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We describe the first application of high-resolution 3D micro-computed tomography,

together with 3D landmarks and geometric morphometrics, to map QTL responsible

for variation in skull shape and size using a backcross between C57BL/6J and A/J

inbred strains. Using 433 animals, 53 3D landmarks, and 882 SNPs from autosomes,

we identified seven QTL responsible for the skull size (SCS.qtl) and 30 QTL responsible

for the skull shape (SSH.qtl). Size, sex, and direction-of-cross were all significant factors

and included in the analysis as covariates. All autosomes harbored at least one SSH.qtl,

sometimes up to three. Effect sizes of SSH.qtl appeared to be small, rarely exceeding 1%

of the overall shape variation. However, they account for significant amount of variation

in some specific directions of the shape space. Many QTL have stronger effect on the

neurocranium than expected from a random vector that will parcellate uniformly across

the four cranial regions. On the contrary, most of QTL have an effect on the palate weaker

than expected. Combined interval length of 30 SSH.qtl was about 315MB and contained

2476 known protein coding genes. We used a bioinformatics approach to filter these

candidate genes and identified 16 high-priority candidates that are likely to play a role in

the craniofacial development and disorders. Thus, coupling the QTL mapping approach

in model organismswith candidate gene enrichment approaches appears to be a feasible

way to identify high-priority candidates genes related to the structure or tissue of interest.

Keywords: skull shape, geometric morphometrics, 3D imaging, candidate gene enrichment, multivariate QTL

mapping

Introduction

Understanding the development and evolution of organismal form requires knowledge of its size
and the nature of genetic variation. This genetic variation can stem from any gene whose prod-
uct is involved in the developmental processes that form the structure of interest. In this con-
text, quantitative trait loci (QTL) are genetic loci, alleles of which contribute to the variation
in a quantitative trait (Broman and Sen, 2009). Generally, quantitative traits are multifactorial
and are influenced by several polymorphic genes and environmental conditions, so one or many
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QTL can influence any given trait or phenotype. As a model of
complex morphological structure the mouse mandible and its
molars have been the focus of several QTL mapping studies that
investigated its genetic architecture, imprinting effects, integra-
tion and modularity (Klingenberg et al., 2001, 2004; Workman
et al., 2002; Leamy et al., 2008; Suto, 2009; Boell et al., 2011, 2013;
Boell, 2013). Skeletal features affecting body size in mice have
also been investigated (Kenney-Hunt et al., 2006, 2008; Norgard
et al., 2009). In contrast, the skull has received somewhat less
attention. One reason for the lack of attention is the complex-
ity of the genotype-phenotype mapping of this structure (Hall-
grimsson et al., 2014). Compared to the more simplistic model
system of the mandible (Klingenberg and Navarro, 2012), many
genetic and epigenetic processes interacting at different times
in development are required to maintain coordinated growth
of the head (Lieberman, 2011; Hallgrimsson et al., 2014). These
interactions, in turn, may obscure the direct genotype-phenotype
association. However, some studies have been carried out suc-
cessfully. Leamy et al. identified 26 QTL involved in phenotypic
variation in the skull from a population derived from the F2 gen-
eration of the intercross between LG/J and SM/J strains (Leamy
et al., 1999). Kenney-Hunt et al. used the same population and
measured 70 skeletal traits, 12 of which were craniofacial (CF)
measurements (Kenney-Hunt et al., 2008). They identified 781
skeletal QTL by mapping every measurement individually; 105
of which were pleiotropic, meaning they affected two or more
traits. Of these pleiotropic loci, 65 harbored at least one cran-
iofacial trait. Again using the same intercross and the same set
of measurements, Wolf et al. investigated the genetic architec-
ture of covariation in the skull traits and found that the integra-
tion is achieved by a complex combination of pleiotropic effects
(Wolf et al., 2005). Nishimura et al. reported the presence of two
QTL that affect zygomatic arch width and three QTL for snout
length using F2 mice from a C57BL/6J and DBA/2J intercross
(Nishimura et al., 2003). Instead of linear measurements, Bur-
gio et al. used 26 cranial landmarks, collected separately from
dorsal and ventral surfaces, and interspecific recombinant con-
genic strains (IRCs) (Burgio et al., 2009). Although neither the
number nor the location of QTL were described, they reported
finding multiple QTL, some of which were consistent with the
findings of Leamy et al. (1999). A recent genome-wide associa-
tion study (GWAS) focused on the 3D skull shapes of wild-caught
mice (Pallares et al., 2014). Using principal components (PC), the
authors identified nine loci with high precision, most of which
were within a megabase. Few loci were consistent with previously
reported findings from Burgio et al. (2009). Although the authors
reported that∼64% of the skull shape variance has a genetic basis,
these loci together explain only 13% of the total shape variance.
This variation nevertheless was spread across all autosomes, in
a manner generally proportional to chromosome length, under-
lining the highly polygenic nature of craniofacial shape (Pallares
et al., 2014).

Outside of genus Mus, Schoenebeck et al. used a GWAS
approach and identified 5 QTL responsible for skull shape varia-
tion in domestic dogs (Schoenebeck et al., 2012). For at least one
of these QTL, a likely causal variant (in BMP3) was identified. In
primates, two studies also used GWAS and linear measurements

from lateral cephalograms to map QTL responsible for the CF
traits in baboons and humans, respectively (Sherwood et al., 2008,
2011). In a recent human GWAS, five candidate genes affecting
facial shape variation in Europeans were identified (Liu et al.,
2012).

Despite the insight they provide, the limitation of the majority
of these studies has been the approach employed to quantify and
describe the variation in their traits of interest. Most relied on lin-
ear measurements to define the shape of a complex structure like
the mandible or skull. The few studies that preferred geometric
morphometrics (or landmark based) approaches over traditional
morphometrics either used only 2D landmarks from one side of
the structure (Klingenberg et al., 2001, 2004), or partitioned the
phenotype into different components such as dorsal and ventral
(Burgio et al., 2009) due to an inability to capture the entire shape
in 3D. Others simply mapped each PC separately due to the com-
plexity of properly handling population structure (Pallares et al.,
2014).

Over the last decade, significant advances have been made in
3D imaging and the analysis of 3D shape. Here, we describe the
first application of high-resolution 3D micro-computed tomog-
raphy (microCT), together with 3D landmarks and geometric
morphometrics, to map QTL responsible for variation in skull
shape and size using a backcross between two common inbred
strains of mice. In addition, we have incorporated a higher
density genotyping approach than previously attempted with
an intercross of inbred strains. We also used a bioinformatics
approach to identify high priority CF candidate genes within the
identified QTL intervals. Finally, we present a new QTL analy-
sis package for R statistical software that is more suitable for the
mapping of shape as a multivariate feature.

Materials and Methods

Experimental Design
Three C57BL/6J males and three A/J females were used to derive
F1 generation backcrossed to A/J males and females. All founder
animals were acquired from the Jackson Laboratories, Maine. 163
offspring were produced from AJ (♀)×F1 (♂) backcrosses (84
females and 79 males) and 270 (128 female and 142 males) from
the reciprocal F1 (♀)×AJ (♂) crosses. All 433 animals were sacri-
ficed at postnatal day 28, and their heads preserved at−20◦C for
ex-vivo imaging. Liver tissue was also collected from each animal
for DNA extraction using a salt-chloroform extraction proce-
dure followed by ethanol precipitation (Seto et al., 2007). All ani-
mal protocols were approved by the University of Washington’s
Institutional Animal Care and Use Committee.

For genotyping, isolated DNA was hybridized to a commer-
cially available linkage panel (http://www.illumina.com/prod-
ucts/mouse_md_linkage.ilmn). This panel consists of 1449 SNPs
selected from the Wellcome-CTC Mouse Strain SNP Genotype
Set andwas designed to provide uniform genome distribution at a
density of approximately three SNPs per 5Mb across the genome.
Genotyping was conducted at the Northwest Genomic Center
at the University of Washington. Non-polymorphic loci and the
X-chromosome markers were removed, leaving 882 informative
SNPs.
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3D Imaging and Geometric Morphometrics
All animals were imaged at the Small ANimal Tomographic
Analysis (SANTA) Facility at Seattle Children’s Research Institute
using high-resolution microcomputed tomography (model 1076;
Skyscan, Belgium) employing a standardized imaging protocol
(18µm spatial resolution, 0.5 Al filter, 55 kV, 420ms exposure,
3 frame averaging). Reconstructed image stacks were loaded into
3D Slicer (http://www.slicer.org) and rendered in 3D. A random
subset of 50 samples was landmarked twice using an initial set
of 55 skull landmarks. We calculated the difference in the coor-
dinates of matching landmarks from the two sets (i.e., observer
error) and removed those that consistently exceed an arbitrary
cut of 7 voxels (0.125mm). Based on these results, two landmarks
were dropped from the set. The remaining samples were land-
marked only once for efficiency. Figure 1 shows the final set of
landmarks used in the study.

For this study, biological shape is defined as the geome-
try that remains after the size, location, orientation (Kendall,
1984), and as well as any departure from perfect bilateral sym-
metry is removed from the landmark data (Mardia et al., 2000).
Asymmetry can arise from developmental perturbations due to
non-genetic factors and potentially can obscure the genotype-
phenotype mapping. So, handling symmetry of structures prop-
erly is an important statistical issue in all studies of structures
with internal symmetry (Klingenberg et al., 2002). A full gener-
alized Procrustes analysis (Dryden andMardia, 2008) with object
symmetry (Mardia et al., 2000; Klingenberg et al., 2002) was per-
formed on these 3D landmarks using MorphoJ (Klingenberg,
2011). There had been a debate on the consistency of the results
produced by the Procrustes based superimposition and alterna-
tive morphometric methods using landmarks, such as Euclidean
Distance Matrix Analysis, were proposed (Lele and Richtsmeier,
1990, 1991; Richtsmeier et al., 2002). However, further statistical

and simulation studies demonstrated that the Procrustes-based
approaches outperformed alternativemethods (Kent andMardia,
1997; Rohlf, 2000a,b, 2003; Adams et al., 2013).

We use the centroid size, the square root of the sum of squared
Euclidean distances from each landmark to their own centroid,
as a proxy for overall skull size (Dryden and Mardia, 2008). After
superimposition of both the original and mirrored copy of land-
mark configurations, and orthogonal projection onto the shape
tangent space, the symmetric component of shape variation was
extracted by averaging the original and relabeled reflected copy
of the landmark configurations using the appropriate procedures
in MorphoJ (Klingenberg, 2011). Shape must be understood and
treated as a multivariate trait of high dimensionality, but after
removing the effect of size, translation, rotation, and asymme-
try some of the dimensions of the shape space remain invariant
because of the constraints. In our study, the effect of any fac-
tor is a multi-dimensional vector representing the direction and
magnitude of the shape change of the overall configuration of
landmarks within the shape space.

Mapping Shape Loci
The effect of the additive shape QTL at locus l was esti-
mated using Haley-Knott regression (Haley and Knott, 1992;
Knott and Haley, 2000; Haley and Knott, 1992; Knott and
Haley, 2000) by fitting the multivariate linear model yi|Mi ∼

Nq

(

µ +
∑

cxicβc +
∑

jpijβ j, S
)

where xic is the value of the

covariate c and pij = Pr (gi = j|Mi) is the probability of the QTL
genotypes given the flanking markers for individual i and the β

are the q-dimensional effect of the covariate c or of the geno-
type j. These probabilities were computed using R/qtl (Broman
et al., 2003) at each centimorgan along the 19 autosomes con-
sidering a genotyping error rate of 10−4 and a Carter-Falconer

FIGURE 1 | Landmarks used in the study. Green: lateral face, red: dorsal face, black: neurocranium, blue: palate. Points with two colors are assigned to both

regions.
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map function, which provides a low estimate to the level of
interference found in mice (Broman et al., 2002). Sex-averaged
genetic distances were obtained from the Jackson Laborato-
ries Mouse Converter (http://cgd.jax.org/mousemapconverter/)
using marker ID and the genetic map reported by Cox et al.
(2009).

The presence of any QTL was evaluated using the Pillai
trace criterion (Pillai, 1967). The probabilities associated with
its approximated F statistics were transformed to their negative
log10 to make results comparable with LOD scores (Leamy et al.,
2008). Rank deficiency related to the Procrustes superimposition
must be handled at that step using either Moore-Penrose gen-
eralized inverse or using PCs with a non-zero eigenvalue, the
two approaches being equivalent. We took the latter approach
because of the large difference in the number of variables to
treat in computation. Geometric morphometrics provides a high
dimensional dataset where many dimensions may have small
variances, typically an unwanted property for ratio statistics
based on determinants. Moreover, Pillai’s trace criterion is said
to be more powerful when effects are spread over dimensions
(Olson, 1976, 1979; Tabachnick and Fidell, 2007), and more
robust than other classic multivariate statistics especially when
data are unbalanced (Olson, 1976, 1979; Tabachnick and Fidell,
2007).

All computations for shape QTL mapping were conducted in
the R/shapeQTL package written by one of the authors (NN) and
available by request. The log-transformed centroid size was ana-
lyzed in a similar manner to shape using Haley-Knott regression
but using R/qtl v1.28–19 (Broman et al., 2003).

Genome-wide Significance Threshold
Genome-wide significance for the presence of a QTL was evalu-
ated using a permutation approach (Churchill and Doerge, 1994).
The trait (skull shape or skull size) together with its covariables
(gender, direction of the cross and the log centroid size for shape)
was reshuffled among individuals whereas the original genotype
probabilities were kept constant. The genome scan was repeated
on these data and the maximal score (LOD for centroid size or
logP for shape) was recorded for each of 10,000 iterations. We
took the 95% quantile of that distribution as the genome-wide
threshold.

Multiple QTL Modeling
Prior studies on shape QTL stopped their genetic modeling when
at most two QTL per chromosome were included (Leamy et al.,
1999; Klingenberg et al., 2001). The rationale was that genetic res-
olution of a one-generation cross impairs QTL discoveries and
that at most only two QTL per chromosome may be identified.
New SNP maps combined with a large mapping panel may how-
ever allow a deeper search despite large linkage disequilibrium
(LD). High dimensionality traits have some interesting features
against that smoothing of LD since the q-dimensional QTL effect
will quickly move away as QTL genotype probabilities change.
This property should add power to identify linked QTL. There-
fore we adopted an approach for model searching that included
or dropped QTL without any prior knowledge on the number
of QTL per chromosome following the approach developed for

univariate traits by Broman and Speed (2002), Manichaikul et al.
(2009).

Model comparison is based on the penalized LOD score pro-
posed in the context of additive QTL modeling (Broman and
Speed, 2002) and further extended to interactive QTL. The penal-
ization takes the form of the product of genome-wide thresh-
olds times the model complexity (Manichaikul et al., 2009). We
followed the forward/backward algorithm developed in Broman
and Sen (2009) but restricted the search to additive QTL only.
We used a similar penalization but on logP. Briefly, after scan-
ning the genome for an additional additive QTL and choosing the
model with the largest criterion of model comparison, maximum
likelihood positions of QTL in the model were found by itera-
tively scanning the genome for each QTL conditional on all other
QTL and covariates until no further refinement was recorded.
This forward search was repeated up to a model with 50 QTL.
Then, backward elimination was performed from that model to
the null model. At each step, the model with the largest value for
the model comparison criterion was chosen and QTL positions
refined as before. Finally, the best model was chosen among all
visited models based on the largest penalized score. As the appro-
priateness of this model search and penalization in the context of
the multivariate model is still to be explored, we also ran a step-
wise regression model (results not shown) where the inclusion
or elimination of QTL was decided on significance of the QTL
conditional on all others QTL and covariates in the model. This
model search was stopped when the best candidate to include did
not reach the genome-wide threshold.

Interval Estimates of QTL Locations
Bootstrapping does not perform very well in the context of high
linkage disequilibrium and a sparse marker map such as found in
the QTLmapping of F2 intercrosses or backcrosses (Manichaikul
et al., 2006). To date, most shape QTL studies (Leamy et al.,
1999; Klingenberg et al., 2001) have used 1-LOD support inter-
vals (Lander and Botstein, 1989; Dupuis and Siegmund, 1999) as
approximate confidence intervals. Bayes credible interval derived
from the 10LOD(θ) profile has been proposed as an alternative
(Dupuis and Siegmund, 1999; Sen andChurchill, 2001). Coverage
of these intervals has been proven stable and consistent across a
variety of situations (Manichaikul et al., 2006). Both LOD-drop
and Bayes intervals are nonetheless over liberal in the context
of multiple QTL models because they do not account for uncer-
tainties in the position of other QTL (Broman and Sen, 2009).
Approximate confidence intervals of QTL locations for shape
were then estimated from a straightforward translation to logP
profile of the 10LOD(θ) Bayes credible intervals using the 1/p pro-
file rescaled to an area underneath the curve equal to 1. Inter-
vals were computed from the chromosome profile of the QTL
conditional on all other refined QTL positions.

QTL Effects and Effect Size
QTL effects were estimated conditional on all covariates (size,
direction of the cross and sex). Other QTL were included in the
final model using Haley-Knott regression of phenotypes on the
backcross parameterization of QTL genotype probabilities using
the fitqtl function of R/qtl (Broman et al., 2003). For shape, the
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effect is stacking of these univariate effects. Because we used PC
scores, we back transformed these multi-dimensional vectors to
the tangent space. Magnitude of shape changes are commonly
expressed in unit of Procrustes distance as the norm of the vec-
tor ‖β‖ = (ββt)0.5 with β being the row vector of the QTL or
covariate effect (Klingenberg et al., 2001; Workman et al., 2002).
The amount of variation that each term (QTL and covariates)
accounts for in the multiple QTL model, given other terms in
the model, was estimated as a percentage of the total Procrustes
variance (Goodall, 1991). We also reported the effect size as a
percentage of the projection score variance. Those scores, com-

puted as, s = yβ t (ββ t)
−0.5

, are the shape variable associated
with the shape changes defined by the β vector and include both
the effect and the residuals in that direction (Drake and Klingen-
berg, 2008). This percentage represents the amount of variation
accounted for by any given QTL in its specific direction.

Visualizing Shape QTL Effects
The effect of each shape QTL was visualized on a 3D skull model
using the R/Morpho package (Schlager, 2014). For each shape
QTL, the 3D surface mesh of the mean shape is deformed along
the vector that defines the effect of the QTL by incremental scal-
ing of its magnitude. The resultant animation for each shape
QTL, as well as the covariates, is rendered for six anatomical
views and provided as Supplementary Material.

Results

Skull Size
Both sex and direction of the cross, but not their interaction, were
found to have statistically significant effects on the skull size. The
direction of the cross corresponds to whether the N2 individual
is born to an F1 female or an A/J female. Males in general and N2
individuals derived from F1 female × A/J male cross have larger
skulls. Although the magnitude of the difference is very small
(less than 1% in both cases), because of their statistical signifi-
cance both sex and direction of cross were included as covariates
for the QTL mapping.

QTL Mapping for Skull Size
Our interval mapping has identified seven QTL responsible for
the variation in skull centroid size (SCS.qtl). Location, nearest
marker, and the confidence intervals for the identified loci, and

the QTL effect are provided in Table 1. The size of the confi-
dence intervals for these loci is highly variable; when converted
to genomic location, they vary from 13 to 89 MB. The location of
the SCS.qtl peaks are shown on Figure 2. SCS.qtl 0.7 on chromo-
some 13 shows the largest effect for increased skull size, whereas
SCS.qtl 0.3 on chromosome 5 is the only QTL related to reduced
skull size.

Skull Shape
Principal component analysis of the symmetric component of the
full tangent coordinates resulted in 80 PCs with non-zero eigen-
values. The amount of variation explained by each PC is shown
on Figure 3. No single PC explained more than 12% of the phe-
notypic variation. Themain effects of skull size, gender and direc-
tionality of the cross on skull shape were found to be significant
(p < 0.0001) and explained about 1–4% of the total Procrustes
variance. No significant interactions among them were found,
therefore only the main effects were included in following genetic
analyses as additive covariates. Increases in skull size expand
the anterior brain case both vertically and laterally (Figure 4A).
Sexual dimorphism is low and appears to map mainly on the
basicranium (Figure 4B). The direction-of-cross effect shows off-
spring from F1 dams as having a higher neurocranium than those
produced from A/J dams (Figure 4C). Dynamic visualizations
of effects of these covariates on skull shape are provided with
online Supplemental Data. To reduce the computation time, we
opted to use 80 non-zero PCs in our QTL mapping instead of
using 159 tangent coordinates. Since the PCA is simply a rota-
tion along orthogonal axes, no variation is lost and PC scores
can be back converted to tangent coordinates without loss of
variation.

QTL Mapping for Skull Shape
Our interval mapping has identified 30 QTL responsible for vari-
ation in skull shape (SSH.qtl). All autosomes harbor at least one,
and in some cases up to three SSH.qtl (Chr 1 and 4). Loca-
tion, nearest marker, and the confidence intervals for the iden-
tified SSH.qtl are provided in Table 2 and plotted on Figure 2.
On average, the width of the confidence intervals was 5.4 cM
(or 10.4 MB). Visualizations of each SSH.qtl are rendered in
six anatomical views and are provided with online Supplemen-
tal Data. To obtain a broad sense of importance of anatom-
ical regions involved in each SSH.qtl effect, we assigned each

TABLE 1 | Skull centroid size QTL (SCS.qtl) identified in this study together with their logarithm of odds (LOD), Bayesian estimates of their confidence

intervals (Lower CI, Upper CI), and their estimated QTL effect.

Size QTL Closest Marker Chr Pos (cM) LOD Lower CI (bp) Upper CI (bp) QTL Effect

SCS.qtl1 rs3658927 2 60.37 3.33 52,795,574 141,957,105 Increase in size

SCS.qtl2 rs13478002 4 68.08 4.85 129,338,356 142,748,609 Increase in size

SCS.qtl3 rs13478540 5 72.26 4.71 117,927,219 137,110,565 Decrease in size

SCS.qtl4 rs13478841 6 34.74 5.42 51,455,318 87,816,657 Increase in size

SCS.qtl5 rs13481127 11 48.5 4.41 45,970,896 91,694,862 Increase in size

SCS.qtl6 mCV24625340 13 44.75 7.81 53,171,098 94,326,861 Increase in size

SCS.qtl7 rs4160288 16 4.43 4.6 4,326,565 16,886,506 Increase in size

POS column indicates the position of the peak of the estimated QTL in genetic distances. Genomic locations of the confidence intervals are based on the mouse reference genome

(GRC38). Closest Marker provides the ID of the known marker closest to the peak.
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FIGURE 2 | Positions of skull size QTL (gray) and skull shape QTL

(black) on genetic map. Skull centroid size QTL (SCS.qtl) are

abbreviated as “q” and are left to the chromosome map. Skull shape

QTL (SSH.qtl) are as abbreviated as “Q” and are to the right of the

chromosome map. Vertical bars indicate the Bayesian estimate of the

confidence interval of QTL.

FIGURE 3 | Variance explained by the individual PCs of the symmetic

component of full tangent coordinates.

landmark to one of the four anatomical regions (neurocranium,
dorsal face, lateral face, and palate), summed up the magnitude
of displacement for each landmark in the region and visual-
ized it as a proportion of the total magnitude of displacement.
If a landmark sits on a boundary of these regions (e.g., land-
mark on the triple junction of sutures between the frontal, pari-
etal and squamosal bones), the magnitude of the displacement
is split equally between the bounding region (in this case lat-
eral face and neurocranium). We also calculated a second set of
ratios in which the proportions are normalized by the number of
landmarks in a region. Figure 5, and also Supplemental Figure 4,

show the contribution of each of these regions to a given SSH.qtl
effect, as well as the additive covariates included in the anal-
ysis (size, directionality of the cross, and sex), on skull shape,
with and without normalization. Even though both the neuro-
cranium and palate have a similar number of landmarks assigned
(Figure 1), it appears that the contributions of the neurocranium
to the overall skull shape differences are consistently larger than
those of the palate. These two regions present contributions that
mostly differ (higher and lower respectively) from what can be
expected from the random partitioning of landmarks (Figure 5).
On the other hand, for both facial regions contributions are not
different from what is expected under the null hypothesis of
pleiotropy, with only a few loci having stronger than expected
contributions.

Effect sizes of QTL are in the order of 1% of the total Pro-
crustes variance and show a skewed distribution with a few larger
effects (Supplemental Table 1 and Supplemental Figure 2). The
overall contribution of each chromosome (looking at the com-
bined effect of QTL on the same chromosome) is in the order of
2% of the total Procrustes variance, and all together they explain
up to 23% of the variance and 32% jointly with covariates, leav-
ing about 70% of the variation unexplained. It is worth noting
that the shape variation in the mapping population is spread over
a large number of dimensions without strong leading directions:
most PCs account for a low amount of variation and even PC1
account only about 12% of that variation (Figure 3). Similarly,
specific directions of the shape space described by the QTL shape
changes accounted for ∼5% of the total Procrustes variance on
average. However, for those specific directions, QTL account for
between 5 and 30% of this variation (Supplemental Table 1).
Angles between these genetic directions and phenotypic struc-
turing (PCs) show that they are more similar to each other than
two vectors drawn randomly (p < 0.0001), with an angle ranging
from 50.7◦ to 69.4◦ (Supplemental Figure 3). This angle nega-
tively correlates (r = −0.42, p = 0.02; Supplemental Figure 3)
with the magnitude of the QTL vectors.
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FIGURE 4 | Visualizations of the main effects of skull size, gender and

directionality of the cross on skull shape. The model is the shape resulting

from the addition of the effect to the mean shape. Color map of 3D model

corresponds to the deformation distance between this shape and the mean

shape. Warm colors indicate shrinkage, cold colors indicate expansion with

respect to the mean shape. Heatmaps are NOT to the same scale, as each

effect scaled different. Dynamic visualizations of these effects can be found in

the Supplemental Animations 1–3. (A) Skull centroid size: Increases in skull

size expands the anterior brain case both vertically and laterally. (B) Sex:

Sexual dimorphism is low and appears to map mainly on the basicranium. (C)

Direction-of-cross: This effect shows offspring born to F1 hybrid mothers as

having a higher neurocranium than those produced from pure A/J dams.

Candidate Craniofacial Gene Enrichment
We used the Jackson Laboratories Mouse Map Converter to
convert our confidence interval estimates of SSH.qtl from map

distances into genomic locations on the mouse reference genome
(build GRCm38). We then queried the Ensembl database to
obtain the list of protein coding Refseq genes for a given QTL
interval. To identify the most relevant candidate genes for
involvement in cranioskeletal development and phenotypic vari-
ation, we used the gene enrichment tool Toppgene from the
Cincinnati Children’s Hospital Medical Center. Toppgene prior-
itizes or ranks candidate genes based on functional similarity to a
training gene list. Functional annotation-based disease candidate
gene prioritization uses a fuzzy-logic based similarity measure to
compute the similarity between any two genes based on semantic
annotations (Chen et al., 2009). The similarity scores from indi-
vidual features are combined into an overall score using statistical
meta-analysis. A p-value for each annotation of a test gene is
derived from random sampling of the whole genome (Chen et al.,
2009). The utility of the Toppgene Suite was demonstrated using
20 reported GWAS-based gene–disease associations (including
novel disease genes) representing five diseases, in which Topp-
gene ranked 19 of 20 (95%) candidate genes within the top 20%
(Chen et al., 2009).

Candidate gene lists from each QTL interval were separately
submitted to the gene enrichment toolkit, along with our training
list of known craniofacial genes. The total training list consisted
of 102 autosomal genes (Supplemental Table 2) that are known
to be involved with craniofacial development and/or craniofa-
cial disorders and was compiled by two of us (MLC and TCC).
Because Toppgene uses a resampling approach (permutation
test) to assess the significance of each gene, there can be potential
issues due to randomness of the sampling of the genome. There-
fore, candidate lists from each SSH.qtl interval were submitted
to the Toppgene tool ten times. For a gene to be considered a
strong craniofacial candidate, it needed to be present in all ten
iterations with a significance value of 0.01 or lower. From this list,
only the genes that are known to harbor exonic non-synonymous
single nucleotide variants between A/J and C57BL/6J strains were
retained. This information was obtained from the Wellcome
Trust Mouse Genome SNP data. The list with exonic variants
was submitted to the Ensembl Variant Effect Predictor (VEP) to
measure the effect of variants. The resultant list contained 16 can-
didates with high SIFT scores (Table 2). The workflow as well as
the number of candidate genes remaining at each step is provided
in Figure 6.

Discussion

Our combination of 3D geometric morphometrics, higher den-
sity genotyping (884 polymorphic SNPs), together with our
multiple QTL mapping technique, enabled us to identify more
than two QTL on a single chromosome with a two generation
cross, specifically on chromosomes 1 and 4. This is an improve-
ment over previous QTL mappings for skull and mandible shape
and size.

Comparison of the Skull Size QTL Findings
The previous most comprehensive study of QTL affecting body
size in mice was done by Kenney-Hunt et al. (2006), in which the
size was measured through organ and necropsy weights and long
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TABLE 2 | Skull shape QTL (SSH.qtl) identified in this study.

Shape QTL Closest marker Chr Pos (cM) LOD Lower CI (bp) Upper CI (bp) Candidate CF genes

SSH.qtl1 mCV24784983 1 10.5 12 5,920,984 25,974,921 [Col9a1; Eya1]

SSH.qtl2 rs3678634 1 52.6 28.3 115,819,089 127,021,793 Fcgr2b [Gli2]

SSH.qtl3 rs13466711 1 78.6 17.7 168,066,210 175,710,316

SSH.qtl4 rs13480734 10 52.9 18.3 89,335,908 105,325,377 [Alx1]

SSH.qtl5 rs13481127 11 48.5 27.3 80,139,712 81,911,051

SSH.qtl6 rs3672597 11 77.5 24.8 112,611,769 114,027,932 [Sox9]

SSH.qtl7 rs3717860 12 8.8 32.5 16,866,101 28,237,591 Taf1b

SSH.qtl8 rs3710348 13 13.4 19.5 30,941,216 35,713,142 Itga2

SSH.qtl9 gnf13.115.241 13 62.8 13.4 110,281,304 118,066,332

SSH.qtl10 rs6396829 14 20.1 28.1 30,970,692 38,186,621

SSH.qtl11 CEL-15_43206205 15 16.8 15 39,391,647 47,392,759

SSH.qtl12 rs4191367 16 35.4 13.9 54,657,678 66,961,706 Epha3 [Arhgap31]

SSH.qtl13 rs6298471 17 19.2 23.8 36,252,692 43,916,321

SSH.qtl14 rs6328845 18 31.3 11.4 56,230,871 70,306,352 PPargc1b [Slc26a2; Tcof1]

SSH.qtl15 rs3023496 19 40.1 17 46,867,039 49,396,956

SSH.qtl16 rs13476580 2 44.3 20.6 72,637,926 76,844,869

SSH.qtl17 rs6209325 2 73.3 16.5 146,817,118 155,755,548 Pax1; Cd93 [Asxl1]

SSH.qtl18 rs6246699 3 18 14.6 34,942,416 39,449,337

SSH.qtl19 rs4138887 3 44 13.4 96,754,992 130,100,724 [Alx3;Col11a1;Gnai3]

SSH.qtl20 rs3660863 4 3.1 9.7 3,867,296 11,352,972 [Plag1; Chd7; Gdf6]

SSH.qtl21 rs3711477 4 40.1 20.5 81,877,569 105,794,559 [Frem1]

SSH.qtl22 rs3663950 4 65.1 23.2 126,198,546 134,724,460 Thrap3; Col16a1 [Arid1a]

SSH.qtl23 rs13459085 5 17.3 24.8 20,284,721 35,523,469 Cad; Whsc1 [Fgfr3; Shh; Hmx1; Sh3bp2]

SSH.qtl24 CEL-5_117374791 5 59.3 14.7 117,729,579 119,888,175 Tbx3

SSH.qtl25 rs6181382 6 35.5 34.8 78,232,602 84,781,463 Dok1; Gcfc2

SSH.qtl26 rs6265387 6 78.2 27.3 144,446,852 148,260,112 Arntl2

SSH.qtl27 rs13479395 7 49.5 16.4 78,470,627 90,617,547 Kif7

SSH.qtl28 rs13479776 8 29.7 23.2 47,753,313 78,304,228

SSH.qtl29 rs3714664 9 22.5 11.3 39,523,343 46,544,750 [Pvrl1]

SSH.qtl30 rs13480351 9 49.5 16 90,683,187 99,809,852 [Foxl2]

Fields are same as Table 1. Genes from our list of known craniofacial genes are given in square brackets. High priority candidates genes identified in this study for their potential

involvement in craniofacial development are reported in boldface.

bone lengths, but they did not include any cranial measurements.
Of the 35 pleiotropic QTL they identified, five of them map to
regions overlapping the SCS.qtls identified in this study. Three
of these loci (BOD2.1, BOD4.1, BOD16.1) affect both the bone
length and organ size, and two of them (ORG6.1, ORG11.1) affect
only the organ size. None of our SCS.qtl map to their loci solely
responsible for the long bone length, suggesting different genetic
modules control the size of the skull and the long bones, unless
the locus has an impact on overall body size. However, it should
be noted that our population is significantly younger (28 days)
than their population (70–144 days) which somewhat limits the
comparisons.

In follow up work, using strictly cranial, mandibular and
post-cranial measurements, and no organ or necropsy weight,
Kenney-Hunt et al. identified up to 7 QTL for different skeletal
traits on a single chromosome (e.g., Chr 1) (Kenney-Hunt et al.,
2008). In some cases, however, the confidence intervals of these
QTL overlap (e.g., all reported QTL on chromosome 1 have over-
lapping confidence intervals), making it difficult to argue for their

independence. In other cases, their multiple QTL map to one of
our SCS.qtl (e.g., skl2.03 and skl2.04 to our SCS.qtl1). Given the
number of skeletal traits they found to be associated with these
loci (30 and 10), this is not surprising. These loci are mostly likely
involved in overall growth and are representative of a global size
effect.

Comparison of the Skull Shape QTL Findings
There are few publications that have attempted to identify QTL
responsible for variation in skull shape of mice (Leamy et al.,
1999; Wolf et al., 2005; Pallares et al., 2014). The first two studies
used the same F2 progeny (535 individuals) from an intercross
of large (LG/J) and small (SM/J) inbred mice strains, and the
same set of 76 microsatellite markers. Wolf et al was focused on
epistatic interaction of the QTL responsible for the late and early
developing traits, and is not directly comparable to our results
(Wolf et al., 2005). In the former study, the authors were able to
identify 26 QTL responsible for the measured skull characteris-
tics (Leamy et al., 1999). Of the 26 skull QTL, 17 mapped over

Frontiers in Physiology | www.frontiersin.org 8 March 2015 | Volume 6 | Article 92

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Maga et al. Mouse skull shape QTL

FIGURE 5 | Contribution of each anatomical region to the variation in

covariates and SSH.qtl. (A) Unstandardized (B) weighted by the number of

landmarks in a given region. Low proportion of Dorsal Face appears to be an

artifact to its low number of landmarks whereas the low proportion

accounted by the palate is robust. Horizontal gray lines represent 95%

intervals obtained from random vectors. Many QTL have a stronger effect on

the neurocranium than expected from a random vector that will parcellate

uniformly across the four cranial regions. On the contrary, most of QTL have

an effect on the palate weaker than expected. For covariate or QTL specific

breakdown of regional variation, see Supplemental Figure 4.

SSH.qtls identified in this study. However, this number could be
exaggerated due to the extremely large confidence intervals of
that study (27.4 cM vs. 5.4 cM in this study). At least in one
case of theirs, the confidence interval spans almost the entire
chromosome (QTL-13.2). The authors assigned the effect of the
identified QTL on the skull characteristics either to the facial
region (F) or the cranial vault (V). Of the 17 matching QTL,
seven of those have a phenotypic interpretation that is consis-
tent with the results from our study (QTL-S1.1, QTL-S1,2; QTL-
S3.1; QTL-S4.1; QTL-S7.1; QTL-S8.1; QTL-S9.2). More recent
study by Pallares et al. study used 178 males derived from 68
mating pairs of wild mice and very dense genotyping (Pallares
et al., 2014). However, the study appears to have suffered from
weak power as they identified only nine loci spread over seven
chromosomes, even though they report up to 64% of the vari-
ation was heritable. This is likely due to the small number of
animals used, especially with regard to the decay of linkage dis-
equilibrium in wild populations, which implies strong associ-
ation only in 100 kb blocks apart from the causal loci (Laurie
et al., 2007). The failure to account for the multivariate nature

of phenotypes was also a likely confounding factor as we show
that directions of genetic effects may not coincide to phenotypic
covariance structure (PCs) especially with natural populations
where environmental variation may be large. Therefore looking
only at univariate PC in such case is an approach that might have
low power.

Magnitude of Effects and Their Mapping on the
Anatomical Subregions of the Skull
In contrast to all previous studies where adult mice of about
70 days of age or older were used, we mapped QTL for skull
shape using mice aged of 28 days, an age that corresponds to
approximately a week after weaning. This has important implica-
tions because masticatory muscles and mechanical load are just
starting to be players in the complex development of the skull
(Vecchione et al., 2010), through their effects on bone remod-
eling (Herring, 1993). Such epigenetic factors will channel envi-
ronmental stimuli experienced by animals throughout their late
ontogeny and adult life (Klingenberg and Navarro, 2012). The
discovered QTL account for 23% of the total Procrustes variance

Frontiers in Physiology | www.frontiersin.org 9 March 2015 | Volume 6 | Article 92

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Maga et al. Mouse skull shape QTL

FIGURE 6 | Workflow for the bioinformatics pipeline.

in cranioskeletal shape observed between the A/J and C57BL/6J
inbred strains. The direction-of-cross explains 2% of the total
shape variance and partly structures PC1 (11% of its variance).
Such parent-of-origin effects may arise from phenomenon such
as maternal genetic effects or genomic imprinting (Hager et al.,
2008;Wolf andWade, 2009), and underlines the potential impor-
tance of maternal and other epigenetic influences on the variation
of cranioskeletal form (Lieberman, 2011).

Effect sizes of QTL of skull shape variation of inbred mice
appear to be small; in our study they rarely exceed 1% of the
overall shape variation (Supplemental Table 1). However, they
may account for up to 30% of the variation in some specific
directions of the shape space. These directions correspond to spe-
cific pattern of covariation of some skull elements. For example,
such patterns may correspond to the enlargement of the neu-
rocranium (SSH.qtl7, Supplemental Animation 10), to the flat-
tening of the cranial angle (SSH.qtl16, Supplemental Animation
19) or to the facial elongation (SSH.qtl6, Supplemental Anima-
tion 9). Their large genetic component implies the existence of
important genetic constraints in the structure of the growing
skull.

The compartmentalization of the QTL effects shows that in
most cases contributions from neurocranium and palate on the
shape variation appear different from the expectation of vectors
drawn in random, but in opposite ways: A more than expected
proportion of changes mapped to neurocranium, whereas the
palate showed a lower than expected magnitude of changes
(Figure 5). Indeed, 50% of the QTL effects show an overall effect
on the skull (i.e., QTL pleiotropy across both facial regions and
the neurocranium, and, even for 10%, also over the palate).
Pleiotropy is the null hypothesis with geometric morphometrics
data, firstly because of the mathematics behind the Procrustes
superimposition (Klingenberg, 2010), but also because the highly
integrated development of the skull in which even subtle changes

tend to produce global effects on shape (Hallgrimsson et al.,
2014).

QTL Mapping as a Tool for Candidate Gene
Enrichment
In regard to our secondary goal of prioritizing the candidate
genes located within QTL intervals, our approach would seem
to be a feasible way to identify novel genes involved in CF
development. Our SSH.qtl intervals contained 23 of the 102
already known CF genes (Table 2). Compared to the total num-
ber of candidate genes (2476) from the SSH.qtl intervals and
the number of known genes on autosomes (22,644, also excludes
mitochondrial genes and haplotypes) this result is highly signif-
icant (p < 0.0001) based on a hypergeometric test, which sug-
gests positive enrichment of CF genes in the identified SSH.qtl
intervals.

Among the 16 high priority candidates identified, some of
them have recently been implicated in some craniofacial dis-
orders, or have known expression patterns in the developing
mouse craniofacial region, further supporting the validity of our
approach. For example, PAX1 is reportedly expressed in the
occipital bone during fetal development (E13.5) in mice (Son-
nesen et al., 2008), and also in the head mesenchyme and cranial
base at E10.5 and E11.5 (Dietrich et al., 1993). Also, a mutation
in PAX1 has been proposed to cause otofaciocervical syndrome
in humans (Pohl et al., 2013). WHSC1 is a candidate gene for
Wolf-Hirschhorn Syndrome, which has a distinct craniofacial
phenotype including microcephaly, micrognathia, ocular hyper-
telorism, dysplastic ears and periauricular tags (Battaglia et al.,
1993). EPHA3 is expressed in the palatal shelves, face and middle
ear of E14.5 mouse embryos (Visel et al., 2004). More recently,
it has been suggested that mutations in EPHA family genes may
cause cleft lip and palate (Agrawal et al., 2014). Mutations in the
KIF7 gene have been reported to cause Acrocallosal syndrome,
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which presents with a wide range of craniofacial abnormalities
including macrocephaly, hypertelorism, short nose, broad nasal
bridge, short philtrum with upturned upper lip, high and nar-
row palate (Walsh et al., 2013). CAD is expressed in the maxillary
component of the 1st branchial arch of E10.5 mouse embryos
(Rainger et al., 2012), and also weakly expressed in the nose, inner
ear and the palatal shelves of E14.5 mouse embryos (Visel et al.,
2004). In mice, many of the collagen genes, including COL16A1,
are upregulated during the development of the embryonic maxil-
lary, frontonasal and mandibular processes especially from E10.5
to E12.5 (Feng et al., 2009). In human populations, a recent
GWAS study identified five genes that are responsible for facial
variation observed in Europeans (Liu et al., 2012). Of these genes
COL17A1 maps to the region syntenic to our SSH.qtl15. How-
ever, COL17A1 was not picked up as a strong candidate in our
analysis due to its low SIFT score.

There are certain limitations of our candidate gene prioriti-
zation approach that need to be recognized. Arguably, the most
significant limitation is the level of detail available in existing
gene ontologies and other databases (such as gene expression,
human/mouse phenotypes, etc) that are used in the calculation
of candidate gene prioritization scores. Most genes are likely to
be pleiotropic, and only a subset of their functions might be doc-
umented in these databases. This would introduce a bias and
restrict what can be learned from the kind of mapping study
reported here. Another related issue is the selection of “known
CF genes.” Our list consists of genes that are known to cause
malformations when mutated and therefore it can be considered
biased toward “disease genes.” While we have not intention-
ally excluded non-disease gene, our rationale was that variants
with lesser functional impact but in these same genes could
at least conceivably contribute to natural variation in cranio-
facial shape. An example in support of this is ALX1. ALX1 is
one of our listed “CF” genes because it is known to cause cleft-
ing in humans (Uz et al., 2010). Natural variants in ALX1 were
recently reported to be responsible for almost all the pheno-
typic variation in beak shapes of the Galapagos finches (Lam-
icchaney et al., 2015), so we feel it is reasonable that expect
that variants in such genes would also contribute to facial vari-
ation in mammals. While this may not be the case for all of
our “known” genes, we are hopeful that with increasing infor-
mation on functions and interactions of genes, this would be a
self-correcting process. It is also possible that some natural vari-
ation in skull phenotype may be due to dosage effects. Indeed
there are known to be strain-specific intrachromosomal rear-
rangements, as well as segmental deletion and duplication dif-
ferences between inbred mouse strains, although in this study we
did not attempt to identify all copy number variations (CNV) in
our QTL regions.

Previous studies using QTL mapping of mandible and molar
shape and size in mouse relied typically on 2D landmarks
and sparse sampling of the genome using microsatellite mark-
ers. Our primary purpose in this study was to identify QTL
responsible for the variation in skull shape and size observed in
mice using 3D phenotyping and with denser genotyping, and
secondarily use the identified SSH.qtl to search for important
new genes involved in craniofacial development and variation.

Geometric morphometrics based phenotyping appears suitable
for QTL analyses because of its ability to get information from
both the magnitude and the direction of the shape changes. In
addition, when the focus is on the overall shape of the struc-
ture, it also has the potential to detect QTL with more preci-
sion than traditional morphometrics. However, the multivariate
nature of the resultant phenotype requires specific and careful
handling of its high dimensionality because its genetic sources
may be largely diffused over multiple dimensions. It is also
important to note that the generalized Procrustes analysis uses
least-squares based optimization that assumes equal variance at
all landmarks and will distribute variances across many land-
marks. This is particularly troublesome if there is large vari-
ance clustered in only one or two landmarks (the Pinocchio
effect), which is not the case in our dataset but still an impor-
tant point to consider for every dataset. An alternative approach
that does not suffer from the uncertainty introduced in the
superimposition would be to use pairwise distances between
landmarks as proposed by the Euclidean Distance Matrix Anal-
ysis, or EDMA, approach (Lele and Richtsmeier, 1990, 1991;
Richtsmeier et al., 2002). While in theory this is an attractive
approach, the major practical roadblock for this approach is the
lack of availability of a sufficiently comprehensive EDMA analysis
package to conduct all the morphometric analyses necessary
for the QTL mapping, including the removal of asymmetry
as a confounding parameter. However, there are other com-
putational and statistical issues to consider as well. For exam-
ple, the total number of interlandmark distances in our dataset
with 53 landmarks is 1376. Most of those interlandmarks dis-
tances will be tightly correlated and will not be independent
phenotypes in contrast to our PC scores. This will compli-
cate the multivariate QTL mapping and calculation of the QTL
effects.

In summary, we show that at least several dozen genetic vari-
ants with small effects account for a quarter of the variation
observed in the sub-adult skull shape between two commonly
used inbred mouse strains: C57Bl/6J and A/J. Nevertheless, some
specific shape features are under strong genetic control (up to
30%). Evidence of QTL specific for some cranial regions is also
shown.

The detailed follow-up bioinformatic analysis identified 16
high priority candidate genes in craniofacial development, some
of them being recently implicated in craniofacial disorders. Thus,
coupling the QTL mapping approach in model organisms with
candidate gene enrichment approaches appears to be a feasi-
ble way to identify high-priority candidates genes related to the
structure or tissue of interest.
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