch
the slide show as they would watch a movie. Continuous ECG
monitoring (lead II) was performed with a Finometer device
(Finapress Medical System, The Netherlands). Data was digitized
and stored in a PC computer using a signal acquisition system
DATAQ 720-WINDAQ PRO (DataQ Instruments, Akron, OH,
USA). Subjects were initially asked to rest for 10min in a reclin-
ing position. Then, each subject underwent the stimulus elicita-
tion previously described, followed by a 3-min recovery period,
during which participants quietly rested.

Point-Process Modeling of Cardiovascular
Dynamics
Given a single heartbeat event R and the events set {uj}

J
j = 1

detected from the ECG, RRj = uj − uj−1> 0 denotes the jth R-R
interval within the observation interval t ∈ (0,T].

Assuming history dependence and an inverse Gaussian prob-
ability distribution function (IG-pdf) of the waiting time t − uj
until the next R, it is possible to write (Valenza et al., 2014d,e):

f (t|Ht, ζ (t)) =

[
ζ0 (t)

2π
(
t − µj

)3

] 1
2

×

exp

{
1

2

ζ0 (t)
[
t − µj − µRR (t,Ht, ζ (t))

]2

µRR(t,Ht, ζ (t))2
(
t − µj

)
}

(1)

With j = Ñ (t) the index of the previous event before time t
and Ñ(t) the left continuous sample path of the associated count-
ing process, Ht = (µj,RRj,RRj−1, . . .,RRj−M+1) the history of
the past heartbeat events, ζ (t) the vector of the time-varying
parameters, µRR(t,Ht, ζ (t)) the first-moment statistic (mean) of
the distribution, and ζ0 (t)>0 the shape parameter of the inverse
Gaussian distribution.

As f (t|Ht, ζ (t)) indicates the probability of having an event
at time t given that a previous event has occurred at µj and
µRR(t,Ht, ζ (t)) can be interpreted as signifying the most prob-
able moment when the next event could occur. In order to com-
pute the ipApEn and ipSampEn indices, which are described in
the next paragraph, we apply a formulation of µRR(t,Ht, ζ (t))
based on a Nonlinear Autoregressive Model with Laguerre
expansions (NARL) of the following terms:

µRR (t,Ht, ζ (t)) = RRÑ(t)+g0 (t)+

p∑

i= 0

g1 (i, t) li
(
t−

)
+

q∑

i= 0

q∑

j= 0

g2
(
i, j, t

)
li

(
t−

)
lj

(
t−

)
(2)

where li
(
t−

)
=

∑p
n= 0 8i (n) (RRÑ(t)−n − RRÑ(t)−n−1) is the

output of the ith Laguerre filters 8i just before time t. Of note,
we process the derivative R-R series to improve on the achieve-
ment of stationarity within the sliding time window W (in this
studyW = 90 s).

As a major advantage, the Laguerre filtering allows for a parsi-
monious number of unknown parameters that need be estimated
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in Equation (2), and the implementation of a nonlinear autore-
gressive Volterra–Wiener model with second order nonlinear
terms and long-term memory.

Since µRR (t,Ht, ζ (t)) is defined in continuous time, it is pos-
sible to obtain an instantaneous R-R mean estimated at an arbi-
trarily fine timescale, which requires no interpolation between
the arrival times of two beats.

Given a time-varying local observation interval of dura-
tion W, we find the unknown time-varying parameter vector
that maximizes the local log-likelihood through the well-known
Newton–Raphson procedure (Valenza et al., 2014d).

The recursive, causal nature of the estimation allows for pre-
dicting each new observation given the previous history inde-
pendently at each iteration. The model and its parameters are
therefore also updated at each iteration without priors. We deter-
mine the optimal model order {p, q} based on the Akaike Infor-
mation Criterion and the model goodness-of-fit (obtained by
prefitting the model to a subset of the data), which is based on
the Kolmogorov–Smirnov (KS) test and associated KS statistic
(Valenza et al., 2014e). Autocorrelation plots are also consid-
ered to test the independence of the model-transformed intervals
(Valenza et al., 2014e). Once the order {p, q} is determined, the
initial NARL coefficients are estimated by the method of least
squares (Valenza et al., 2014e).

Instantaneous Entropy Estimation: the
Inhomogeneous Point-Process Entropy
Measures of entropy are primarily defined to address the ran-
domness and regularity of a dynamical system given the analy-
sis of time series originated by the observed system. Traditional
algorithms provide a single value (or a set of values) within a
predetermined time window. Therefore, given the experimen-
tal time series, these values represent averaged measures of the
entire dynamics observed in that specific time window. How-
ever, a single estimation could not be sufficient to completely
characterize system complexity in the face of non-stationary
behavior. It is well-known that dynamical systems (particu-
larly those associated with physiological processes) evolve and
change at each moment in time. To overcome the limitations
of the currently used entropy measures, within this study we
use a recently introduced definition of approximate and sam-
ple entropy as instantaneous entropy measures of discrete system
complexity.

The originality of the new definitions lies in the fact that
they are fully embedded in the probabilistic framework of the
inhomogeneous point-process theory, and introduce important
differences to the mathematical formulation of the phase-space
vectors and the definition of the distance between phase-space
vectors.

Given the embedding dimension m, and time delay of the
phase space r(t), here we engage a novel tool for nonlinear
dynamical systems by defining the distance d[x(k),x(j)] as the
KS distance (Valenza et al., 2014d) (i.e., the maximum value
of the absolute difference between two cumulative distribution
functions) between the IGk and IGj probability distributions of
µRR(tk+kn ) and µRR(tj+kn ) for kn = 0, 1,. . .,m− 1.

Then, it is possible to define (Valenza et al., 2014d):

Cm (r, t) = (N −m+ 1)−1
N−m+1∑

i= 1

lnCm
k (r, t)

and obtain

ipApEn (m, r, N, t) = Cm (r, t) − Cm+1 (r, t) .

Note that the time-varying quantity r(t) is instantaneously
expressed as r (t) 0.2σRR(t) as previously suggested (Leistedt et al.,
2011; Valenza et al., 2014d).

As the definition of the proposed entropy measure is fully
embedded into the inhomogeneous point-process nonlinear
framework, it is possible to obtain instantaneous tracking of
the system complexity as ipApEn (m, r, N, t). Of note, the
definition of the ipSampEn (m, r, N, t) is slightly different
(Valenza et al., 2014d). This second index does not take into
account self-matches, and quantifies the time series regularity
by slightly modifying the two equations above (Valenza et al.,
2014d).

Both instantaneous assessments open the possibility of ana-
lyzing the proposed measures also in terms of variability of their
evolution in time, which we refer to as complexity variability
framework (Valenza et al., 2014d,f).

Computation of Other Instantaneous
Linearly-Derived Parameters in the Time and
Frequency Domain
Aside from the calculation of the ipApEn and ipSampEn mea-
sures, the model described in the previous two paragraphs is also
able to provide standard measures defined in the time and fre-
quency domains gathered from the linear terms of Equation (2),
as described in detail in Valenza et al. (2014e). In this way, it is
possible to evaluate the effect of the sympathetic and parasympa-
thetic nervous system activity interaction as a result of two main
oscillatory components that are usually differentiated in the spec-
tral profile (Acharya et al., 2006): (a) the high frequency (HF)
band (0.15–0.40Hz), which reflects the effects of respiration on
HR, also referred to as respiratory sinus arrhythmia; (b) the low
frequency (LF) band (0.04–0.15Hz), which represents oscilla-
tions related to regulation of blood pressure and vasomotor tone
including the 0.1Hz fluctuation. In the time domain, the first and
second order moments (µRR and σ 2

RR) of the IG distribution are
calculated (Valenza et al., 2014d).

Experimental Results

The primary goal of this study was to test the ability of
instantaneous linear and complex nonlinear estimates of heart-
beat dynamics in discriminating healthy subjects from the MD
patients. We separated each task (neutral elicitation task or emo-
tional elicitation task), and considered the median value over
the whole acquisition for each subject (see Figure 1). The aver-
aged instantaneous tracking of the complex heartbeat dynam-
ics, expressed as ipApEn and ipSampEn, during the emotional
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elicitation task are shown in Figure 2. Values are averaged among
healthy subjects and patients with MD.

The majority of the group samples resulted non-normally
distributed (p-values gathered from Kolmogorov–Smirnov tests

FIGURE 1 | Block scheme of the experimental protocol considered in

this study. Healthy subjects and depressed patients are split into two

sub-groups, respectively. The first sub-group of healthy subjects and the first

of depressed patients were randomly selected to undergo a neutral elicitation

task, whereas the second respective sub-groups underwent an emotional

elicitation task. Meanwhile, continuous ECG recording was performed in order

to monitor the heartbeat dynamics of each subject/patient. Then, each RR

interval series was modeled and processed through a point-process nonlinear

model. Finally, starting from the time-varying parameter vector, the

instantaneous entropy measures, ipApEn and ipSampEn, computation was

performed.
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FIGURE 2 | Instantaneous complex heartbeat dynamics expressed as

ipApEn (top panel) and ipSampEn (bottom panel) during the emotional

elicitation task. Values are averaged among healthy subjects (continuous

black line) and patients with MD (continuous red line). The green dotter vertical

line indicates the end of the audio-visual stimulus.

with null hypothesis of normality resulted <0.05, i.e., data are
not normally distributed). Therefore, in order to average among
the groups, each feature is expressed as its median value and
its respective absolute deviation (i.e., for a feature X, X =

median(X)±MAD(X) where MAD(X)= |X−median(X)|). For
each feature and for each experimental task, we tested the null
hypothesis of having an equal median between the healthy and
MD groups through the Mann–Whitney non-parametric test.

Our working hypothesis was that the degree of complexity of
cardiovascular dynamics differs between normal and MD sub-
jects. Since we used two measures to verify our hypothesis, we
appropriately adjusted the statistical significance level to account
for multiple comparisons in testing each individual measure. In
the case of emotional elicitation, we observed that the difference
is statistically significant for ipApEn while not for ipSampEn.

To confirm that this difference was due to nonlinear mech-
anisms rather than simply a reflection of linear changes on our
nonlinear measures, we also applied the Mann–Whitney test on
a batch of conventional HRV measures, such as µRR, σ 2

RR, LF,
HF, and LF/HF. None was statistically significant, even without
accounting for multiple comparisons.

The statistics of each group and each instantaneous feature
related to the neutral elicitation task are reported in Table 1,
whereas those related to the emotional elicitation task are
reported in Table 2.

Box-plot statistics of the ipApEn and ipSampEn indices are
shown in Figure 3.

Finally, we report that a p = 0.15 given by theMann–Whitney
non-parametric test was associated to the null hypothesis of hav-
ing equal median age between the healthy andMD groups (age of
healthy subjects: 21 ± 2; age of MD: 23 ± 2). This outcome con-
firms that our results are not affected by age differences between
the groups.

Discussions and Conclusions

In this study, we aimed at proving the potential of computational
methods based on nonlinear digital signal processing to provide
critical information that could be used for devising automated
diagnostic tools that can serve mental healthcare. In particular,

TABLE 1 | Descriptive statistics of instantaneous heartbeat dynamics

features during the neutral elicitation task.

Feature Statistics

Healthy Depressed p-value

ipSampEn 0.286± 0.067 0.269± 0.023 0.970

ipApEn 0.345± 0.058 0.352± 0.046 0.447

µRR 761.62± 83.42 798.21± 61.57 0.447

σ2
RR

319.11± 191.27 521.90± 187.03 0.442

LF 485.53± 253.45 763.60± 408.17 0.056

HF 321.12± 225.92 228.04± 109.43 0.799

LF/HF 1.818± 1.186 1.768± 0.862 0.817

p-values from the Mann–Whitney non-parametric test with null hypothesis of equal

medians.
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TABLE 2 | Descriptive statistics of Instantaneous Heartbeat Dynamics

features during the Emotional elicitation task.

Feature Statistics

Healthy Depressed p-value

ipApEn 0.361 ± 0.038 0.316 ± 0.041 0.016

ipSampEn 0.298±0.052 0.257±0.041 0.212

µRR 809.17±102.25 792.40±84.05 0.328

σ2
RR

596.71±367.11 402.30±209.61 0.093

LF 674.08±417.99 616.29±391.82 0.777

HF 518.34±284.61 328.63±214.38 0.054

LF/HF 1.068±0.591 1.987±0.751 0.095

Bold indicates statistically significant indices.

p-values from the Mann–Whitney non-parametric test with null hypothesis of equal

medians.

0.2

0.3

0.4

ipApEn

Healthy Depressed

0.1

0.2

0.3

0.4

ipSampEn

FIGURE 3 | Box-plot statistics of the instantaneous entropy measures

ipApEn and ipSampEn gathered from the whole story with emotional

task and grand-averaged among healthy subjects and depressed

patients. Red plus signs show outliers.

we have presented the application of an advanced digital sig-
nal processing methodology in order to characterize a subject
experiencing a mental disorder such as MD. Importantly, signif-
icant assessments can be performed considering only heartbeat
dynamics elicited by time-varying emotional stimuli while esti-
mating two recently proposed measures of complexity: ipApEn
and ipSampEn (Valenza et al., 2014d).

The mathematical framework of these measures is based on
point-process theory, which provides effective computational
tools able to continuously estimate heartbeat dynamics with-
out using any interpolation methods (Valenza et al., 2014e,f).
This powerful, fully-parametric statistical method accounts for
the probabilistic complex generative mechanism of the heart-
beat by considering a quadratic Wiener–Volterra representa-
tion of the first order moment of a physiological plausible
inverse-Gaussian statistics (Valenza et al., 2014d). Moreover,

goodness-of-fit measures such as KS distance and autocorrelation
plots quantitatively allow to verify the model fit and to choose
the proper model order, thus addressing another open issue of
current parametric approaches (Valenza et al., 2014d,e,f).

Our principal goal was to validate the utility of the presented
computational framework by testing its ability in tracking non-
linear and non-stationary heartbeat dynamics of healthy subjects
and MD patients undergoing affective elicitation. To this extent,
we demonstrated that instantaneous complex heartbeat dynam-
ics is indeed modulated by emotionally-relevant elicitations in
patients with MD. These patients, in fact, exhibited lower ipA-
pEn values than healthy subjects while elicited through arousing
stimuli. These results are in agreement with the current literature
showing that pathological mental states modulate cardiovascu-
lar complexity (Leistedt et al., 2011; Yang and Tsai, 2013; Valenza
et al., 2014c). We further observed that this complexity modu-
lation occurs only in case of emotionally-relevant stimuli. This
is also in agreement with both clinical experience and the same
research studies linking mood states, emotional regulation, and
emotional response to ANS dynamics (Thayer et al., 1996; Car-
ney et al., 2002; Iverson et al., 2005; Lanatà et al., 2012). For this
reason, a possible approach to investigate mood recognition is to
explore emotional changes provoked by external stimuli. From
a modeling point of view, such approach interprets the cardio-
vascular system as coupled with the central nervous system and
governed by nonlinear dynamical equations which can be charac-
terized by means of a “perturbation” analysis, i.e., analysis before
and after short-time emotional elicitation.

Our statistical analysis performed on the linear instantaneous
features defined in the time and frequency domains suggests that,
although sympatho-vagal dynamics can be affected by patho-
logical mental states (Agelink et al., 2002; Acharya et al., 2006;
Lemoult et al., 2012), the inter-subject variability is too high to
allow such changes to be revealed through linear analysis. Con-
versely, the analysis on instantaneous complexity allowed to pro-
vide a much higher discriminating power. Our results further
demonstrated that the differences in heartbeat complexity found
among the healthy and MD groups are not biased by the age of
the patients enrolled in the study nor by the r(t)values that are a
function of the HRV standard deviation. Unlike other paradigms
developed in the literature for characterizing human mental
states, our approach is purely parametric, and the analytically-
derived indices can be evaluated in a dynamic and instanta-
neous fashion. The presented point-process nonlinear analysis,
in fact, represents a pioneering study in the field of mood assess-
ment, as just being recently proposed for the characterization
of heartbeat dynamics in bipolar patients (Wittchen and Jacobi,
2005). Future works will exploit further instantaneous nonlin-
ear estimates such as high order statistics, and the instantaneous
Lyapunov exponents (Valenza et al., 2014f).

From a physiological perspective, the inherent complexity of
the cardiovascular system (e.g., the nonlinear neural signaling
on the sinoatrial node) has been confirmed by our experimen-
tal results. Although the detailed physiology behind these com-
plex dynamics has not been completely clarified, previous studies
suggest that β-adrenoceptor system and cholinergic iper-driving
might be involved (as seen in rats) (Beckers et al., 2006).
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A further speculative interpretation of the results of this study
points at the insular cortex and the pregenual anterior cingu-
late cortex (pgACC) as important affective areas of the brain.
Recently presented neuroimaging data, in fact, revealed that these
cortices are involved in various neuropsychiatric diseases such
as mood disorders and, especially, MD, along with panic dis-
orders, PTSD, obsessive-compulsive disorders, eating disorders,
and schizophrenia (Nagai et al., 2007). Moreover, several glu-
tamatergic mechanisms which alter the functional connectivity
between pgACC and insular cortex are related to severe depres-
sion and depression severity (Horn et al., 2010). Since these par-
ticular brain regions are known to be responsible for crucial
homeostatic (interoceptive) functions involving ANS signaling
from the whole body (Craig, 2003), we speculate that such brain-
heart signaling is significantly altered during mood disorders and
can be revealed by time-varying complexity analysis of cardiovas-
cular variability while emotionally eliciting the patients. This kind
of elicitation activates the insular cortex, which has a crucial role
in emotional processing (Nieuwenhuys, 2011), leading to altered
heartbeat complex dynamics.

Because mood disorders produce an altered emotional
response, the achievements reported in this study could have

a relevant impact on mood disorder psychopathology diagno-
sis and treatment. Monitoring fast emotional responses as the
result of fast stimulation times through instantaneous heart-
beat dynamics could make a continuous evaluation of disorder
progression possible, thus representing an important scientific
advancement. On a final note, as emotional state is presently
determined in a clinical setting using questionnaires with limited
accuracy and quantitative power (Wittchen and Jacobi, 2005),
a more automated and objective assessment using a noninva-
sive physiological and easy-to-monitor signal such as the ECG
would provide improved inpatient and outpatient care, thereby
significantly reducing the time and cost of mental healthcare.
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