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Pancreatic ductal adenocarcinoma is a devastating disease characterized by a dense
desmoplastic stroma. Chemo- and radio-therapeutic strategies based on targeting
cancer cells have failed in improving the outcome of this cancer suggesting important
roles for stroma in therapy resistance. Cells in the tumor stroma have been shown to
regulate proliferation, resistance to apoptosis and treatments, epithelial to mesenchymal
transition (EMT) and stemness of cancer cells. Stellate cells in their activated state have
been thought over the past decade to only have tumor promoting roles. However, recent
findings suggest that stellate cells may have protective roles as well. The present review
highlights the latest findings on the role of two major components of tumor stroma,
pancreatic stellate cells and macrophages, in promoting or inhibiting pancreatic cancer,
focused on their effects on EMT and cancer stemness.
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Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related death in
the United States. The 5-year survival rate remains at 5% making it one of the worst outcomes
among cancers (Siegel et al., 2012).

PDAC is unique among solid tumors because of the extremely dense desmoplastic stroma that
surrounds the cancer cell glands of this tumor. In fact, the majority of the tumor volume is made
of stroma compared to a much smaller volume occupied by the cancer cells. Understanding of the
populations of the cells present in the stroma is needed to better target the correct sub-populations.

Stellate Cells in the Context of Pancreatic Cancer

Pancreatic stellate cells (PSCs) were first isolated in 1998 by two groups- one from Australia and
one Germany (Apte et al., 1998; Bachem et al., 1998). Since then extensive work has been done to
understand the role of PSC in promoting pancreatic fibrosis and cancer. There has been general
agreement for over a decade that the PSCs promote pancreatic cancer growth, metastasis and
resistance to treatment, with observed association between strong stroma and worse outcome
(Erkan et al., 2008; Beatty et al.,, 2011). Indeed, stellate cells promote the growth of cancer cells in
sub-cutaneous mouse models of pancreatic cancer (Bachem et al., 2005). One mechanism through
which PSCs mediate their pro-cancer effect is through secretion of large amounts of extracellular
matrix proteins, responsible in large part for the fibrotic reaction characterizing human PDAC
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(Apte et al., 2004) as well as for inducing resistance to apoptosis
in the cancer cells (Edderkaoui et al., 2005). Activated PSCs
secrete growth factors, metallo-proteases, and cytokines shown
to stimulate cancer cell proliferation, migration and metastasis of
the pancreatic cancer cells (Wehr et al.,, 2011).

Stellate Cells Regulate
Epithelial-mesenchymal Transition (EMT)
and Stemness of the Cancer Cells

A major cause of the poor outcome for patients with pancreatic
cancer is the ability of the cancer cells to metastasize and to
develop resistance to treatments mainly through development
of cancer stemness characteristics. EMT is a process by which
epithelial cells lose their cell polarity and cell-cell adhesion
while gaining migratory and invasive properties to become
mesenchymal stem cells. The importance of the process of
EMT is that it is responsible for both metastasis and therapy
resistance through development of cancer stemness (Mani et al.,
2008; Arumugam et al., 2009). Cancer stem cells markers such
as ALDH1A1l, ABCG2, and nestin are highly expressed in
metastatic cancer cells compared to non-metastatic cancer cells
in animal models of pancreatic cancer. The metastatic cells show
strong expression of EMT markers indicating the association
between EMT, cancer stemness and metastasis (Matsuda et al,,
2014).

Recently, the role of PSCs in up-regulating EMT has become
more evident. Co-culture of cancer cells with PSCs induces
a fibroblast-like appearance of the cancer cells (Kikuta et al.,
2010). The cancer cells assume fibroblast characteristics such as
increased migration; and expression of mesenchymal markers
Vimentin, Snail-1 and Zeb; and decrease expression of epithelial
markers in the cancer cells (Kikuta et al., 2010; Mizuuchi et al.,
2014). The mechanisms underlying the promotion of EMT are
still under investigation and are not established. Because PSCs
produce significant amounts of Transforming growth factor-
beta (TGF-B) (Shek et al., 2002), there has been interest in
the role of TGF-B in EMT. In one study, the PSC-induced
EMT induction was not altered by treatment with anti-TGF-f-
neutralizing antibody, suggesting no role of TGF-f in this process
(Kikuta et al., 2010). Differently, another study showed that
specific neutralizing anti-TGF-B prevented EMT, cancer stem
cells phenotype, and tumorigenicity (Al-Assar et al., 2014).

There is accumulating evidence that small non-coding
microRNAs (miRNAs) mediate the interaction between PSCs
and cancer cells. Co-culture of pancreatic cancer cells with
PSCs led to increased expression of miR-210. PSCs-induced
miR-210 up-regulation was inhibited by inhibitors of ERK and
PI3K/Akt pathways. Inhibition of miR-210 expression decreased
the expression of Vimentin and Snail-1 as well as cell migration,
and increased the membrane-associated expression of B-catenin
in Panc-1 cells co-cultured with PSCs indicating its role in
regulating EMT and migration of the pancreatic cancer cells
(Takikawa et al., 2013).

The role of hypoxia, which is highly present in solid
tumors, on tumor promotion was highly investigated in the

last few years, Hypoxia increases the activity of PSCs in vitro
leading to its migration, secretion of collagen I and VEGF
(Masamune et al., 2008; Erkan et al., 2009). The fibrosis-related
gene connective tissue growth factor (CTGF/CCN2) protects
cells from hypoxia-mediated apoptosis, providing an in vivo
selection for tumor cells that express high levels of CTGF/CCN2.
Indeed, CTGF/CCN2 expression and secretion was increased in
hypoxic pancreatic tumor cells in vitro, and co-localized with
hypoxia in pancreatic tumor xenografts and clinical pancreatic
adenocarcinomas (Bennewith et al., 2009).

PSCs enhance the cancer stem cell phenotype of pancreatic
cancer cells by inducing the expression of genes such as ABCG2,
Nestin and LIN28 leading to an enhanced radio-resistance
of pancreatic cancer cells in in vitro and in vivo systems of
pancreatic cancer (Hamada et al., 2012; Al-Assar et al., 2014).
The expression of several EMT and cancer stem cell markers is
associated with significant in vivo tumorigenicity.

Very importantly, PSCs show greater activity when isolated
from patients after undergoing chemo-radiation therapy as
measured by the ability of PSCs to migrate, expand and contract
(Cabrera et al., 2014). This data together with the high level of
resistance to treatments developed in pancreatic cancer patients
suggest that PSC activity may contribute to the development
of resistance to therapy in the cancer cells. Indeed, PSCs were
found to promote in vitro sphere formation and invasiveness
of pancreatic cancer stem cells in an activin/ Alk4 receptor -
dependent manner (Lonardo et al., 2012). They also stimulated
metastasis and the ability to form colonies in mouse orthotopic
model of pancreatic cancer (Hwang et al., 2008). In another
study, PSCs mediated radioprotection of pancreatic cancer cells
in a B1 integrin dependent manner (Mantoni et al., 2011).

Clinical treatment of pancreatic cancer patients with Nab-
paclitaxel combined with gemcitabine significantly decreased
tumor growth and collagen staining as well as decreased the
level of activated stellate cells (Alvarez et al., 2013). There was
no association between the level of the secreted protein acidic
and rich in cysteine (SPARC) and metastasis or the effect of
Nab-paclitaxel (Schneeweiss et al., 2014).

Controversial Role of Stellate Cells

More recently, emerging data is challenging the established PSC
pro-cancer role and provides strong evidence for an anti-cancer
role of PSCs.

Ozdemir et al. (2014) showed that deletion of activated stellate
cells in transgenic mice led to invasive and undifferentiated
tumors, enhanced EMT, cancer stemness and decreased survival.
The deletion of stellate cells resulted in decreases in both non-
invasive precursor pancreatic intraepithelial neoplasia (PanIN)
and the PDAC stage of the disease. Importantly, the authors
observed an association between fewer activated stellate cells in
the tumors with reduced survival in PDAC patients confirming
their animal observations (Ozdemir et al., 2014). Finally,
depletion of PSCs induced suppression of immune surveillance
with increased CD4 " Foxp3* Tregs in mouse tumors (Ozdemir
etal., 2014). Of note, CD4 " Foxp3 ' Tregs are cells of the immune
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system that suppress immune responses allowing the cancer cells
to survive the immune checkpoint.

Simultaneously with this study, another study confirmed this
data showing that depletion of stromal cells from pancreatic
tumors, through genetic or pharmacological targeting of the
Sonic hedgehog (SH) pathway, results in a reduced stromal
content as expected, but led to a poorly differentiated histology,
increased vascularity and proliferation, and reduced survival in
an animal model of pancreatic cancer. Of note, SH drives the
formation of a fibroblast-rich desmoplastic stroma in the tumor
(Rhim et al.,, 2014).

Very importantly, the secretory protein periostin that has
been suggested to function as a cell adhesion molecule and
promote the invasiveness or growth rate of tumors is highly
expressed by PSCs compared to cancer cells in humans (Erkan
et al, 2007; Kanno et al., 2008). In addition, Recombinant
periostin increased activation of the PSCs. These effects
were reversed by silencing periostin expression and secretion
by small interfering RNA transfection. Periostin stimulated
cancer cell growth and induced their chemoresistance as
well as resistance to starvation and hypoxia (Erkan et al,
2007).

This data suggest that PSC activation is a response by the body
to prevent cancer development. The mechanism mediating this
effect is not well known.

However, data from Kanno et al. (2008) showed that high
concentration of recombinant periostin promoted cell migration
of the cancer cells mediated by Akt kinase activation. They also
found that lower doses of periostin had opposite effect causing
expression of epithelial phenotype markers and reduction in
mesenchymal markers resulting in reduced cell migration. The
findings suggest that periostin has concentration-dependent
dual effects on the development of pancreatic cancer (Kanno
et al., 2008), especially on EMT and migration of the cancer
cells. In the Erkan et al. study, periostin induced activation
of the PSCs but decreased their invasiveness (Erkan et al.,
2007). Periostin is highly expressed by PSC and its level
may be a key regulator of the pro-EMT/cancer and the anti-
EMT/cancer effects of PSC. That is, high expression of periostin
by PSC will induce EMT, migration metastasis and stemness
of the cancer cells; whereas, low doses of periostin will do the
opposite.

The findings listed above indicate that there are potentially
divergent roles for stellate cells in pancreatic cancer. That
is, there may be pro-cancer, neutral, and anti-cancer effects
of this stromal component. One possibility is that there are
sub-populations and/or sub-phenotypes of PSCs that play
different roles in the promotion or prevention of PDAC.
The level of periostin expressed by PSC could be a good
marker to start with. The different sub-phenotypes of PSCs
may be affected by the other tumor microenvironment
components. Targeting all of the PSCs together may not
necessarily lead to an anti-cancer effect. Further studies are
needed to better understand the potential divergent roles of
PSCs before defining a treatment strategy based on targeting
PSCs.

Role of Macrophages in Promoting
Pancreatic Cancer

In addition to the PSCs, macrophages are a major component
of the pancreatic tumor microenvironment. The link between
inflammation and pancreatic cancer pathogenesis is well
established (Yadav and Lowenfels, 2013).

Recently published studies suggest that the macrophages
infiltrating the pancreas drive the acinar to ductal metaplasia, a
key early process in pancreas carcinogenesis. Pancreatic acinar
cells have the capacity to undergo metaplasia to a ductal cell
phenotype in the setting of acute or chronic inflammation,
representing an important link to PDAC. The process involves
inflammatory cytokines such as RANTES and tumor necrosis
factor-alpha (TNF-a) and inflammatory intracellular signals such
as nuclear factor-kB (NF-«kB) as well as growth factors such as
TGF-a and epidermal growth factor-receptor (EGFR) (De Lisle
and Logsdon, 1990; Sandgren et al., 1990; Song et al., 1999;
Means et al., 2003). Genetically engineered mouse models using
mutant Kras support the concept that acinar to ductal metaplasia
precedes PanIN and PDAC development (Song et al., 1999;
Means et al., 2005). Importantly, induction of Kras®12P mutation
in acinar cells in mice leads to their transformation to PanIN
lesions even in the absence of pancreas injury (Habbe et al., 2008).

Expression of mutant Kras in pancreatic acinar cells expedites
their transformation to a duct-like phenotype by inducing local
inflammation. Specifically, KrasG12D induces the expression of
intercellular adhesion molecule-1 (ICAM-1), which serves as
chemo-attractant for macrophages.

Infiltrating macrophages amplify the formation of KrasG12D-
caused abnormal pancreatic structures by re-modeling the
extracellular matrix and providing cytokines such as TNF-a.
Depletion of macrophages or treatment with a neutralizing
antibody for ICAM-1 in mice expressing oncogenic Kras under
an acinar cell-specific promoter both resulted in a decreased
formation of abnormal structures and decreased progression
of acinar to ductal metaplasia to PanIN lesions (Liou et al.,
2014). Of note, we have shown before that ICAM-1 is also
expressed in acinar cells during pancreatitis (Zaninovic et al.,
2000).

Both M1 and M2 macrophage phenotypes were found in
the pancreatic tumor microenvironment. M1 macrophages are
characterized by high expression of inducible nitric oxide
synthase (iNOS), IL-10, major histocompatibility complex II
(MHC-II), and low IL-12 among others. M2 macrophages
express low level or no iNOS, IL-10, and MHC-II, and high
levels of Arginasel, CD206, and C-C chemokine receptor 3
(CCR3). Greater levels of tumor-infiltrating M2 macrophages
are significantly associated with shorter survival, whereas
Mi1Pigh/M2!oW correlated significantly with longer survival and
suggested using the M1/M2 ratio as independent prognosticator
(Ino et al.,, 2013). Analysis of pancreatic cancer tissues from 36
patients showed that the number of infiltrating macrophages in
tumor tissue was significantly greater in patients with metastases
to lymph nodes compared to tumor tissue without metastasis
(Gardian et al., 2012).
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FIGURE 1 | Interactions between macrophages and stellate cells mediating promotion of pancreatic cancer with a short list of possible mediators of

Co-culture with macrophages or with tumor associated
macrophage-conditioned media significantly reduced apoptosis
and activation of the caspase-3 pathway during gemcitabine
treatment of pancreatic cancer cells pointing to a survival effect
that the macrophages provide to cancer cells (Weizman et al.,
2014). Also, reducing macrophage recruitment and activation
in PDAC models in mice demonstrated improved response to
gemcitabine compared with controls (Weizman et al.,, 2014).
The data by Weizman et al. showed that decreasing macrophage
recruitment augmented the response of PDAC to chemotherapy
and that tumor associated macrophages induced up-regulation
of cytidine deaminase (CDA), the enzyme that metabolizes
gemcitabine following its transport into the cell (Weizman et al.,
2014).

Liu et al. showed recently that co-culture with M2-polarized
tumor associated macrophages up-regulated the expression of
mesenchymal markers Vimentin and Snail and decreased the
epithelial marker E-cadherin in pancreatic cancer cells (Liu et al.,
2013). Furthermore, co-culture of tumor associated macrophages
with pancreatic cancer cells increased proliferation and migration
of the cancer cells. They demonstrated that TLR4 and IL-10
mediate the cross talk between tumor associated macrophages
and cancer cells (Liu et al., 2013).

All these data indicate that a bidirectional interaction between
cancer cells and macrophages determines the fate of their
phenotypes, more or less metastatic and resistant to treatment
for cancer cells, and pro-inflammatory or pro-cancer for
macrophages.

Interaction between Macrophages and
Stellate Cells

When quiescent pancreatic stellate cells are co-cultured with
macrophage cell lines, the stellate cells showed morphological
changes consistent with myofibroblast morphology (Shi et al.,
2014). In the presence of Heparin-binding EGF (HB-EGF)
many of the stellate cells co-cultured with macrophages
were positive for their activation marker aSMA (Shi et al,
2014).

In the same study they found that PSCs have the potential
to regulate macrophage function, inducing the production of
multiple cytokines, partially through PSC production of IL-6 (Shi
et al.,, 2014). However, caution should be taken as these studies
were performed in cell lines and not in cells freshly isolated from
animals or humans (Shi et al., 2014).

In a different study, culture of peripheral blood mononuclear
cells (PBMC) with PSCs supernatants or IL-6 promoted
PBMC differentiation into Myeloid-derived suppressor cells
MDSC (CD11b*TCD33") phenotype and a subpopulation of
polymorphonuclear CD11b*CD33TCD15" cells (Mace et al,,
2013). IL-6 was an important mediator as its neutralization
inhibited PSC supernatant-mediated STAT3 phosphorylation
and MDSC differentiation (Mace et al., 2013). Importantly, the
level of cytokines produced by different PSCs was different
suggesting different phenotypes of the PSCs and suggesting
using these cytokines as markers for different sub-populations of
PSCs.
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Accumulating evidence indicate that targeting PSCs
and/or macrophages needs to be focused on targeting
specific sub-populations of these cells. Even though M2
macrophage populations are a good target, further studies
are needed to determine markers of the pro-cancer PSCs
(Figure 1).

Multiple studies have tried targeting pathways rather than
targeting the whole cell populations. Therapies against molecules
or pathways such as vascular endothelial growth factor (VEGF)
(Taeger et al., 2011), sonic hedgehog (Olive et al., 2009), and
hyaluronic acid (Provenzano et al., 2012) are now tested. Other
studies including our work suggest that the IL-6 and STAT3
pathway is a relevant target due to its constitutive activation
in the pancreatic cancer cells, immunosuppressive cells, and in

References

Al-Assar, O., Demiciorglu, F., Lunardi, S., Gaspar-Carvalho, M. M. I, McKenna,
W. G. L, Muschel, R. M., et al. (2014). Contextual regulation of pancreatic
cancer stem cell phenotype and radioresistance by pancreatic stellate cells.
Radiother. Oncol. 111, 243-251. doi: 10.1016/j.radonc.2014.03.014

Alvarez, R,, Musteanu, M., Garcia-Garcia, E., Lopez-Casas, P. P., Megias, D.,
Guerra, C., et al. (2013). Stromal disrupting effects of nab-paclitaxel in
pancreatic cancer. Br. J. Cancer 109, 926-933. doi: 10.1038/bjc.2013.415

Apte, M. V., Haber, P. S., Applegate, T. L., Norton, I. D., Korsten, M. A., Pirola, R.
C., et al. (1998). Periacinar stellate shaped cells in rat pancreas: identification,
isolation, and culture. Gut 43, 128-133. doi: 10.1136/gut.43.1.128

Apte, M. V., Park, S., Phillips, P. A, Santucci, N., Goldstein, D., Kumar, R. K., et al.
(2004). Desmoplastic reaction in pancreatic cancer: role of pancreatic stellate
cells. Pancreas 29, 179-187. doi: 10.1097/00006676-200410000-00002

Arumugam, T., Ramachandran, V., Fournier, K. F., Wang, H., Marquis, L.,
Abbruzzese, J. L., et al. (2009). Epithelial to mesenchymal transition contributes
to drug resistance in pancreatic cancer. Cancer Res. 69, 5820-5828. doi:
10.1158/0008-5472.CAN-08-2819

Bachem, M. G., Schneider, E., Gross, H., Weidenbach, H., Schmid, R. M,
Menke, A., et al. (1998). Identification, culture, and characterization of
pancreatic stellate cells in rats and humans. Gastroenterology 115, 421-432. doi:
10.1016/S0016-5085(98)70209-4

Bachem, M. G., Schunemann, M., Ramadani, M., Siech, M., Beger, H., Buck,
A, et al. (2005). Pancreatic carcinoma cells induce fibrosis by stimulating
proliferation and matrix synthesis of stellate cells. Gastroenterology 128,
907-921. doi: 10.1053/j.gastro.2004.12.036

Beatty, G. L., Chiorean, E. G., Fishman, M. P., Saboury, B., Teitelbaum, U. R,,
Sun, W,, et al. (2011). CD40 agonists alter tumor stroma and show efficacy
against pancreatic carcinoma in mice and humans. Science 331, 1612-1616. doi:
10.1126/science.1198443

Bennewith, K. L., Huang, X., Ham, C. M., Graves, E. E,, Erler, J. T., Kambham,
N., et al. (2009). The role of tumor cell-derived connective tissue growth factor
(CTGF/CCN2) in pancreatic tumor growth. Cancer Res. 69, 775-784. doi:
10.1158/0008-5472.CAN-08-0987

Cabrera, M. C,, Tilahun, E., Nakles, R., Diaz-Cruz, E. S., Charabaty, A., Suy, S., et al.
(2014). Human pancreatic cancer-associated stellate cells remain activated after
in vivo chemoradiation. Front. Oncol. 4:102. doi: 10.3389/fonc.2014.00102

Corcoran, R. B., Contino, G., Deshpande, V., Tzatsos, A., Conrad, C., Benes,
C. H,, et al. (2011). STAT3 plays a critical role in KRAS-induced pancreatic
tumorigenesis. Cancer Res. 71, 5020-5029. doi: 10.1158/0008-5472.CAN-11-
0908

De Lisle, R. C., and Logsdon, C. D. (1990). Pancreatic acinar cells in culture:
expression of acinar and ductal antigens in a growth-related manner. Eur. J.
Cell Biol. 51, 64-75.

Edderkaoui, M., Hong, P., Vaquero, E. C,, Lee, J. K., Fischer, L., Friess, H., et al.
(2005). Extracellular matrix stimulates reactive oxygen species production and
increases pancreatic cancer cell survival through 5-lipoxygenase and NADPH

PSC within the stroma (Corcoran et al., 2011; Lesina et al., 2011;
Huang et al., 2012).

In summary, we have gained a lot of knowledge about
the interactions between cancer cells and cells present in the
tumor microenvironment, especially the interactions between
cancer cells, macrophages, and PSCs. Ample work is needed to
understand how cells in the tumor microenvironment regulate
PSCs phenotype. Periostin could be is a good candidate to
differentiate between different populations of PSCs.

Acknowledgments

Supported by K01AA019996, P0O1CA163200 and Department of
Veterans Affairs.

oxidase. Am. J. Physiol. Gastrointest. Liver Physiol. 289, G1137-G1147. doi:
10.1152/ajpgi.00197.2005

Erkan, M., Kleeff, J., Gorbachevski, A., Reiser, C., Mitkus, T., Esposito, L, et al.
(2007). Periostin creates a tumor-supportive microenvironment in the pancreas
by sustaining fibrogenic stellate cell activity. Gastroenterology 132, 1447-1464.
doi: 10.1053/j.gastro.2007.01.031

Erkan, M., Michalski, C. W., Rieder, S., Reiser-Erkan, C., Abiatari, I, Kolb, A.,
et al. (2008). The activated stroma index is a novel and independent prognostic
marker in pancreatic ductal adenocarcinoma. Clin. Gastroenterol. Hepatol. 6,
1155-1161. doi: 10.1016/j.cgh.2008.05.006

Erkan, M., Reiser-Erkan, C., Michalski, C. W., Deucker, S., Sauliunaite, D.,
Streit, S., et al. (2009). Cancer-stellate cell interactions perpetuate the hypoxia-
fibrosis cycle in pancreatic ductal adenocarcinoma. Neoplasia 11, 497-508. doi:
10.1593/neo0.81618

Gardian, K., Janczewska, S., Olszewski, W. L., and Durlik, M. (2012). Analysis
of pancreatic cancer microenvironment: role of macrophage infiltrates and
growth factors expression. J. Cancer 3, 285-291. doi: 10.7150/jca.4537

Habbe, N., Shi, G., Meguid, R. A., Fendrich, V., Esni, F.,, Chen, H., et al.
(2008). Spontaneous induction of murine pancreatic intraepithelial neoplasia
(mPanIN) by acinar cell targeting of oncogenic Kras in adult mice. Proc. Natl.
Acad. Sci. U.S.A. 105, 18913-18918. doi: 10.1073/pnas.0810097105

Hamada, S., Masamune, A., Takikawa, T., Suzuki, N., Kikuta, K., Hirota, M.,
et al. (2012). Pancreatic stellate cells enhance stem cell-like phenotypes in
pancreatic cancer cells. Biochem. Biophys. Res. Commun. 421, 349-354. doi:
10.1016/j.bbrc.2012.04.014

Huang, C., Huang, R, Chang, W., Jiang, T., Huang, K, Cao, J., et al
(2012). The expression and clinical significance of pSTAT3, VEGF and
VEGEF-C in pancreatic adenocarcinoma. Neoplasma 59, 52-61. doi: 10.4149/
neo_2012_007

Hwang, R. F., Moore, T., Arumugam, T., Ramachandran, V., Amos, K. D., Rivera,
A., et al. (2008). Cancer-associated stromal fibroblasts promote pancreatic
tumor progression. Cancer Res. 68, 918-926. doi: 10.1158/0008-5472.CAN-07-
5714

Ino, Y., Yamazaki-Itoh, R., Shimada, K., Iwasaki, M., Kosuge, T., Kanai, Y.,
et al. (2013). Immune cell infiltration as an indicator of the immune
microenvironment of pancreatic cancer. Br. J. Cancer 108, 914-923. doi:
10.1038/bjc.2013.32

Kanno, A., Satoh, K., Masamune, A., Hirota, M., Kimura, K., Umino, J.,
et al. (2008). Periostin, secreted from stromal cells, has biphasic effect on
cell migration and correlates with the epithelial to mesenchymal transition
of human pancreatic cancer cells. Int. J. Cancer 122, 2707-2718. doi:
10.1002/ijc.23332

Kikuta, K., Masamune, A., Watanabe, T., Ariga, H., Itoh, H., Hamada, S., et al.
(2010). Pancreatic stellate cells promote epithelial-mesenchymal transition in
pancreatic cancer cells. Biochem. Biophys. Res. Commun. 403, 380-384. doi:
10.1016/j.bbrc.2010.11.040

Lesina, M., Kurkowski, M. U., Ludes, K., Rose-John, S., Treiber, M., Kloppel, G.,
etal. (2011). Stat3/Socs3 activation by IL-6 transsignaling promotes progression

Frontiers in Physiology | www.frontiersin.org

May 2015 | Volume 6 | Article 125


http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive

Pandol and Edderkaoui

Stellate cells, macrophages, and pancreatic cancer

of pancreatic intraepithelial neoplasia and development of pancreatic cancer.
Cancer Cell 19, 456-469. doi: 10.1016/j.ccr.2011.03.009

Liou, G. Y., Doppler, H., Necela, B., Edenfield, B., Zhang, L., Dawson, D. W., et al.
(2014). Mutant Kras-induced expression of ICAM-1 in pancreatic acinar cells
causes attraction of macrophages to expedite the formation of precancerous
lesions. Cancer Discov. 5, 52-63. doi: 10.1158/2159-8290.CD-14-0474

Liu, C. Y., Xu, J. Y., Shi, X. Y., Huang, W, Ruan, T. Y., Xie, P., et al. (2013). M2-
polarized tumor-associated macrophages promoted epithelial-mesenchymal
transition in pancreatic cancer cells, partially through TLR4/IL-10 signaling
pathway. Lab. Invest. 93, 844-854. doi: 10.1038/labinvest.2013.69

Lonardo, E., Frias-Aldeguer, J., Hermann, P. C., and Heeschen, C. (2012).
Pancreatic stellate cells form a niche for cancer stem cells and promote their
self-renewal and invasiveness. Cell Cycle 11, 1282-1290. doi: 10.4161/cc.19679

Mace, T. A., Ameen, Z., Collins, A., Wojcik, S., Mair, M., Young, G. S., et al.
(2013). Pancreatic cancer-associated stellate cells promote differentiation of
myeloid-derived suppressor cells in a STAT3-dependent manner. Cancer Res.
73, 3007-3018. doi: 10.1158/0008-5472.CAN-12-4601

Mani, S. A., Guo, W,, Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., et al.
(2008). The epithelial-mesenchymal transition generates cells with properties
of stem cells. Cell 133, 704-715. doi: 10.1016/j.cell.2008.03.027

Mantoni, T. S., Lunardi, S., Al-Assar, O., Masamune, A., and Brunner, T. B. (2011).
Pancreatic stellate cells radioprotect pancreatic cancer cells through betal-
integrin signaling. Cancer Res. 71, 3453-3458. doi: 10.1158/0008-5472.CAN-
10-1633

Masamune, A., Kikuta, K., Watanabe, T., Satoh, K., Hirota, M., and Shimosegawa,
T. (2008). Hypoxia stimulates pancreatic stellate cells to induce fibrosis and
angiogenesis in pancreatic cancer. Am. J. Physiol. Gastrointest. Liver Physiol.
295, G709-G717. doi: 10.1152/ajpgi.90356.2008

Matsuda, Y., Yoshimura, H., Ueda, J., Naito, Z., Korc, M., and Ishiwata, T.
(2014). Nestin delineates pancreatic cancer stem cells in metastatic foci of
NOD/Shi-scid IL2Rgamma(null) (NOG) mice. Am. J. Pathol. 184, 674-685. doi:
10.1016/j.ajpath.2013.11.014

Means, A. L., Meszoely, I. M., Suzuki, K., Miyamoto, Y., Rustgi, A. K,
Coffey, R. J. Jr., et al. (2005). Pancreatic epithelial plasticity mediated by
acinar cell transdifferentiation and generation of nestin-positive intermediates.
Development 132, 3767-3776. doi: 10.1242/dev.01925

Means, A. L., Ray, K. C,, Singh, A. B., Washington, M. K., Whitehead, R. H,,
Harris, R. C. Jr., et al. (2003). Overexpression of heparin-binding EGF-like
growth factor in mouse pancreas results in fibrosis and epithelial metaplasia.
Gastroenterology 124, 1020-1036. doi: 10.1053/gast.2003.50150

Mizuuchi, Y., Aishima, S., Ohuchida, K., Shindo, K., Fujino, M., Hattori, M., et al.
(2014). Anterior gradient 2 downregulation in a subset of pancreatic ductal
adenocarcinoma is a prognostic factor indicative of epithelial-mesenchymal
transition. Lab. Invest. 95, 193-206. doi: 10.1038/labinvest.2014.138

Olive, K. P., Jacobetz, M. A., Davidson, C. J., Gopinathan, A., McIntyre, D.,
Honess, D., et al. (2009). Inhibition of Hedgehog signaling enhances delivery of
chemotherapy in a mouse model of pancreatic cancer. Science 324, 1457-1461.
doi: 10.1126/science.1171362

Ozdemir, B. C., Pentcheva-Hoang, T., Carstens, J. L., Zheng, X, Wu, C.
C., Simpson, T. R, et al. (2014). Depletion of carcinoma-associated
fibroblasts and fibrosis induces immunosuppression and accelerates pancreas
cancer with reduced survival. Cancer Cell 25, 719-734. doi: 10.1016/j.ccr.
2014.04.005

Provenzano, P. P., Cuevas, C., Chang, A. E., Goel, V. K., Von Hoff, D. D., and
Hingorani, S. R. (2012). Enzymatic targeting of the stroma ablates physical
barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 21,
418-429. doi: 10.1016/j.ccr.2012.01.007

Rhim, A. D., Oberstein, P. E., Thomas, D. H., Mirek, E. T., Palermo, C. F,,
Sastra, S. A., et al. (2014). Stromal elements act to restrain, rather than

support, pancreatic ductal adenocarcinoma. Cancer Cell 25, 735-747. doi:
10.1016/j.ccr.2014.04.021

Sandgren, E. P., Luetteke, N. C., Palmiter, R. D., Brinster, R. L., and Lee, D.
C. (1990). Overexpression of TGF alpha in transgenic mice: induction of
epithelial hyperplasia, pancreatic metaplasia, and carcinoma of the breast. Cell
61, 1121-1135. doi: 10.1016/0092-8674(90)90075-P

Schneeweiss, A., Seitz, J., Smetanay, K., Schuetz, F., Jaeger, D., Bachinger, A, et al.
(2014). Efficacy of nab-paclitaxel does not seem to be associated with SPARC
expression in metastatic breast cancer. Anticancer Res. 34, 6609-6615.

Shek, F. W., Benyon, R. C., Walker, F. M., McCrudden, P. R., Pender, S. L.,
Williams, E. J., et al. (2002). Expression of transforming growth factor-beta 1 by
pancreatic stellate cells and its implications for matrix secretion and turnover
in chronic pancreatitis. Am. J. Pathol. 160, 1787-1798. doi: 10.1016/S0002-
9440(10)61125-X

Shi, C., Washington, M. K., Chaturvedi, R., Drosos, Y., Revetta, F. L., Weaver,
C. ], et al. (2014). Fibrogenesis in pancreatic cancer is a dynamic process
regulated by macrophage-stellate cell interaction. Lab. Invest. 94, 409-421. doi:
10.1038/labinvest.2014.10

Siegel, R., Naishadham, D., and Jemal, A. (2012). Cancer statistics. CA Cancer J.
Clin. 62, 10-29. doi: 10.3322/caac.20138

Song, S. Y., Gannon, M., Washington, M. K., Scoggins, C. R., Meszoely, 1.
M., Goldenring, J. R., et al. (1999). Expansion of Pdx1-expressing pancreatic
epithelium and islet neogenesis in transgenic mice overexpressing transforming
growth factor alpha. Gastroenterology 117, 1416-1426. doi: 10.1016/S0016-
5085(99)70292-1

Taeger, J., Moser, C., Hellerbrand, C., Mycielska, M. E., Glockzin, G., Schlitt,
H. J., et al. (2011). Targeting FGFR/PDGFR/VEGFR impairs tumor growth,
angiogenesis, and metastasis by effects on tumor cells, endothelial cells,
and pericytes in pancreatic cancer. Mol. Cancer Ther. 10, 2157-2167. doi:
10.1158/1535-7163.MCT-11-0312

Takikawa, T., Masamune, A., Hamada, S., Nakano, E. Yoshida, N., and
Shimosegawa, T. (2013). miR-210 regulates the interaction between pancreatic
cancer cells and stellate cells. Biochem. Biophys. Res. Commun. 437, 433-439.
doi: 10.1016/j.bbrc.2013.06.097

Wehr, A. Y., Furth, E. E., Sangar, V., Blair, I. A., and Yu, K. H. (2011). Analysis
of the human pancreatic stellate cell secreted proteome. Pancreas 40, 557-566.
doi: 10.1097/MPA.0b013e318214efaf

Weizman, N., Krelin, Y., Shabtay-Orbach, A., Amit, M., Binenbaum, Y., Wong,
R. ], et al. (2014). Macrophages mediate gemcitabine resistance of pancreatic
adenocarcinoma by upregulating cytidine deaminase. Oncogene 33, 3812-3819.
doi: 10.1038/0n¢.2013.357

Yadav, D., and Lowenfels, A. B. (2013). The epidemiology of pancreatitis
and pancreatic cancer.  Gastroenterology 144, 1252-1261.  doi:
10.1053/j.gastro.2013.01.068

Zaninovic, V., Gukovskaya, A. S., Gukovsky, I., Mouria, M., and Pandol, S. J.
(2000). Cerulein upregulates ICAM-1 in pancreatic acinar cells, which mediates
neutrophil adhesion to these cells. Am. J. Physiol. Gastrointest. Liver Physiol.
279, G666-G676.

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2015 Pandol and Edderkaoui. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) or licensor are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Physiology | www.frontiersin.org

May 2015 | Volume 6 | Article 125


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive

	What are the macrophages and stellate cells doing in pancreatic adenocarcinoma?
	Introduction
	Stellate Cells in the Context of Pancreatic Cancer
	Stellate Cells Regulate Epithelial-mesenchymal Transition (EMT) and Stemness of the Cancer Cells
	Controversial Role of Stellate Cells
	Role of Macrophages in Promoting Pancreatic Cancer
	Interaction between Macrophages and Stellate Cells
	Acknowledgments
	References


