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Neural stem cells (NSCs), the progenitors of the nervous system, control distinct,

position-specific functions and are critically involved in the maintenance of homeostasis

in the brain. The responses of these cells to various stressful stimuli are shaped

by genetic, epigenetic, and environmental factors via mechanisms that are age and

developmental stage-dependent and still remain, to a great extent, elusive. Increasing

evidence advocates for the beneficial impact of the stress response in various settings,

complementing the extensive number of studies on the detrimental effects of stress,

particularly in the developing brain. In this review, we discuss suggested mechanisms

mediating both the beneficial and detrimental effects of stressors on NSC activity across

the lifespan. We focus on the specific effects of secreted factors and we propose NSCs

as a “sensor,” capable of distinguishing among the different stressors and adapting its

functions accordingly. All the above suggest the intriguing hypothesis that NSCs are

an important part of the adaptive response to stressors via direct and indirect, specific

mechanisms.

Keywords: neural stem cells, stress, stress hormones, glucocorticoid, adult neurogenesis, nervous system

development

Introduction

Embryonic stem (ES) cells are characterized by their unique ability for self-renewal and their
potential to differentiate into any type of functional somatic cell. During development this
potential is progressively diminished as ES cells become lineage-committed precursors. Thus,
in the central nervous system neural stem cells (NSCs) are considered the lineage precursors
of all neuronal and glial cells (Weiss et al., 1996; Gage, 2000; Kriegstein and Alvarez-Buylla,
2009). Generation of functional neurons by NSCs is an elegant, dynamically regulated pro-
cess, extremely active during gestation, reduced in the early postnatal period, and maintained
in low rates in the adult. During the embryonic period new neurons arise from the ventricu-
lar zone and migrate to different regions ultimately populating the entire brain (Altman and
Bayer, 1990a,b). In the adult, NSCs reside in specific neurogenic “niches,” more specifically the
subventricular zone (SVZ) of the lateral ventricles, the subgranular zone (SGZ) of the hip-
pocampal dentate gyrus (DG), and several other brain regions recently identified (Ihrie and
Alvarez-Buylla, 2011; Decimo et al., 2012; Gage and Temple, 2013; Ernst et al., 2014). As antic-
ipated by the enormous importance of neurogenesis, this process is under the strict control of
a multitude of intrinsic and extrinsic factors. Intrinsic factors are mainly transcription factors
regulated by signaling pathways driven by Notch, Ephrin-B, neurotrophin receptors and others
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(Altman and Das, 1967; Kaltezioti et al., 2010; Remboutsika et al.,
2011; Decimo et al., 2012). One other important parameter is the
epigenetic status of stem cells enabling them to sense and respond
to the complex net of extrinsic signals presented in the “niche.”
Despite the necessity for a stable, genetically determined mecha-
nism regulating the production of new neurons, neurogenesis is
a plastic process controlled by the environment (Cameron and
Gould, 1994; Blaschke et al., 1996; Tanapat et al., 1999, 2005; Kar-
ishma and Herbert, 2002; Baud et al., 2005). One of the most
complex physiological processes with prominent effects in both
the embryonic and the adult NSCs, is stress.

Stress response is the physiologically raised adaptation of
an organism to any challenge of its homeostasis. Under
non-stress conditions, stem cell “niches” represent a unique
microenvironment where interactions between stem cells, other
resident cells and soluble autocrine, paracrine, and endocrine
signals ensure the optimal system function. Stressors modify
this microenvironment, whereas NSCs are not spared by the
systemic stress responses driving adaptation. Hypoxia, inflam-
mation, metabolic or psychological stressors have been shown
to provoke the altered NSCs “behavior” as a reaction to the
modified environment. In mammals systemic stress response
is driven by the orchestrated activation of the hypothalamic-
pituitary-adrenal (HPA) axis and the catecholaminergic system
(Bishop and King, 1999). The necessary step for the initia-
tion of the stress response is the secretion of the neuropeptide
corticotropin-releasing hormone or factor (CRH or CRF) that
ultimately drives the release of adrenal glucocorticoid (Chen
et al., 2004). Glucocorticoid (cortisol in humans and corticos-
terone in rodents) is the end product of the HPA axis exert-
ing a negative feedback in the brain in order to control for
glucocorticoid overexposure.

Despite the widely recognized impact of stress hormones
on neurogenesis, little progress has been made in the eluci-
dation of the molecular mechanisms that underlie this out-
come. The current review examines the existing knowledge on
the effects of the stress hormones in the biology of NSCs,
and introduces the NSCs cellular machinery as a sensor capa-
ble of distinguishing between the beneficial and detrimental
stress. Determining the molecular components of the actions
of stress hormones on NSCs activity will be a hallmark in the
research on stress but also in the field of regenerative medicine
in general.

Factors that Influence NSCs
Responsiveness to Stress Hormones

Stress hormones act on NSCs during development but also in
adult life, via distinct and, in several cases, opposing ways. A strik-
ing difference between embryonic and adult NSCs is that in the
prenatal or early-postnatal period, stress has a lasting impact on
their “behavior” with some of its effects recognizable in adult life
or even during aging (Bose et al., 2010; Androutsellis-Theotokis
et al., 2013; Belnoue et al., 2013; Peffer et al., 2014; Provencal
and Binder, 2014; Urban and Guillemot, 2014; Ortega-Martinez,
2015). In contrast, stress-induced changes in the adult neurogenic

populations, are mostly reversible (McEwen, 1999; McEwen and
Magarinos, 2001; Duman, 2002; Morais et al., 2014). The exact
reasons for the above differences are not clear, but increasing
evidence suggests that epigenetic regulation may be a major
contributor for stress effects during development (Figure 1).
Furthermore, the strict control of the embryonic NSCs to guar-
antee the uneventful developmental programing, suggests that
any threatening homeostatic perturbation has the potential to
impinge on the function of specific brain structures. Many mod-
els of early life adversity have been developed in rodents, in order
to study the impact of stress hormones in neurogenesis (Pryce
et al., 2005). The most commonly applied prenatal stress models
include physical stressing of the pregnant mother or administra-
tion of glucocorticoid receptor (GR) ligands e.g., dexamethasone
(DEX), to simulate the activation of the HPA axis (Welberg and
Seckl, 2001). Similarly, the most widely applied early postna-
tal stress models have mainly concentrated on the psychologi-
cal stress induced by maternal deprivation (Zhang et al., 2013).
Notably, during early postnatal period, stress has been shown to
exert positive effects on neurogenesis, in contrast to the long-
lasting effects recognizable in adults, raising the hypothesis for
strong association between early life stress and neurodegenera-
tion (Oomen et al., 2009; Suri et al., 2013). In the adult brain it
seems that NSC responsiveness to stress is modified by aging,
in part explained by the age-dependent decrease in the expres-
sion of GRs (Seki and Arai, 1995; Kuhn et al., 1996; Garcia et al.,
2004; Simon et al., 2005; Leuner et al., 2007; Abdanipour et al.,
2015).

The specialized “niche” environment is another crucial fac-
tor in the regulation of NSC physiology. A recent report based
on comparative transcriptomic analysis between mouse SGZ and
SVZ cells shows site-specific differences in the regulatory net-
works of locally expressed transcription factors (Ertaylan et al.,
2014). An extensive number of brain region-specific factors, such
as epidermal growth factor (EGF), fibroblast growth factor (FGF),
Sonic Hedgehog and Wnt signaling, act on NSC populations
and modify their transcriptome profile, with direct impact on
their responses to stress hormones (Ikeya et al., 1997; Kalyani
et al., 1997; Gritti et al., 1999; Raballo et al., 2000). As example
of the interplay between the locally expressed transcription fac-
tors and stress hormones, is the suppressive effects of glucocor-
ticoid on Sonic Hedgehog-induced proliferation in mouse NSCs
and the Wnt signaling antagonist DKK1-mediated inhibition of
proliferation and neuronal differentiation, induced by DEX in
human embryonic NSCs (Heine and Rowitch, 2009; Moors et al.,
2012).

The most extensively studied stress-responsive neurogenic
area has been the SGZ, located within the DG of the hippocam-
pus. This is an area with identified strong neurogenic poten-
tial also in humans, where it is functionally associated with
very important processes such as cognition, emotion, and pat-
tern separation (Eriksson et al., 1998; Leutgeb et al., 2007; Cur-
tis et al., 2011; Nalloor et al., 2012; Rubin et al., 2014). Briefly,
neuronal precursor cells derived from the SGZ migrate radially
to the upper granular layers, differentiate into mature neurons
and progressively integrate in the local networks (Esposito et al.,
2005; Ming and Song, 2005; Faigle and Song, 2013). There is
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FIGURE 1 | Schematic depiction of the effects of stress hormones on

neural stem cells (NSCs). Stress hormones may exert beneficial or adverse

effects on neural stem cell activity (proliferation, survival, differentiation to

mature neurons) via their direct and indirect actions. As the transcriptome

and the epigenetic profile of NSCs change (in a time and space-dependent

manner), NSCs react either due to direct exposure to stress hormones (direct

action) and/or following the stress hormone-induced changes in their

“niches(s)” (indirect action). The nature of the stressor, the location of NSCs

and the time in the development are major determinants of the short- and

long-term effects in brain function.

strong evidence that exposure to glucocorticoid results in dra-
matic reduction of neuronal precursors in the SGZ (Cameron
and Gould, 1994; Wong and Herbert, 2006; Brummelte and
Galea, 2010). Studies in rodents have shown that glucocor-
ticoid targets also the extra-hippocampal cells proliferation,
although in a different manner. Remarkably, NSCs that are
hosted in the rat SVZ do not show a dramatic response, such
as the SGZ, to chronic treatment with corticosterone (Alonso,
2000).

Recently, a number of studies in different species identi-
fied distinct NSC “niches” in the adult hypothalamus, the cere-
bral cortex, the cerebellum, the olfactory bulb, the retina, and
the striatum (Mackay-Sim and Kittel, 1991; Tropepe et al.,
2000; Carter et al., 2004; Kokoeva et al., 2005, 2007; Ponti

et al., 2006, 2008; Leung et al., 2007; Decimo et al., 2012;
Ernst et al., 2014). As of now, the effects of stress hormones
in these cell populations remain unknown although a variety
of brain functions controlled by these areas are regulated by
glucocorticoid.

Gender differences in the stress response have been well-
documented in several species. It seems that basal circulating
glucocorticoid levels are higher in females, a difference normal-
ized by aging (Falconer and Galea, 2003; Westenbroek et al.,
2004; Zuena et al., 2008). Interestingly, the expression of steroid
receptors in undifferentiated NSCs display sexual dimorphism
as well, providing a possible explanation for their differences
in response to glucocorticoid (Waldron et al., 2010; Loi et al.,
2014).
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Negative and Positive Effects of Stress
Hormones on NSCs

Negative Regulation
In the majority of studies, exposure to stressors has been
associated with inhibition of neurogenesis both in fetal and
adult life. Constant or interrupted exposure of rodent embry-
onic NSCs to the synthetic glucocorticoid DEX compromises
their proliferation and survival (Bose et al., 2010; Samaras-
inghe et al., 2011). Recently, the responsiveness of embryonic
NSCs to glucocorticoid was linked to the direct, acute genomic
effects of the activated GRs, known as transcriptional regula-
tors (Androutsellis-Theotokis et al., 2013; Peffer et al., 2014).
Moreover, in vitro exposure of rat ES cells to DEX induced her-
itable alterations and changes in the expression of genes asso-
ciated with cellular senescence and proliferation (Sippel et al.,
2009; Bose et al., 2010). Notably, the expression pattern of GRs
in mouse embryonic NSCs changes with differentiation, in vivo
or in vitro. Furthermore, expression of GRs is region-specific,
adding another variable in the responsiveness of NSCs to stres-
sors (Androutsellis-Theotokis et al., 2013; Tsiarli et al., 2013).

During early postnatal development, the neurogenic pools
for the whole extra-uterine life are committed in the restricted
areas. Exogenous administration of DEX during that period led
to shrinkage of NSC pool in the adult hippocampus. The latter
was correlated with compromised learning andmemory (Ortega-
Martinez, 2015; Ortega-Martinez and Trejo, 2015). This data
suggests that NSCs can be harmed by pharmacological doses of
glucocorticoid and exposure of neonates to this drug should be
done with caution.

During adulthood, acute and chronic stressors can activate the
HPA axis, resulting in elevated glucocorticoid levels and reduced
neurogenic activity (Gould et al., 1997, 1998, 1999; Lagace et al.,
2010). In rodents, paradigms of acute psychological stress such as
exposure to the odor of natural predators, have been associated
with decreased cell proliferation and differentiation of the imma-
ture neurons in the DG of hippocampus (Tanapat et al., 2001;
Mirescu et al., 2004; Hill et al., 2006; Kambo and Galea, 2006).
Similar results have been demonstrated in mice exposed to social
defeat or following foot- or tail-electric shock (Duman, 2002;
Malberg and Duman, 2003; Yap et al., 2006; Fornal et al., 2007;
Lagace et al., 2010). Chronic stress paradigms like chronic social
stress in rodents and primates resulted in significant reduction
in NSC proliferation in the DG (Czeh et al., 2001; Simon et al.,
2005; Perera et al., 2007; Ferragud et al., 2010). Noise-induced
stress, restrain stress, or the chronic use of multiple mild stressors
also decreased NSC proliferation, although the main effect was
the compromised survival of newly-born neurons (Pham et al.,
2003; Lee et al., 2006; Oomen et al., 2007; Gonzalez-Perez et al.,
2011).

In line with the above, exogenous administration of cor-
ticosterone led to reduced number of proliferating cells and
survival of NSCs in the adult DG. Furthermore, glucocorti-
coid deprivation following adrenalectomy, stimulated neuroge-
nesis (Gould et al., 1992; Cameron and Gould, 1994; Wong
and Herbert, 2006; Brummelte and Galea, 2010). Recent data
suggests that challenge with glucocorticoid may impact on

the differentiation of NSCs in the hippocampus. Thus, DEX-
treated adult NSCs showed impaired differentiation toward
the neuronal phenotype, whereas corticosterone-treated mouse
hippocampal NSCs were driven toward oligodendrogenesis at
the expenses of neurogenesis (Heberden et al., 2013; Chetty
et al., 2014). Similar effects were observed in the spinal cord,
where treatment with high-dose of corticosterone for spinal
cord injury, reduced NSCs proliferation locally (Schroter et al.,
2009). Finally, in vitro exposure of murine NSCs to cor-
ticosterone triggered both cell death and proliferation in a
concentration-dependent manner (Wolf et al., 2009; Abdanipour
et al., 2015).

Remarkably, the majority of studies used exogenous admin-
istration of glucocorticoid whereas in vivo this is a very tightly
self-regulated system, with the exception of limited cases such
as tumors or following uncontrolled exposure to severe stres-
sors. Thus, in addition to the GR-mediated effects, indirect
actions of stress hormones should be considered, particularly
given the relatively low abundance of GRs in NSCs compared
to the mature neurons (Cameron et al., 1993; Garcia et al.,
2004). Recent studies, during in vitro and in vivo differentia-
tion of mouse embryonic NSCs revealed brain region-specific
differences in the expression pattern of GRs (Androutsellis-
Theotokis et al., 2013; Tsiarli et al., 2013). Finally, glucocorti-
coid may also affect neighboring neuronal or non-neuronal cells
driving them to apoptosis or modifying their functions such as
their inputs to local NSCs pools. Along these lines, cytokines
released by activatedmicrogliamay have toxic effects on neuronal
precursors, regulating indirectly their activity (Ekdahl, 2012).

Positive Regulation
Surprisingly, although HPA axis activation has been strongly
associated with suppression of neurogenesis, there are some
stressors that consistently increase the proliferation rate and
enhance the survival of NSCs. For example, running and phys-
ical exercise, both strong activators of the HPA axis and thus
increasing circulating glucocorticoid levels, they induce prolifer-
ation and survival of newborn neurons (van Praag et al., 1999,
2002; Droste et al., 2003; Makatsori et al., 2003; Stranahan et al.,
2006; Snyder et al., 2009; Yi et al., 2009; Schoenfeld and Gould,
2012; Saaltink and Vreugdenhil, 2014). Similarly, positive psy-
chological challenge such as housing in an enriched environ-
ment, increases the circulating glucocorticoid levels and sup-
ports survival of newborn neurons and protection of NSCs from
the adverse effects of aging (van Praag et al., 1999; Kemper-
mann et al., 2002). Sexual experience and learning have been
also associated with increased circulating glucocorticoid levels
and induction of the neurogenic activity (Bonilla-Jaime et al.,
2006; Leuner et al., 2010). All the above “stressful” experiences
allow not only for protection of NSCs from the negative effects
of glucocorticoid but even more, they exert positive effects on
NSCs. A common characteristic of the above stressors is that
they have a strong “rewarding” component, associated with the
release of neuropeptides/neuromodulators, such as endogenous
opioids, dopamine, or neurotrophins such as the brain-derived
neurotrophic factor (BDNF). All these neuromodulating peptides
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seem to protect NSCs from the toxic effects of glucocorticoid and,
-most likely, to promote neurogenesis (Persson et al., 2004; Saira-
nen et al., 2005; Ying et al., 2005; Winner et al., 2009; Taliaz et al.,
2010).

Although the precise mechanisms mediating these beneficial
effects of particular stressors to NSCs remain unknown, there is
data suggesting implication of other cell types, neighboring the
stem cells, such as microglia and the astrocytes. Activation of
additional steroid receptors such as progesterone and estrogen
that may modulate the glucocorticoid effects has been suggested.
Moreover, stress hormones may act on the granule cell affer-
ents that also express GRs. For example, it has been shown that
manipulation of the cholinergic inputs or blockade of NMDA
receptors, glutamate receptors or serotonin receptors (5-HT1A)
that supply synaptic signals to DG cells from other brain regions
such as the entorhinal cortex, influence adult neurogenesis in
the SGZ “niche” (Meijer and de Kloet, 1994; Cameron et al.,
1995; Flugge et al., 1998; Kotani et al., 2006; Zhao et al., 2008;
Frechette et al., 2009; Maekawa et al., 2009). In support of the
above and of direct translational significance is the observation
that GRs are required to mediate the neurogenic effects of the
antidepressant serotonin reuptake inhibitor sertraline (Anacker
et al., 2011).

In contrast to the great number of studies looking into the
effects of glucocorticoid in NSCs, there is limited information
on the effects of CRH, the neuropeptide required for the induc-
tion of the stress response, in this process. Although CRH is
a positive regulator of glucocorticoid release, its effects in sev-
eral cases is been in opposite directions. For example, CRH
has been recently shown to protect neurons from the damag-
ing effects of hypoxia (Valadas et al., 2012). According to our
working hypothesis described above, this effect of CRH is in
line with its homeostatic actions in challenging conditions. Stud-
ies with the Crh-null mice show that their inability to raise
an adequate stress response is not to their overall benefit, in
accordance with the first described by Hans Selye beneficial
effects of the adaptive response (Selye, 1975). We have recently
reported that CRH induces proliferation of embryonic NSCs via
direct CRH receptor-mediated effects and protects from apop-
tosis in vitro and in vivo. Most importantly, CRH can oppose
the glucocorticoid-mediated toxic effects on NSCs, revealing the
complexity of the stress response in neurogenesis (Koutmani
et al., 2013). These observations highlight the dual action of the
stress hormones on the activity of NSCs that enables them to act
as wide-spectrum neuromodulators.

Perspectives

A major scientific challenge of our times is to successfully imple-
ment advances in stem cell biology for the treatment of human
diseases. Although ES cells have the capacity to give rise to all
cell lineages, their therapeutic potential is limited due to ter-
atoma formation and ethical concerns (Blum and Benvenisty,
2008, 2009). Induced pluripotent stem cells (iPS cells), bone mar-
row mesenchymal stem cells, and dental pulp stem cells, able to
differentiate to neuronal lineages both in vitro and in vivo after

transplantation, have been used to repair injured neurons. Unfor-
tunately, so far they have only shown to result in modest recov-
ery most likely due to failure to compensate for the associated
loss of yet unidentified factors of the micro-environment (Jiang
et al., 2002; Jin et al., 2002; Imitola et al., 2006; Yiu and He, 2006;
Charil and Filippi, 2007; Tetzlaff et al., 2011; Mothe and Tator,
2012; Xiao and Tsutsui, 2013). These important obstacles in the
transplantation-mediated CNS repair might be overcome by our
better understanding of the endogenous NSC and “niche” biology
and the leverage of this knowledge for therapeutic purposes.

The previous studies reviewed above suggest that stress hor-
mones are critical regulators of NSC functions during devel-
opment and in adult life, and support important regulatory
mechanisms driving brain homeostasis. Impaired neurogenesis
is tightly linked to many psychiatric diseases such as depression
and post-traumatic stress disease, while it is also implicated in the
pathogenesis of neurodegenerative disorders such as Alzheimer’s
and Parkinson’s disease (de Kloet et al., 2005; Eisch and Petrik,
2012). A number of new drugs from the spectrum of disorders are
designed tomimic or antagonize specific actions of the stress hor-
mones (Fitzsimons et al., 2009). Elucidating the specific effects of
stress hormones and most importantly, the molecular machin-
ery implicated in NSC biology could provide unique insights in
the treatment of diseases of the nervous system without raising
ethical concerns.
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