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Renal failure is accompanied by progressive muscle weakness and premature fatigue,

in part linked to hypokinesis and in part to uremic toxicity. These changes are

associated with various detrimental biochemical and morphological alterations. All

of these pathological parameters are collectively termed uremic myopathy. Various

interventions while helpful can’t fully remedy the pathological phenotype. Complex

mechanisms that stimulate muscle dysfunction in uremia have been proposed, and

oxidative stress could be implicated. Skeletal muscles continuously produce reactive

oxygen species (ROS) and reactive nitrogen species (RNS) at rest and more so during

contraction. The aim of this mini review is to provide an update on recent advances

in our understanding of how ROS and RNS generation might contribute to muscle

dysfunction in uremia. Thus, a systematic review was conducted searching PubMed

and Scopus by using the Cochrane and PRISMA guidelines. While few studies met our

criteria their findings are discussed making reference to other available literature data.

Oxidative stress can direct muscle cells into a catabolic state and chronic exposure to it

leads to wasting. Moreover, redox disturbances can significantly affect force production

per se. We conclude that oxidative stress can be in part responsible for some aspects of

uremic myopathy. Further research is needed to discern clear mechanisms and to help

efforts to counteract muscle weakness and exercise intolerance in uremic patients.

Keywords: oxidative stress, uremia, muscle dysfunction, uremic myopathy, premature fatigue, muscle weakness

Introduction

Among the clinical entities affecting thousands of patients, chronic kidney disease (CKD) is a silent
epidemic expected to influence more than 50% of the Americans born today (Grams et al., 2013)
and approximately 40% of the population in Europe (Zoccali et al., 2010). Muscular weakness,
muscle wasting, limited endurance, exercise intolerance, and fatigue are components of the func-
tional and morphological abnormalities collectively termed uremic myopathy, which often also
includes uremic cardiomyopathy (Campistol, 2002).While the pathogenesis of uremic myopathy is
not clear, it is thought that an interplay of uremic toxicity and hypokinesis guide these abnormalities
in patients with CKD and especially in end-stage renal disease (ESRD) patients undergoing
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hemodialysis (HD) therapy. Observations of a significant cor-
relation between glomerular filtration rate (GFR) and exercise
tolerance (e.g., Clyne et al., 1987, 1994) led to studies revealing
the very low activity levels and poor functional capacity of renal
patients (Kouidi et al., 1998; Johansen et al., 2003; Sakkas et al.,
2003a). Moreover, various groups turned their attention to exer-
cise and other interventions to remedy or halt muscle deteriora-
tion in pre-dialysis (e.g., Clyne et al., 1991) and dialysis patients
(e.g., Sakkas et al., 2003b; Johansen et al., 2006). Despite the evi-
dent improvements in exercise capacity and muscle morphology
(Sakkas et al., 2003b, 2008a), in increasing muscle mass with
steroid supplementation (Topp et al., 2003), in improving sleep
and overall quality of life (Sakkas et al., 2008c) it appears that
interventions so far cannot restore muscle functionality in ESRD
patients to the level of age-matched healthy sedentary individuals
(Sakkas et al., 2003b, 2008a; Giannaki et al., 2011).

Components of Uremic Myopathy

Loss of skeletal muscle strength in renal patients, contributes
to easy fatigability, and can be linked to loss of muscle fibers
and atrophy of the remaining fibers (Porter et al., 1995; Sakkas
et al., 2003a). In cross-sectional studies, comparing age-matched
controls and end-stage patients, atrophy and loss of type IIα
and IIx fibers, reduced muscle fiber capillarization and periph-
eral activation (Sakkas et al., 2003a), and a significant decrease
in the mean diameter of both fiber types (Crowe et al., 2007)
has been observed. However, not all functional consequences can
be attributed to atrophy. Interventions to improve muscle mass
indicate that there is a functional deficit in the existing muscle
mass. Dialysis patients present with rapid and large accumula-
tion of inorganic phosphate during submaximal exercise, lower
oxidative potential, larger phosphocreatine reduction with slower
recovery but also with evidence of central activation failure, all
these factors contributing to early and excess fatigue (Johansen
et al., 2005). Abnormal mitochondria respiratory capacity, is also
a factor responsible for easily fatigability in CKD patients, as
mitochondrial morphology is disturbed in patients with CKD
(Kouidi et al., 1998), while alterations in respiratory chain pro-
teins likely enhance reactive oxygen species (ROS) production
which has been seen in a rat uremia model (Yazdi et al., 2013).

CKD patients, especially the end-stage ones, lead a very
sedentary lifestyle. Morphological abnormalities however have
been observed in both locomotory and non-locomotory mus-
cles (Sakkas et al., 2003a) thus not all of the dysfunction can be
attributed to inactivity.

Biochemical and nutritional changes occurring through the
progression of CKD can stimulate protein losses and can con-
tribute to the development of muscle wasting. This has grave
significance as catabolic conditions increase the risk of morbidity
and mortality (Griffiths, 1996; Gordon et al., 2007).

Pro-dialysis and dialysis patients face increasing dietary
restrictions. Malnutrition is associated with hypoalbuminemia,
which is inversely correlated with mortality in uremic patients
(Lowrie and Lew, 1990), and it is also used as amarker of depleted
protein stores (Carrero et al., 2008).

Metabolic acidosis, which is commonly associated with CKD,
stimulates the breakdown of muscle proteins resulting in loss

of muscle mass (Hu et al., 2013). Furthermore, the observation
that insulin resistance, is common in patients with CKD, suggests
that impaired insulin signaling could also contribute to protein
losses (Sakkas et al., 2008b; Zhang et al., 2009). Moreover, CKD is
associated with an increase in circulating levels of inflammatory
cytokines. Specifically, levels of circulating IL-6, TNF-α, serum
amyloid A, and C-reactive protein are increased in patients with
CKD (Zhang et al., 2009, 2011; Cheung et al., 2010). Notably,
it is contested that in well-dialyzed patients, circulating proin-
flammatory markers are the main cause for hypoalbuminemia
rather than malnutrition (Kaysen et al., 2004). The possibility
of an accelerated protein degradation in CKD mediated by the
ubiquitin-proteasome system (UPS) (Wang and Mitch, 2013)
should also be considered.

Apart from a compounded or accelerated muscle loss, a
reduction in the ability to anabolize muscle could be an issue
in CKD. Still, interventions with nandrolone decanoate were
successful in increasing muscle mass, albeit without improving
muscle strength (Topp et al., 2003), pointing to an available
anabolic response. However, there are suggestions that CKDmay
dampen the function of satellite cells. Zhang et al. (2010) using
a mouse model of CKD reported a delayed regeneration of dam-
aged muscle and reductions in MyoD protein and the myogenin
expression, indicating a decreased satellite cell proliferation and
differentiation (Zhang et al., 2010).

To compound the above, in dialyzed patients, the HD
procedure per se stimulates protein degradation and reduced pro-
tein synthesis with the effect persisting for 2 h following dialysis
(Ikizler et al., 2002). Thus, while blunting of anabolic responses
can’t be excluded, amultitude of factors can promote protein loss,
especially in the end-stage patients.

Is there a Role for Oxidative Stress in
Uremic Muscle Dysfunction?

Oxidative stress promotes catabolic state and accelerates mus-
cle atrophy (Moylan and Reid, 2007). But it can also affect
contractility of the available muscle and sarcomeric protein
expression.

Many studies have found that oxidative stress can cause long-
term effects and acute effects (Lamb and Westerblad, 2011) on
contractility. Long-term effects include altered gene and protein
expression or damages in lipids and proteins that are irreversible,
while acute effects are reversible. The decrease in Ca2+ sensitiv-
ity which contributes to muscle fatigue is considered as an acute
effect of oxidative stress (Lamb and Westerblad, 2011).

A key mechanism that has been proposed to explain the
ROS contribution in muscle fatigue is the reduced myofibril-
lar Ca2+ sensitivity and/or sarcoplasmic reticulum Ca2+ release
(Allen et al., 2008). Moreover, an increase in NO during fatigue
in fast twitch muscle fibers contribute in decreased myofibrillar
Ca2+ sensitivity (Lamb andWesterblad, 2011). However, in slow-
twitch fibers NOdonors, did not affectmyofibrillar Ca2+ sensitiv-
ity (Spencer and Posterino, 2009). Also, a study by Reardon and
Allen (2009), showed that iron can increase ROS production at
high temperature in the skeletal muscle cells, accelerating muscle
fatigue.
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Moreover, ROS generation can acutely affect contractile func-
tion and disturbs structural transition within the actomyosin
complex which is crucial for force generation. Exposure to low
or high concentrations of peroxide (5 or 50mM) reduces max-
imum force and velocity of contraction, with the high perox-
ide resulting in irreversible loss of calcium regulation of force
mediated by oxidation of methionines in the heavy and essen-
tial light chains (Prochniewicz et al., 2008a). More elegant work
from same group, examining structural dynamics of actin and
myosin pointed to an effect of oxidation on weak-to-strong
structural transition and by using site-directed mutagenesis of
Dictyostelium (Dicty) myosin II oxidation, a redistribution of
existing structural states of the actin-binding cleft was implicated
(Prochniewicz et al., 2008b; Klein et al., 2011). Alterations in
myosin heavy chain expression in uremic animals have also been
reported (Taes et al., 2004).

Many studies have observed increased levels of oxidative stress
biomarkers in blood samples of CKD patients (Samouilidou and
Grapsa, 2003; Filiopoulos et al., 2009). In the literature, there are
sufficient studies with different technical approaches in which the
activity and role of ROS and reactive nitrogen species (RNS) in
skeletal muscle has been studied using both in vivo and in vitro
methods in a variety of contexts (Powers et al., 2011). Thus,
based on recent advances in our understanding of how ROS and
RNS affect muscle function, this mini-review aimed to examine if
oxidative stress can contribute to muscle dysfunction in ESRD.

Methods

A systematic review was conducted searching PubMed and Sco-
pus by using the Cochrane and PRISMA guidelines. A compre-
hensive literature search was conducted from September 2014
until November 2014. We used PubMed, ScienceDirect and Sco-
pus or Google Scholar to search for studies that investigated the
relationship among (i) oxidative stress and uremic myopathy in
humans, and (ii) markers of oxidative stress in the skeletal muscle
of uremic patients on HD. Eligibility of the studies based on titles,
abstracts and full-text articles was determined by two reviewers.
Studies were selected using inclusion and exclusion criteria. We
included only those studies that met the following criteria: they
assessed oxidative stress markers in the skeletal muscle of patients
on HD; they used human biopsies; they addressed randomized
control trials, controlled trials, or clinical trials designed to eval-
uate oxidative stress in skeletal muscle in uremic patients on HD
therapy; they were written in English.

Results and Discussion

Only three studies have examined the oxidative damage in
human skeletal muscle of uremic patients on HD (Table 1). Their
findings are discussed with reference to renal human blood find-
ings and/or animal muscle findings either models of CKD or
models of other conditions.

Lim et al. (2002a) found increased malondialdehyde (MDA)
and protein carbonyls (PC) levels reflecting extensive oxidative
damage to total protein content and lipids, in muscle suggested
by the authors to be due to increased levels of inflammatory

cytokines and to increased protein degradation. Increased levels
of lipid peroxidation in blood samples of CKD patients dur-
ing HD treatment has also been found elsewhere (Varan et al.,
2010) and could enhance the susceptibility of LDL oxidation
which is a major contributor in the genesis of atherosclerosis.
The above observations, together with animal findings in the
role of carbonyl stress in vascular injury (Chen et al., 2013) con-
cur to a role of protein oxidation in long-term vascular damage
which could impact overall vessel functionality and thus striated
muscle’s bioenergetics and function.

The same group also reported increased mitochondrial pro-
tein and lipid oxidative damage in skeletal muscle of ure-
mic patients compared to age-matched controls (Lim et al.,
2002b). The authors also reported mitochondrial DNA muta-
tions, and overall oxidative damage to total cellular DNA,
supporting a notion of attenuating regenerative and bioen-
ergetics capacities of the skeletal muscles of renal patients.
Also, mitochondrial DNA deletions have been observed in the
skeletal muscle of ESRD patients similar with these found in
the skeletal muscle of elderly subjects due to oxidative dam-
age which probably contribute to the impaired mitochondrial
energy metabolism that characterizes uremic patients (Lim et al.,
2000).

It is considered that mitochondrial membranes are more
likely to develop oxidative damage due to the relatively high
amounts of lipid containing polyunsaturated fatty acids that
they possess (Laganiere and Yu, 1993) and this would explain
their increased oxidative damage. Given that mitochondria are
considered the predominant source of ROS in muscle fibers
(Davies et al., 1982; McArdle et al., 2001; Jackson, 2009), due
to the elevated oxygen consumption that occurs with increased
mitochondrial activity, especially during exercise (Powers et al.,
2011) it is conceivable that damage to the mitochondria mem-
brane might further compound their function as a ROS source
causing more leaking. Moreover, it has been suggested that
mitochondrial ROS leaking depends on fiber type both at rest-
ing basal respiration and at an increased respiration (as in
exercise). In an animal saponin-treated muscle study of mito-
chondrial respiration, type IIb skeletal muscle fibers showed
significantly higher free radical leaking compared to type
IIa and I fibers at basal respiration (Anderson and Neufer,
2006).

If indeed the ROS load in the late stages renal skeletal mus-
cle is high, that might in part explain the higher susceptibil-
ity of type II fibers to atrophy observed in end stage patients,
where not only generalized muscle atrophy was observed but
more prominent atrophy was seen in type II (especially IIx)
vs type I fibers either in non-locomotory (Sakkas et al., 2003a)
or locomotory muscle samples. Furthermore, on the possible
role of the mitochondrial dysfunction in renal muscle atrophy
it should be noted that de-innervation studies show that den-
ervated muscle mitochondria release fatty acid hydro peroxides,
mediated by calcium dependent phospholipase A2 (Bhattacharya
et al., 2009). Such observations together with observations of an
increased sensitivity of human aged mitochondria to apoptosis
(Gouspillou et al., 2014), and the findings of Lim et al. (2002b)
reviewed above, can collectively substantiate an important role
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TABLE 1 | Summary results of the studies meeting the criteria of the present systematic review.

References Total glutathione

nmol/mg protein

GSS

Gnmol/mg

protein

SOD

U/mg protein

MDA

nmol/mg protein

CAT

U/mg protein

PC

nmol /mg of

protein

Thiols

nmol/mg

protein

MARKERS OF OXIDATIVE STRESS IN MUSCLE TISSUE OF UREMIC PATIENTS

Lim et al., 2002a – – – 0.065± 0.009↑ – 3.78 ± −0.14↑ –

Lim et al., 2002b – – – 23.76± 6.06↑ – 24.9± 4.00↑ –

Crowe et al., 2007 ≈ 24↑ ≈ 2.6 ≈ 20 ≈ 0.28↓ ≈ 11↓ – ≈ 79

MARKERS OF OXIDATIVE STRESS IN MUSCLE TISSUE OF HEALTHY CONTROLS

Lim et al., 2002a – – – 0.043± 0.005 – 2.97±−0.28 –

Lim et al., 2002b – – – 7.67± 0.95 – 3.78± 0.14 –

Crowe et al., 2007 ≈ 5 ≈ 3.3 ≈ 27 ≈ 0.52 ≈ 34 – ≈ 60

GSH, glutathione; GSSG, oxidized glutathione; SOD, superoxide dismutase; MDA, malondialdehyde; CAT, catalase; PC, protein carbonyl; Thiols, protein thiol content. Arrows indicate

statistically significant differences reported by authors.

FIGURE 1 | The multifactorial nature of uremic myopathy. Many

specific disease-related but also lifestyle factors (e.g., physical inactivity)

contribute to the pathological muscle state. Exactly when one factor reaches

critical importance cannot be surmised so far. The results of this systematic

mini review do point to oxidative stress as a contributor to the development

of uremic myopathy. MDA, malondialdehyde; PC, protein carbonyls.
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for mitochondrial dysfunction, in the pathogenesis of uremic
myopathy.

In contrast to the findings of Lim et al. and Crowe et al. (2007),
reported decreasedMDA content, increased total glutathione and
no change in protein thiols content, superoxide dismutase (SOD),
oxidized glutathione (GSSG) and catalase activity and concluded
that there is no evident connection between oxidative stress and
muscle atrophy in uremia. However, if one considers the age dif-
ference in the subjects of the conflicting studies one cannot dis-
count the possibility that the much younger subjects, which also
had spent less time on dialysis, of the Crowe et al. study had better
preserved mitochondrial status. Adaptation of various antioxi-
dant mechanisms can also explain some of the above differences.
It should also be noted that in transgenic mice studies, the model
overexpressing phospholipid hydroperoxide glutathione perox-
idase, Gpx4-Tg (which is associated with mitochondrial and
other membranes) protected against denervation atrophy and
not the manganese superoxide dismutase (Sod2-Tg) or copper-
zinc superoxide dismutase (Sod1-Tg) models, suggesting that the
release of fatty acid hydroperoxides from mitochondria may be
a more important factor in denervation-induced atrophy than
superoxide and hydrogen peroxide (Bhattacharya et al., 2009).

The above discourse further highlights the difficulty faced by
researchers in renal patient studies. Many confounding factors
such as years in dialysis, nutrition, physical activity levels, level
of treatment, and comorbidities can affect muscle status and
accelerate or decelerate disease and aging effects (Figure 1).

Conclusions

CKD has a high and increasing prevalence not only in the old
retirees but also in the middle-aged Europeans (Zoccali et al.,
2010). Skeletal muscle dysfunction is a ubiquitous finding in CKD
patients on advanced stages of the disease. The impact is grave as
the statistics are implacable. Muscle loss and weakness contribute

to the high morbidity and mortality of these patients, especially
at the end-stage renal failure. Many specific disease-related but
also lifestyle factors (such as physical inactivity) can be seen as
contributors to the pathological muscle state. Exactly when one
factor reaches critical importance cannot be surmised so far. The
few studies meeting our search criteria while not agreeing, do
point to a possibly important role for oxidative stress in uremic
myopathy. It is not known if hypothesized oxidative stress medi-
ated effects on muscle function are more of an acute or a chronic
nature. In vitro studies however show clearly that oxidative stress
does have a role whether via chronic, protein and other modifica-
tions or acute contractility effects. If anything the three studies
and the peripheral literature highlight the need for a system-
atic study of the disease mechanisms affecting skeletal muscle
performance in renal disease.

As long as great unknowns remain on the mechanisms and
modulation of uremic myopathy, which leads to debilitation and
premature death, progress in the management of this new epi-
demic is the least slowed down. We suggest that more muscle
research, human and animal, should be done on pro-dialysis
stages including work on the role of oxidative stress. This would
allow researchers to decipher early changes, and perhaps identify

susceptible individuals for accelerated muscle loss, before mov-
ing into the end-stage situation which on its own has detrimental
effects on muscle status.
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